A Review of Exergy Based Optimization and Control
Abstract
:1. Introduction
- Provides a common “currency” that is compatible among varying units and dimensions within a system,
- Allows thermodynamic imperfections to be identified and therefore controlled and optimized,
- Accounts for work and heat separately, therefore allowing them to be controlled and optimized separately.
2. A Brief Utilization History of Exergy
3. Exergy Based Control and Optimization
3.1. Exergy Based Model Predictive Control
3.2. Exergy Based Optimal Control
3.3. Exergy Based Optimization
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pacheco, R.; Ordóñez, J.; Martínez, G. Energy efficient design of building: A review. Renew. Sustain. Energy Rev. 2012, 16, 3559–3573. [Google Scholar] [CrossRef]
- Kalinci, Y.; Dincer, I.; Hepbasli, A. Energy and exergy analyses of a hybrid hydrogen energy system: A case study for Bozcaada. Int. J. Hydrogen Energy 2017, 42, 2492–2503. [Google Scholar] [CrossRef]
- Dincer, I.; Cengel, Y. Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy 2001, 3, 116–149. [Google Scholar] [CrossRef]
- BoroumandJazi, G.; Saidur, R.; Rismanchi, B.; Mekhilef, S. A review on the relation between the energy and exergy efficiency analysis and the technical characteristic of the renewable energy systems. Renew. Sustain. Energy Rev. 2012, 16, 3131–3135. [Google Scholar] [CrossRef]
- Saidur, R.; Abdul Khaliq, A.; Masjuki, H.H. Analysis of energy and exergy use for process heating in the industrial sector of Malaysia. Int. J. Exergy 2006, 3, 119–149. [Google Scholar] [CrossRef]
- Jain, N. Thermodynamics Based Optimization and Control Of Integrated Energy Systems. Ph.D. Thesis, University of Illinois, Urbana-Champaign, IL, USA, 2013. [Google Scholar]
- Gibbs, J.W. A Method of Geometrical Representation of the Thermodynamic Properties by Means of Surfaces. Trans. Conn. Acad. Arts Sci. 1873, 382–404. [Google Scholar]
- Rant, Z. Exergy, a new word for technical available work. Forsch. Ing. Wis. 1956, 22, 36–37. [Google Scholar]
- Morris, D.R.; Szargut, J. Standard chemical exergy of some elements and compounds on the planet earth. Energy 1986, 11, 733–755. [Google Scholar] [CrossRef]
- Szargut, J. Analysis of cumulative exergy consumption. Int. J. Energy Res. 1987, 11, 541–547. [Google Scholar] [CrossRef]
- Szargut, J.; Morris, D.R. Cumulative exergy consumption and cumulative degree of perfection of chemical processes. Int. J. Energy Res. 1987, 11, 245–261. [Google Scholar] [CrossRef]
- Szargut, J. Sequence method of determination of partial exergy losses in thermal systems. Exergy Int. J. 2001, 1, 85–90. [Google Scholar] [CrossRef]
- Szargut, J.; Ziębik, A.; Stanek, W. Depletion of the non-renewable natural exergy resources as a measure of the ecological cost. Energy Convers. Manag. 2002, 43, 1149–1163. [Google Scholar] [CrossRef]
- Szargut, J.T. Anthropogenic and natural exergy losses (exergy balance of the Earth’s surface and atmosphere). Energy 2003, 28, 1047–1054. [Google Scholar] [CrossRef]
- Szargut, J.; Szczygiel, I. Utilization of the cryogenic exergy of liquid natural gas (LNG) for the production of electricity. Energy 2009, 34, 827–837. [Google Scholar] [CrossRef]
- Rivero, R.; Garfias, M. Standard chemical exergy of elements updated. Energy 2006, 31, 3310–3326. [Google Scholar] [CrossRef]
- Szargut, J.; Morris, D. Cumulative exergy losses associated with the production of lead metal. Int. J. Energy Res. 1990, 14, 605–616. [Google Scholar] [CrossRef]
- Szargut, J. Exergy in the thermal systems analysis. In Thermodynamic Optimization of Complex Energy Systems; Springer: Dordrecht, The Netherlands, 1999; pp. 137–150. [Google Scholar]
- Szargut, J. Chemical exergies of the elements. Appl. Energy 1989, 32, 269–286. [Google Scholar] [CrossRef]
- Szargut, J. Local and system exergy losses in cogeneration processes. Int. J. Thermodyn. 2007, 10, 135–142. [Google Scholar]
- Szargut, J.; Morris, D.R.; Steward, F.R. Exergy Analysis of Thermal, Chemical, and Metallurgical Processes; U.S. Department of Energy: Washington, DC, USA, 1987. [Google Scholar]
- Sorin, M.; Brodyansky, V. A method for thermodynamic optimization—I. Theory and application to an ammonia-synthesis plant. Energy 1992, 17, 1019–1031. [Google Scholar] [CrossRef]
- Sorin, M.V.; Brodyansky, V.M.; Paris, J. Observations on exergy efficiency coefficients. In Proceedings of the Florence World Energy Research Symposium, Florence, Italy, 6–8 July 1994; SG Editoriali: Padova, Italy, 1994; Volume 94, pp. 941–949. [Google Scholar]
- Sorin, M.; Brodyansky, V.; Paris, J. Thermodynamic Evaluation of a Distillation AES, Thermodynamics and the Design Analysis and Improvement of Energy Systems. ASME 1994, 33, 125–134. [Google Scholar]
- Brodyansky, V.M.; Sorin, M.V.; Le Goff, P. The Efficiency of Industrial Processes: Exergy Analysis and Optimization; Elsevier: Amsterdam, The Netherlands, 1994; Volume 9. [Google Scholar]
- Kotas, T.J. Exergy concepts for thermal plant: First of two papers on exergy techniques in thermal plant analysis. Int. J. Heat Fluid Flow 1980, 2, 105–114. [Google Scholar] [CrossRef]
- Kotas, T.J. Exergy Criteria of Performance for Thermal Plant: Second of two papers on exergy techniques in thermal plant analysis. Int. J. Heat Fluid Flow 1980, 2, 147–163. [Google Scholar] [CrossRef]
- Kotas, T.J. The Exergy Method of Thermal Plant Analysis; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- U.S. Energy Information Agency. Available online: https://www.eia.gov/energy-explained/us-energy-facts/ (accessed on 3 February 2020).
- Regulagadda, P.; Dincer, I.; Naterer, G. Exergy analysis of a thermal power plant with measured boiler and turbine losses. Appl. Therm. Eng. 2010, 30, 970–976. [Google Scholar] [CrossRef]
- Ozden, E.; Tari, I. Energy—Exergy and economic analyses of a hybrid solar–hydrogen renewable energy system in Ankara, Turkey. Appl. Therm. Eng. 2016, 99, 169–178. [Google Scholar] [CrossRef]
- Koroneos, C.J.; Fokaides, P.A.; Christoforou, E.A. Exergy analysis of a 300 MW lignite thermoelectric power plant. Energy 2014, 75, 304–311. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I. Energy and exergy analyses of a novel photoelectrochemical hydrogen production system. Int. J. Hydrogen Energy 2017, 42, 30550–30558. [Google Scholar] [CrossRef]
- Calderon, M.; Calderon, A.; Ramiro, A.; Gonzalez, J.; Gonzalez, I. Evaluation of a hybrid photovoltaic-wind system with hydrogen storage performance using exergy analysis. Int. J. Hydrogen Energy 2011, 36, 5751–5762. [Google Scholar] [CrossRef]
- Exergy Based Analysis for the Environmental Control and Life Support Systems of the International Space Station. NASA Technical Reports Server. Available online: https://ntrs.nasa.gov/search.jsp?R=20160012079 (accessed on 3 February 2020).
- Kaushik, S.; Reddy, V.S.; Tyagi, S. Energy and exergy analyses of thermal power plants: A review. Renew. Sustain. Energy Rev. 2011, 15, 1857–1872. [Google Scholar] [CrossRef]
- Ozgener, O.; Hepbasli, A. A review on the energy and exergy analysis of solar assisted heat pump systems. Renew. Sustain. Energy Rev. 2007, 11, 482–496. [Google Scholar] [CrossRef]
- Sayin, C.; Hosoz, M.; Canakci, M.; Kilicaslan, I. Energy and exergy analyses of a gasoline engine. Int. J. Energy Res. 2007, 31, 259–273. [Google Scholar] [CrossRef]
- Al-Najem, N.; Diab, J. Energy-exergy analysis of a diesel engine. Heat Recovery Syst. CHP 1992, 12, 525–529. [Google Scholar] [CrossRef]
- Bourhis, G.; Leduc, P. Energy and exergy balances for modern diesel and gasoline engines. Oil Gas Sci. Technol. Rev. 2010, 65, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Sorin, M.; Lambert, J.; Paris, J. Exergy flows analysis in chemical reactors. Chem. Eng. Res. Des. 1998, 76, 389–395. [Google Scholar] [CrossRef]
- Sorin, M.; Paris, J. Combined exergy and pinch approach to process analysis. Comput. Chem. Eng. 1997, 21, S23–S28. [Google Scholar] [CrossRef]
- Sorin, M.; Paris, J. Integrated exergy load distribution method and pinch analysis. Comput. Chem. Eng. 1999, 23, 497–507. [Google Scholar] [CrossRef]
- Sorin, M.; Bonhivers, J.C.; Paris, J. Exergy efficiency and conversion of chemical reactions. Energy Convers. Manag. 1998, 39, 1863–1868. [Google Scholar] [CrossRef]
- Sorin, M.; Hammache, A.; Diallo, O. Exergy based approach for process synthesis. Energy 2000, 25, 105–129. [Google Scholar] [CrossRef]
- Douvartzides, S.; Coutelieris, F.; Tsiakaras, P. Exergy analysis of a solid oxide fuel cell power plant fed by either ethanol or methane. J. Power Sour. 2004, 131, 224–230. [Google Scholar] [CrossRef]
- Douvartzides, S.; Coutelieris, F.; Tsiakaras, P. On the systematic optimization of ethanol fed SOFC based electricity generating systems in terms of energy and exergy. J. Power Sour. 2003, 114, 203–212. [Google Scholar] [CrossRef]
- Song, S.; Douvartzides, S.; Tsiakaras, P. Exergy analysis of an ethanol fuelled proton exchange membrane (PEM) fuel cell system for automobile applications. J. Power Sour. 2005, 145, 502–514. [Google Scholar] [CrossRef]
- Douvartzides, S.; Coutelieris, F.; Tsiakaras, P. Energy and exergy analysis of a solid oxide fuel cell plant fueled by ethanol and methane. Ionics 2003, 9, 293–296. [Google Scholar] [CrossRef]
- Faramarz, S.; Said, F.; Hossein, A.; Amin, B. Exergetic optimization of a solar photovoltaic array. J. Thermodyn. 2010, 2009. [Google Scholar] [CrossRef] [Green Version]
- Rosen, M.; Bulucea, C.A. Using exergy to understand and improve the efficiency of electrical power technologies. Entropy 2009, 11, 820–835. [Google Scholar] [CrossRef]
- Razmara, M.; Maasoumy, M.; Shahbakhti, M.; Robinett, R., III. Optimal exergy control of building HVAC system. Appl. Energy 2015, 156, 555–565. [Google Scholar] [CrossRef]
- Razmara, M.; Maasoumy, M.; Shahbakhti, M.; Robinett, R.D. Exergy based model predictive control for building HVAC systems. In Proceedings of the 2015 American Control Conference (ACC), Chicago, IL, USA, 1–3 July 2015; pp. 1677–1682. [Google Scholar]
- Reddy, C.R.; Razmara, M.; Shahbakhti, M.; Robinett, R.D. Optimal Exergy-wise Predictive Control for a Combined MicroCSP and HVAC System in a Building. In Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019; pp. 235–240. [Google Scholar]
- Jonin, M.; Khosravi, M.; Eichler, A.; Villasmil, W.; Schuetz, P.; Jones, C.N.; Smith, R.S. Exergy based model predictive control for design and control of a seasonal thermal energy storage system. J. Physics Conf. Ser. 2019, 1343, 012066. [Google Scholar] [CrossRef]
- Baranski, M.; Sangi, R.; Fütterer, J.; Müller, D. An Algorithm for Stepwise Exergy based Model Predictive Control of Building HVAC Supply Chains. In Proceedings of the ECOS, Portorož, Slovenia, 19–23 June 2016; pp. 19–23. [Google Scholar]
- Liu, Z.; Chen, X.; Xu, X.; Guan, X. A decentralized optimization method for energy saving of HVAC systems. In Proceedings of the 2013 IEEE International Conference on Automation Science and Engineering (CASE), Madison, WI, USA, 17–20 August 2013; pp. 225–230. [Google Scholar]
- Coffey, B. Using Building Simulation and Optimization to Calculate Lookup Tables for Control. 2012. Available online: https://digitalassets.lib.berkeley.edu/etd/ucb/text/Coffey_berkeley_0028E_12085.pdf (accessed on 3 February 2020).
- Baranski, M.; Fütterer, J.; Müller, D. Distributed exergy based simulation-assisted control of HVAC supply chains. Energy Build. 2018, 175, 131–140. [Google Scholar] [CrossRef]
- Sayadi, S.; Tsatsaronis, G.; Morosuk, T.; Baranski, M.; Sangi, R.; Müller, D. Exergy based control strategies for the efficient operation of building energy systems. J. Clean. Prod. 2019, 241, 118277. [Google Scholar] [CrossRef]
- Sangi, R.; Müller, D. A novel hybrid agent based model predictive control for advanced building energy systems. Energy Convers. Manag. 2018, 178, 415–427. [Google Scholar] [CrossRef]
- Trinklein, E.H.; Parker, G.G.; McCoy, T.J. Modeling, optimization, and control of ship energy systems using exergy methods. Energy 2020, 191, 116542. [Google Scholar] [CrossRef]
- Jain, N.; Alleyne, A. Exergy based optimal control of a vapor compression system. Energy Convers. Manag. 2015, 92, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Salahshoor, K.; Asheri, M. A new exergy based model predictive control methodology for energy assessment and control. J. Nat. Gas Sci. Eng. 2014, 21, 489–495. [Google Scholar] [CrossRef]
- Hadian, M.; Asheri, M.; Salahshoor, K. A novel exergy-event based model predictive control strategy for energy saving. J. Nat. Gas Sci. Eng. 2014, 21, 712–717. [Google Scholar] [CrossRef]
- Ray, T.K.; Ganguly, R.; Gupta, A. Optimal control strategy for minimization of exergy destruction in boiler superheater. Energy Convers. Manag. 2013, 66, 234–245. [Google Scholar] [CrossRef]
- Trinklein, E.H.; Cook, M.D.; Parker, G.G.; Weaver, W.W. Exergy optimal multi-physics aircraft microgrid control architecture. Int. J. Electr. Power Energy Syst. 2020, 114, 105403. [Google Scholar] [CrossRef]
- Farahat, S.; Sarhaddi, F.; Ajam, H. Exergetic optimization of flat plate solar collectors. Renew. Energy 2009, 34, 1169–1174. [Google Scholar] [CrossRef]
- Ajam, H.; Farahat, S.; Sarhaddi, F. Exergetic optimization of solar air heaters and comparison with energy analysis. Int. J. Thermodyn. 2005, 8, 183–190. [Google Scholar]
- Sobhnamayan, F.; Sarhaddi, F.; Alavi, M.; Farahat, S.; Yazdanpanahi, J. Optimization of a solar photovoltaic thermal (PV/T) water collector based on exergy concept. Renew. Energy 2014, 68, 356–365. [Google Scholar] [CrossRef]
- Sarhaddi, F.; Farahat, S.; Ajam, H.; Behzadmehr, A. Exergetic optimization of a solar photovoltaic thermal (PV/T) air collector. Int. J. Energy Res. 2011, 35, 813–827. [Google Scholar] [CrossRef]
- Sarhaddi-student, F.; Farahat, S.; Ajam, H.; Sobhnamayan, F. Thermodynamic optimization of the solar parabolic cookers and comparison with energy analysis. In Proceedings of the Fifth International Chemical Engineering Congress (IchEC 2008), Tehran, Iran, 2–5 January 2008. [Google Scholar]
- Naserian, M.M.; Farahat, S.; Sarhaddi, F. Exergoeconomic multi objective optimization and sensitivity analysis of a regenerative Brayton cycle. Energy Convers. Manag. 2016, 117, 95–105. [Google Scholar] [CrossRef]
- Ashouri, M.; Ahmadi, M.H.; Pourkiaei, S.M.; Astaraei, F.R.; Ghasempour, R.; Ming, T.; Hemati, J.H. Exergy and exergo-economic analysis and optimization of a solar double pressure organic Rankine cycle. Therm. Sci. Eng. Prog. 2018, 6, 72–86. [Google Scholar] [CrossRef]
- Behzadi, A.; Gholamian, E.; Ahmadi, P.; Habibollahzade, A.; Ashjaee, M. Energy, exergy and exergoeconomic (3E) analyses and multi-objective optimization of a solar and geothermal based integrated energy system. Appl. Therm. Eng. 2018, 143, 1011–1022. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Mehrpooya, M.; Pourfayaz, F. Thermodynamic and exergy analysis and optimization of a transcritical CO2 power cycle driven by geothermal energy with liquefied natural gas as its heat sink. Appl. Therm. Eng. 2016, 109, 640–652. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Ahmadi, M.A.; Sadatsakkak, S.A. Thermodynamic analysis and performance optimization of irreversible Carnot refrigerator by using multi-objective evolutionary algorithms (MOEAs). Renew. Sustain. Energy Rev. 2015, 51, 1055–1070. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Ahmadi, M.A.; Pourfayaz, F.; Bidi, M.; Açıkkalp, E. Multi-objective optimization and exergetic-sustainability of an irreversible nano scale Braysson cycle operating with Maxwell–Boltzmann gas. Alex. Eng. J. 2016, 55, 1785–1798. [Google Scholar] [CrossRef] [Green Version]
- Boyaghchi, F.A.; Chavoshi, M. Multi-criteria optimization of a micro solar-geothermal CCHP system applying water/CuO nanofluid based on exergy, exergoeconomic and exergoenvironmental concepts. Appl. Therm. Eng. 2017, 112, 660–675. [Google Scholar] [CrossRef]
- Boyaghchi, F.A.; Sabaghian, M. Multi objective optimisation of a Kalina power cycle integrated with parabolic trough solar collectors based on exergy and exergoeconomic concept. Int. J. Energy Technol. Policy 2016, 12, 154–180. [Google Scholar] [CrossRef]
- Ahmadi, P.; Dincer, I. Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA). Energy 2010, 35, 5161–5172. [Google Scholar] [CrossRef]
- Ahmadi, P.; Dincer, I. Thermodynamic and exergoenvironmental analyses, and multi-objective optimization of a gas turbine power plant. Appl. Therm. Eng. 2011, 31, 2529–2540. [Google Scholar] [CrossRef]
- Barzegar Avval, H.; Ahmadi, P.; Ghaffarizadeh, A.; Saidi, M. Thermo-economic-environmental multiobjective optimization of a gas turbine power plant with preheater using evolutionary algorithm. Int. J. Energy Res. 2011, 35, 389–403. [Google Scholar] [CrossRef]
- Shamoushaki, M.; Ghanatir, F.; Ehyaei, M.; Ahmadi, A. Exergy and exergoeconomic analysis and multi-objective optimisation of gas turbine power plant by evolutionary algorithms. Case study: Aliabad Katoul power plant. Int. J. Exergy 2017, 22, 279–307. [Google Scholar] [CrossRef]
- Boait, P.; Rylatt, R.; Wright, A. Exergy based control of electricity demand and microgeneration. Appl. Energy 2007, 84, 239–253. [Google Scholar] [CrossRef]
- Ahmadi, P.; Rosen, M.A.; Dincer, I. Multi-objective exergy based optimization of a polygeneration energy system using an evolutionary algorithm. Energy 2012, 46, 21–31. [Google Scholar] [CrossRef]
- Ahmadi, P.; Dincer, I.; Rosen, M.A. Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants. Energy 2011, 36, 5886–5898. [Google Scholar] [CrossRef]
- Ahmadi, P.; Dincer, I.; Rosen, M.A. Thermodynamic modeling and multi-objective evolutionary based optimization of a new multigeneration energy system. Energy Convers. Manag. 2013, 76, 282–300. [Google Scholar] [CrossRef]
- Ahmadi, P.; Dincer, I.; Rosen, M.A. Performance assessment and optimization of a novel integrated multigeneration system for residential buildings. Energy Build. 2013, 67, 568–578. [Google Scholar] [CrossRef]
- Kilkis, B.I.; Kilkis, S. Exergetic Optimization of Generated Electric Power Split in a Heat Pump Coupled Poly-Generation System. In Proceedings of the ASME 2007 Energy Sustainability Conference, Long Beach, CA, USA, 27–30 July 2007; pp. 211–218. [Google Scholar]
- Hajabdollahi, H.; Ahmadi, P.; Dincer, I. An exergy based multi-objective optimization of a heat recovery steam generator (HRSG) in a combined cycle power plant (CCPP) using evolutionary algorithm. Int. J. Green Energy 2011, 8, 44–64. [Google Scholar] [CrossRef]
- Hajabdollahi, H.; Ahmadi, P.; Dincer, I. Exergetic optimization of shell-and-tube heat exchangers using NSGA-II. Heat Transf. Eng. 2012, 33, 618–628. [Google Scholar] [CrossRef]
- Mozafari, A.; Ahmadi, A.; Ehyaei, M. Optimisation of micro gas turbine by exergy, economic and environmental (3E) analysis. Int. J. Exergy 2010, 7, 1–19. [Google Scholar] [CrossRef]
- Razmara, M.; Bidarvatan, M.; Shahbakhti, M.; Robinett III, R. Optimal exergy based control of internal combustion engines. Appl. Energy 2016, 183, 1389–1403. [Google Scholar] [CrossRef] [Green Version]
- U.S. Energy Information Agency. Available online: https://www.eia.gov/energy-explained/use-of-energy/industry.php (accessed on 3 February 2020).
- U.S. Energy Information Agency. Available online: https://www.eia.gov/todayinenergy/detail.php?id=42497 (accessed on 3 February 2020).
- Qin, S.J.; Badgwell, T.A. A survey of industrial model predictive control technology. Control. Eng. Pract. 2003, 11, 733–764. [Google Scholar] [CrossRef]
- Haynes, V. Energy Use in Petroleum Refineries; Technical report; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1976. [Google Scholar]
Author | Method | Investigated System | Implementation | Reference |
---|---|---|---|---|
Razmara et al. | MPC | Buildings HVAC | Design | [52,53] |
Reddy et al. | MPC | Buildings HVAC | Design | [54] |
Jonin et al. | MPC | Buildings TESS | Analysis and Design | [55] |
Baranski et al. | MPC | Buildings HVAC | Design | [56,59] |
Sayadi et al. | MPC | Buildings HVAC | Analysis and Design | [60] |
Sangi and Müller | MPC | Buildings HVAC | Design | [61] |
Trinklein et al. | MPC | Ship Energy Systems | Design | [62] |
Jain and Alleyne | MPC | VCS | Design | [63] |
Salahshoor and Asheri | MPC | Compressor | Analysis and Design | [64] |
Hadian et al. | MPC | Industrial Processes | Design | [65] |
Ray et al. | Optimal Control | Boiler | Design | [66] |
Trinklein et al. | Optimal Control | Aircraft Energy Systems | Design | [67] |
Farahat et al. | Optimization | Solar Collectors | Design | [68] |
Ajam et al. | Optimization | Solar Air Heaters | Design | [69] |
Sobhnamayan et al. | Optimization | PV with Water Collector | Design | [70] |
Sarhaddi et al. | Optimization | PV with Air Collector | Design | [71] |
Sarhaddi et al. | Optimization | Solar Parabolic Cookers | Design | [72] |
Naserian et al. | Optimization | Brayton Cycles | Analysis and Design | [73] |
Ashouri et al. | Optimization | Rankine Cycle | Analysis and Design | [74] |
Behzadi et al. | Optimization | Solar Energy Systems | Analysis and Design | [75] |
M.H. Ahmadi et al. | Optimization | Power Cycle | Analysis and Design | [76] |
M.H. Ahmadi et al. | Optimization | Carnot Refrigerator | Analysis and Design | [77] |
M.H. Ahmadi et al. | Optimization | Braysson Cycle | Analysis and Design | [78] |
Boyaghchi et al. | Optimization | CCHP | Design | [79] |
Boyaghchi et al. | Optimization | Kalina Cycle | Design | [80] |
P. Ahmadi and Dincer | Optimization | CCHP | Analysis and Design | [81] |
P. Ahmadi and Dincer | Optimization | Gas Turbine Plants | Design and Hardware | [82] |
Barzeger et al. | Optimization | Gas Turbine Plants | Hardware | [83] |
Shamoushaki et al. | Optimization | Gas Turbine Plants | Hardware | [84] |
Boait et al. | Optimization | Renewable Energy Systems | Analysis and Design | [85] |
P. Ahmadi et al. | Optimization | Heating and Power Cycles | Design | [86,87,88,89] |
Kilkis et al. | Optimization | Poly-Generation Systems | Design | [90] |
Hajabdollahi et al. | Optimization | Power/Industry | Design | [91,92] |
Mozafari et al. | Optimization | Micro Gas Turbines | Design | [93] |
Razmar et al. | Optimization | ICE | Analysis and Design | [94] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
James, C.; Kim, T.Y.; Jane, R. A Review of Exergy Based Optimization and Control. Processes 2020, 8, 364. https://doi.org/10.3390/pr8030364
James C, Kim TY, Jane R. A Review of Exergy Based Optimization and Control. Processes. 2020; 8(3):364. https://doi.org/10.3390/pr8030364
Chicago/Turabian StyleJames, Corey, Tae Young Kim, and Robert Jane. 2020. "A Review of Exergy Based Optimization and Control" Processes 8, no. 3: 364. https://doi.org/10.3390/pr8030364
APA StyleJames, C., Kim, T. Y., & Jane, R. (2020). A Review of Exergy Based Optimization and Control. Processes, 8(3), 364. https://doi.org/10.3390/pr8030364