Energy-Economizing Optimization of Magnesium Alloy Hot Stamping Process
Abstract
:1. Introduction
2. Framework and Method
3. Energy-Economizing Indices of Hot Stamping
3.1. Process Energy Consumption Indices
3.2. Forming Quality Indices
4. Multiobjective Optimization for Hot Stamping Process
4.1. Optimization Variables
4.2. Sample Selection
4.3. Optimization Model and Solution Approach
5. Hot Stamping Process Optimization of ZK60 Magnesium Alloy for Energy Saving
5.1. Material Properties Testing
5.2. FE Modeling and Simulation for Hot Stamping
- (1)
- Figure 9 depicts the initial positions of the die and blank, and the sheet metal is above the die.
- (2)
- The blank holder is close to the sheet metal at a certain speed (it can be set to different speeds, but it maintains a constant speed throughout the stamping process), which is called “holding.”
- (3)
- When the blank holder is finished, the sheet metal is fixed, and the punch starts to act. The “stamping” process begins when the punch contacts the sheet metal.
- (4)
- In the last stage of the simulation, the concave convex die is in a closed state, followed by the quenching stage.
5.3. Process Parameters Optimization
5.4. Stamping Experiments Verification
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, C.; Zhu, Q.; Wei, F.; Rao, W.; Liu, J.; Hu, J.; Cai, W. An integrated optimization control method for remanufacturing assembly system. J. Clean. Prod. 2019, 119261. [Google Scholar] [CrossRef]
- Yang, X. More Efforts are Needed to Promote New Energy. Available online: https://www.energy.people.com.cn/n1/2019/0307/c71661-30961766.html (accessed on 21 January 2020).
- Whalen, S.; Overman, N.; Joshi, V.; Varga, T.; Graff, D.; Lavender, C. Magnesium alloy ZK60 tubing made by Shear Assisted Processing and Extrusion (ShAPE). Mater. Sci. Eng. A 2019, 755, 278–288. [Google Scholar] [CrossRef]
- Singh, V.P.; Patel, S.K.; Kumar, N.; Kuriachen, B. Parametric effect on dissimilar friction stir welded steel-magnesium alloys joints: A review. Sci. Technol. Weld. Join. 2019, 24, 653–684. [Google Scholar] [CrossRef]
- Karbasian, H.; Tekkaya, A.E. A review on hot stamping. J. Mater. Process. Technol. 2010, 210, 2103–2118. [Google Scholar] [CrossRef]
- Gao, M.; He, K.; Li, L.; Wang, Q.; Liu, C. A review on energy consumption, energy efficiency and energy saving of metal forming processes from different hierarchies. Processes 2019, 7, 357. [Google Scholar] [CrossRef] [Green Version]
- Bariani, P.F.; Bruschi, S.; Ghiotti, A.; Michieletto, F. Hot stamping of AA5083 aluminium alloy sheets. CIRP Ann.-Manuf. Technol. 2013, 62, 251–254. [Google Scholar] [CrossRef]
- Gao, M.; Huang, H.; Wang, Q.; Liu, Z.; Li, X. Energy consumption analysis on sheet metal forming: Focusing on the deep drawing processes. Int. J. Adv. Manuf. Technol. 2018, 96, 3893–3907. [Google Scholar] [CrossRef]
- Gao, M.; Liu, Z.; Li, L. Energy consumption analysis focusing on hot stamping of sheet metal. J. Plast. Eng. 2017, 24, 74–81. [Google Scholar]
- Shi, C.W.P.; Rugrungruang, F.; Yeo, Z.; Gwee, K.H.K.; Ng, R.; Song, B. Identifying carbon footprint reduction opportunities through energy measurements in sheet metal part manufacturing. In Glocalized Solutions for Sustainability in Manufacturing; Springer: Berlin/Heidelberg, Germany, 2011; pp. 389–394. [Google Scholar]
- Bosetti, P.; Bruschi, S.; Stoehr, T.; Lechler, J.; Merklein, M. Interlaboratory comparison for heat transfer coefficient identification in hot stamping of high strength steels. Int. J. Mater. Form. 2010, 3, 817–820. [Google Scholar] [CrossRef]
- Abdulhay, B.; Bourouga, B.; Dessain, C. Experimental and theoretical study of thermal aspects of the hot stamping process. Appl. Therm. Eng. 2011, 31, 674–685. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, B.; Zheng, K. An experimental and numerical investigation on the formability of AA7075 sheet in hot stamping condition. Int. J. Adv. Manuf. Technol. 2017, 92, 3299–3309. [Google Scholar] [CrossRef]
- Marler, R.T.; Arora, J.S. The weighted sum method for multi-objective optimization: New insights. Struct. Multidiscip. Optim. 2010, 41, 853–862. [Google Scholar] [CrossRef]
- Costa, N.R.; Pereira, Z.L. Multiple response optimization: A global criterion-based method. J. Chemom. 2010, 24, 333–342. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, B.; Lin, J.; Fu, L. Optimization of an aluminum alloy anti-collision side beam hot stamping process using a multi-objective genetic algorithm. Arch. Civ. Mech. Eng. 2013, 13, 401–411. [Google Scholar] [CrossRef]
- Kitayama, S.; Huang, S.; Yamazaki, K. Optimization of variable blank holder force trajectory for springback reduction via sequential approximate optimization with radial basis function network. Struct. Multidiscip. Optim. 2013, 47, 289–300. [Google Scholar] [CrossRef]
- Zhou, J. A Method to Optimize Aluminum Alloy Door Impact Beam Stamping Process Using NSGA-II. Mater. Sci. Forum 2013, 773–774, 89–94. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, B.; Zhou, J.; Ma, W.; Yang, L. Optimization of aluminium sheet hot stamping process using a multi-objective stochastic approach. Eng. Optim. 2016, 48, 2173–2189. [Google Scholar] [CrossRef]
- Liang, Y. Research and Application on Key Process Experiment of High Strength Steel for Hot Forming. Ph.D. Thesis, Da Lian University of Technology, Dalian, China, 15 December 2013. [Google Scholar]
- Gao, M.; Huang, H.; Li, X.; Liu, Z. Carbon emission analysis and reduction for stamping process chain. Int. J. Adv. Manuf. Technol. 2017, 91, 667–678. [Google Scholar] [CrossRef]
- Li, L.; Huang, H.; Zhao, F.; Zou, X.; Lu, Q.; Wang, Y.; Liu, Z.; Sutherland, J.W. Variations of Energy Demand With Process Parameters in Cylindrical Drawing of Stainless Steel. J. Manuf. Sci. Eng.-Trans. ASME 2019, 141, 091002. [Google Scholar] [CrossRef]
- Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II; Springer: Berlin/Heidelberg, Germany, 2000; pp. 849–858. [Google Scholar]
- Zhang, S.; Song, G.; Song, H.; Cheng, M. Deformation Mechanism and Warm Forming Technology for Magnesium Alloys Sheets. J. Mech. Eng. 2012, 48, 28–34. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, Z.; Ruan, X. Warm Forging of Magnesium Alloys: The Formability and Flow Stress of AZ 31B. J. Shanghai Jiaotong Univ. 2003, 37, 1874–1877. [Google Scholar]
Blank Diameter dp (mm) | Sheet Metal Thickness t0 (mm) | Drawing Height h (mm) | Punch Radius r1 (mm) | Die Radius r2 (mm) | Clearance δ (mm) | Friction Coefficient μ |
---|---|---|---|---|---|---|
100.0 | 1.0 | 20.0 | 7.0 | 8.0 | 1.2 | 0.12 |
Element | Si | Fe | Cu | Mn | Al | Zn | Ni | Zr |
---|---|---|---|---|---|---|---|---|
Quality score w | 0.0014 | 0.003 | 0.0011 | 0.008 | 0.0014 | 5.5 | 0.00048 | 0.53 |
Run | Fh (kN) | v (mm/s) | T (°C) | Energy Consumption (J) | Thinning (%) | Thickening (%) |
---|---|---|---|---|---|---|
1 | 2.1 | 4.7 | 250 | 46,212.27 | 5.09 | 8.1 |
2 | 2.5 | 3.5 | 225 | 32,165.84 | 4.3 | 8 |
3 | 2.8 | 5.1 | 200 | 28,919.08 | 4.32 | 7.3 |
4 | 3.1 | 8.3 | 250 | 48,726.87 | 5.96 | 7.6 |
5 | 3.5 | 4.3 | 225 | 33,066.23 | 9.62 | 6.8 |
6 | 3.8 | 6.3 | 250 | 47,463.92 | 5.78 | 7 |
7 | 4.2 | 9.5 | 225 | 37,347.17 | 9.64 | 7.8 |
8 | 4.5 | 5.9 | 200 | 29,853.32 | 7.71 | 6.8 |
9 | 4.8 | 7.5 | 200 | 31,439.71 | 5.08 | 7.4 |
10 | 5.2 | 9.9 | 225 | 37,667.46 | 7.75 | 8 |
11 | 5.5 | 7.1 | 225 | 35,622.90 | 7.01 | 7.1 |
12 | 5.8 | 5.5 | 250 | 46,978.99 | 16.12 | 6 |
13 | 6.2 | 9.1 | 200 | 32,932.06 | 6.12 | 7.7 |
14 | 6.5 | 8.7 | 200 | 32,596.56 | 6.04 | 7.5 |
15 | 6.9 | 3.1 | 250 | 44,981.23 | 6.74 | 6.2 |
16 | 7.2 | 6.7 | 200 | 30,775.07 | 5.84 | 7 |
17 | 7.5 | 7.9 | 250 | 48,664.86 | 8.59 | 6.4 |
18 | 7.9 | 3.9 | 225 | 32,835.24 | 11.86 | 5.7 |
Compromise Solutions | Process Parameters | Indices | ||||
---|---|---|---|---|---|---|
Fh (kN) | v (mm/s) | T (°C) | Energy Consumption (J) | Thinning (%) | Thickening (%) | |
Solution 1 | 8.0 | 3.0 | 225 | 31,785.57 | 6.2 | 5.7 |
Solution 2 | 4.7 | 3.3 | 200 | 26,190.36 | 4.8 | 5.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, M.; Wang, Q.; Li, L.; Ma, Z. Energy-Economizing Optimization of Magnesium Alloy Hot Stamping Process. Processes 2020, 8, 186. https://doi.org/10.3390/pr8020186
Gao M, Wang Q, Li L, Ma Z. Energy-Economizing Optimization of Magnesium Alloy Hot Stamping Process. Processes. 2020; 8(2):186. https://doi.org/10.3390/pr8020186
Chicago/Turabian StyleGao, Mengdi, Qingyang Wang, Lei Li, and Zhilin Ma. 2020. "Energy-Economizing Optimization of Magnesium Alloy Hot Stamping Process" Processes 8, no. 2: 186. https://doi.org/10.3390/pr8020186
APA StyleGao, M., Wang, Q., Li, L., & Ma, Z. (2020). Energy-Economizing Optimization of Magnesium Alloy Hot Stamping Process. Processes, 8(2), 186. https://doi.org/10.3390/pr8020186