A Visualization and Control Strategy for Dynamic Sustainability of Chemical Processes
Abstract
:1. Introduction
2. Background
2.1. Fermentation Process
2.2. Sustainability Assessment Tool
3. Process Control for Sustainable Process Operation
3.1. Integrated Control Strategy for Sustainability
3.2. BIO-CS (Biologically Inspired Optimal Control Strategy) Controller
4. Visualization of Dynamic Sustainability Performance
4.1. Visualization Approach
4.2. Open-Loop Simulation Example
5. Closed-Loop Simulation Results and Discussions
5.1. Case 1
5.2. Case 2
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
Disclaimer
Nomenclature
Variables | Definition (Units) |
A1/A2 | Exponential factors in Arrhenius equation |
AM | Area of membrane (m2) |
AC | Concentration analysis control |
AT | Heat transfer area (m2) |
Ci | Concentration of component i (kg/m3) |
Cp,r | Heat capacity of the reactants (kJ/kg/K) |
Cp,w | Heat capacity of cooling water (kJ/kg/K) |
CSRM | Specific raw material cost indicator |
Din | Inlet fermentor dilution rate (h−1) |
Dj | Cooling water flow rate (h−1) |
Dout | Outlet fermentor dilution rate (h−1) |
Dm,in | Inlet membrane dilution rate (h−1) |
Dm,out | Outlet membrane dilution rate (h−1) |
Ea1/Ea2 | Activation energies (kJ/mol) |
EQ | Environmental quotient indicator |
Process model | |
GWP | Global warming potential indicator |
J | Control objective |
KS | Monod constant (kg/m3) |
KT | Heat transfer coefficient (kJ/h/ m2/K) |
k1 | Empirical constant (h−1) |
k2 | Empirical constant (m3/kgh) |
k3 | Empirical constant (m6/kg2h) |
ms | Maintenance factor based on substrate (kg/kgh) |
mp | Maintenance factor based on product (kg/kgh) |
Production rate (kg/h) | |
M | Mixer |
MW | Molecular weight (g/mole) |
Membrane permeability (m/h) | |
P | Correction factor |
Parameters of the process model | |
Sustainability indicator percent score | |
Maximum percent score for the specific indicator i | |
ri | Production rate of component i (kg/m3) |
R | Gas constant |
RY | Reaction yield indicator |
RSEI | Specific energy intensity indicator |
Sustainability constraint i | |
Dynamic sustainability index | |
Average sustainability index | |
Threshold value for sustainability index | |
TC | Temperature control |
Tj | Temperature of cooling water in the jacket (K) |
Tw,in | Inlet temperature of cooling water (K) |
Tr | Temperature of the reactor (K) |
Initial time interval | |
Final time interval | |
Input variables | |
The past input action for the controller | |
Lower boundary for input variables | |
upper boundary for input variables | |
VF | Fermentor volume (m3) |
VM | Membrane volume (m3) |
Vj | Cooling jacket volume (m3) |
Weighting factors i | |
Penalty factor on the output variables for the controller | |
Penalty factor on the input variables for the controller | |
Water intensity indicator | |
Upper WI boundary (m3/kg) | |
Lower WI boundary (m3/kg) | |
State variables | |
Derivatives of state variable | |
Lower boundary for state variables | |
upper boundary for state variables | |
Output variables | |
Setpoint for process controller | |
Ysx | Yield factor based on substrate (kg/kg) |
Ypx | Yield factor based on product (kg/kg) |
Greek Symbols | |
Reactants density (kg/m3) | |
Cooling water density (kg/m3) | |
Specific growth rate (h−1) | |
Maximum specific growth rate (h−1) | |
Heat of fermentation reaction (kJ/kg) | |
Subscripts | |
e | Key component inside the fermentor |
e0 | Inlet key component to the fermentor |
P | Product (ethanol) inside the fermentor |
P0 | Inlet product to the fermentor |
PM | Product (ethanol) inside the membrane |
S | Substrate inside the fermentor |
S0 | Inlet substrate to the fermentor |
X | Biomass inside the fermentor |
X0 | Inlet biomass to the fermentor |
Appendix A
Category | Indicator | Formula | Unit | Sustainability Value | |
---|---|---|---|---|---|
Best Case (100%) | Worst Case (0%) | ||||
Efficiency | Reaction Yield (RY) | kg/kg | 1.0 | 0 | |
Water Intensity (WI) | m3/kg | 0 | 0.1 | ||
Environmental | Environmental Quotient (EQ) | m3/kg | 0 | 2.5 | |
Global Warming Potential (GWP) | kg/kg | 0 | Any waste released has a potency factor at least equal to 1 | ||
Economic | Specific Raw Material Cost (CSRM) | $/kg | 0 | 0.5 | |
Energy | Specific Energy Intensity (RSEI) | kJ/kg | 0 | 100 |
References
- Martins, A.A.; Teresa, M.M.; Costa, C.A.V.; Sikdar, S.K. Framework for Sustainability Metrics. Ind. Eng. Chem. Res. 2006, 46, 2962–2973. [Google Scholar] [CrossRef]
- Sikdar, S.K. Sustainable Development and Sustainability Metrics. AIChE J. 2003, 49, 1928–1932. [Google Scholar] [CrossRef]
- Jacquemin, L.; Pontalier, P.-Y.; Sablayrolles, C. Life Cycle Assessment (LCA) Applied to The Process Industry: A Review. Int. J. Life Cycle Assess. 2012, 17, 1028–1041. [Google Scholar] [CrossRef] [Green Version]
- Cobb, C.; Schuster, D.; Beloff, B.; Tanzil, D. The AIChE Sustainability Index the Factors in Detail. Chem. Eng. Prog 2009, 111, 59–63. [Google Scholar]
- Chin, K.; Schuster, D.; Tanzil, D.; Beloff, B.; Cobb, C. Sustainability Trends in the Chemical Industry. Chem. Eng. Prog 2015, 111, 36–40. [Google Scholar]
- Institution of Chemical Engineers. The Sustainability Metrics: Sustainable Development Progress Metrics Recommended for Use in the Process Industries; IChemE: Warwickshire, UK, 2014. [Google Scholar]
- Ruiz-Mercado, G.J.; Gonzalez, M.A.; Smith, R.L. Sustainability Indicators for Chemical Processes: III. Biodiesel Case Study. Ind. Eng. Chem. Res. 2013, 52, 6747–6760. [Google Scholar] [CrossRef]
- Ruiz-Mercado, G.J.; Smith, R.L.; Gonzalez, M.A. Sustainability Indicators for Chemical Processes: I. Taxonomy. Ind. Eng. Chem. Res. 2012, 51, 2309–2328. [Google Scholar] [CrossRef]
- Ruiz-Mercado, G.J.; Smith, R.L.; Gonzalez, M.A. Sustainability Indicators for Chemical Processes: II. Data Needs. Ind. Eng. Chem. Res 2012, 51, 2329–2353. [Google Scholar] [CrossRef]
- Li, S.; Feliachi, Y.; Agbleze, S.; Ruiz-Mercado, G.J.; Smith, R.L.; Meyer, D.E.; Gonzalez, M.A.; Lima, F.V. A Process Systems Framework for Rapid Generation of Life Cycle Inventories for Pollution Control and Sustainability Evaluation. Clean Technol. Environ. Policy 2018, 20, 1543–1561. [Google Scholar] [CrossRef]
- Gao, J.; You, F. Endpoint-Oriented Life Cycle Optimization Models for Sustainable Design and Operations of Shale Gas Supply Chains with Modular Manufacturing. Comput. Aided Chem. Eng. 2018, 43, 591–596. [Google Scholar]
- Dubey, R.; Gunasekaran, A.; Papadopoulos, T.; Childe, S.J.; Shibin, K.T.; Wamba, S.F. Sustainable Supply Chain Management: Framework and Further Research Directions. J. Clean. Prod. 2017, 142, 1119–1130. [Google Scholar] [CrossRef] [Green Version]
- Lozano, F.J.; Lozano, R.; Freire, P.; Jiménez-Gonzalez, C.; Sakao, T.; Ortiz, M.G.; Trianni, A.; Carpenter, A.; Viveros, T. New Perspectives for Green and Sustainable Chemistry and Engineering: Approaches from Sustainable Resource and Energy Use, Management, and Transformation. J. Clean. Prod. 2018, 172, 227–232. [Google Scholar] [CrossRef]
- Ghosh, T.; Liu, X.; Bakshi, B.R. Including Ecosystem Services in Sustainable Process Design across Multiple Spatial Scales. Comput. Aided Chem. Eng. 2018, 44, 1837–1842. [Google Scholar]
- Bakshi, B.R. Toward Sustainable Chemical Engineering: The Role of Process Systems Engineering. Annu. Rev. Chem. Biomol. Eng. 2019, 10, 265–288. [Google Scholar] [CrossRef]
- Alanqar, A.; Ellis, M.; Christofides, P.D. Economic Model Predictive Control of Nonlinear Process Systems Using Empirical Models. AIChE J. 2015, 61, 816–830. [Google Scholar] [CrossRef] [Green Version]
- Mesbah, A. Stochastic Model Predictive Control: An Overview and Perspectives for Future Research. IEEE Control Syst. 2016, 36, 30–44. [Google Scholar]
- Zhang, Z.; Wu, Z.; Rincon, D.; Garcia, C.; Christofides, P.D. Operational Safety of Chemical Processes via Safeness-Index Based MPC: Two Large-Scale Case Studies. Comput. Chem. Eng. 2019, 204–215. [Google Scholar] [CrossRef]
- Daoutidis, P.; Zachar, M.; Jogwar, S.S. Sustainability and Process Control: A Survey and Perspective. J. Process Control 2016, 44, 184–206. [Google Scholar] [CrossRef]
- Rossi, F.; Manenti, F.; Pirola, C.; Mujtaba, I. A Robust Sustainable Optimization & Control Strategy (RSOCS) for (fed-)Batch Processes towards the Low-cost Reduction of Utilities Consumption. J. Clean. Prod. 2016, 111, 181–192. [Google Scholar]
- Zhu, Q.; Lujia, F.; Mayyas, A.; Omar, M.A.; Al-Hammadi, Y.; Al Saleh, S. Production Energy Optimization Using Low Dynamic Programming: A Decision Support Tool for Sustainable Manufacturing. J. Clean. Prod. 2015, 105, 178–183. [Google Scholar] [CrossRef]
- Li, S.; Mirlekar, G.; Ruiz-Mercado, G.J.; Lima, F.V. Development of Chemical Process Design and Control for Sustainability. Processes 2016, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Mercado, G.J.; Smith, R.L.; Gonzalez, M.A. GREENSCOPE.xlsm Tool; US Environmental Protection Agency: Cincinnati, OH, USA, 2013.
- Mirlekar, G.; Li, S.; Lima, F.V. Design and Implementation of a Biologically Inspired Optimal Control Strategy for Chemical Process Control. Ind. Eng. Chem. Res. 2017, 56, 6468–6479. [Google Scholar] [CrossRef]
- Miroslav Fikar Dynopt Solver. Available online: https://www.uiam.sk/~fikar/research/dynopt/dynopt.htm (accessed on 10 September 2019).
- Mirlekar, G.; Gebreslassie, B.H.; Li, S.; Diwekar, U.M.; Lima, F.V. An Integrated Biomimetic Control Strategy with Multi-agent Optimization for Nonlinear Chemical Processes. In Proceedings of the 2018 IFAC ADCHEM Symposium, Shenyang, China, 25–27 July 2018; Volume 51, pp. 55–60. [Google Scholar]
- Mirlekar, G.; Pezzini, P.; Bryden, M.; Tucker, D.; Lima, F.V. A Biologically-Inspired Optimal Control Strategy (BIO-CS) for Hybrid Energy Systems. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 4821–4826. [Google Scholar]
- Mirlekar, G.; Al-Sinbol, G.; Perhinschi, M.; Lima, F.V. A Biologically-Inspired Approach for Adaptive Control of Advanced Energy Systems. Comput. Chem. Eng. 2018, 117, 378–390. [Google Scholar] [CrossRef]
- Lima, F.V.; Georgakis, C. Dynamic Operability for the Calculation of Transient Output Constraints for Non-Square Linear Model Predictive Controllers. In Proceedings of the 2009 IFAC ADCHEM Symposium, Istanbul, Turkey, 12–15 July 2009. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Ruiz-Mercado, G.J.; Lima, F.V. A Visualization and Control Strategy for Dynamic Sustainability of Chemical Processes. Processes 2020, 8, 310. https://doi.org/10.3390/pr8030310
Li S, Ruiz-Mercado GJ, Lima FV. A Visualization and Control Strategy for Dynamic Sustainability of Chemical Processes. Processes. 2020; 8(3):310. https://doi.org/10.3390/pr8030310
Chicago/Turabian StyleLi, Shuyun, Gerardo J. Ruiz-Mercado, and Fernando V. Lima. 2020. "A Visualization and Control Strategy for Dynamic Sustainability of Chemical Processes" Processes 8, no. 3: 310. https://doi.org/10.3390/pr8030310
APA StyleLi, S., Ruiz-Mercado, G. J., & Lima, F. V. (2020). A Visualization and Control Strategy for Dynamic Sustainability of Chemical Processes. Processes, 8(3), 310. https://doi.org/10.3390/pr8030310