Antibacterial, Antibiofilm and Anticancer Activity of Biologically Synthesized Silver Nanoparticles Using Seed Extract of Nigella sativa
Abstract
:1. Introduction
2. Material and Methods
2.1. Bacterial Strains, Culture Media, Seeds and Chemicals
2.2. Preparation of Aqueous Nigella Sativa Seed Extract
2.3. Biosynthesis of Silver Nanoparticles from Nigella Sativa
2.4. Isolation and Purification of AgNPs
2.5. Characterization of Synthesized Ns-AgNps
2.6. Assessment of Minimum Inhibitory Concentrations (MICs) and Minimum Biocidal Concentration (MBCs) Activity
2.7. Detection of Anti-Biofilm Activity
2.8. Determination of In Vitro Anticancer Activity of Synthesized AgNPs
2.8.1. Cell Culture and Cell Line Maintenance
2.8.2. Cell Viability Test
2.8.3. Measurement of Cytomorphological Changes in HCC712
2.9. Statistical Analysis
2.10. Ethics Statement
3. Results and Discussion
3.1. UV-Vis Spectrum
3.2. FTIR Spectroscopy
3.3. X-ray Diffraction Analysis
3.4. SEM and TEM Analysis
3.5. Assessment of MIC and MBC Activity
3.6. Anti-Biofilm Activity
3.7. Effect of Ns-AgNPs Against Human (HCC712) Cell Lines
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Ns | Nigella sativa |
AgNPs | Silver nanoparticles |
DLS | Dynamic light scattering |
UV-Vis | Ultraviolet visible |
FTIR | Fourier-Transform Infrared Radiometer |
SEM | Scanning light microscope |
EDX | Energy dispersed X-ray |
References
- Naganathan, K.; Thirunavukkarasu, S. Green way genesis of silver nanoparticles using multiple fruit peels waste and its antimicrobial, anti-oxidant and anti-tumor cell line studies. In Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017. [Google Scholar]
- Choi, S.M.; Seo, M.H.; Kim, H.J.; Kim, W.B. Synthesis and characterization of graphene-supported metal nanoparticles by impregnation method with heat treatment in H2 atmosphere. Synth. Met. 2011, 161, 2405–2411. [Google Scholar] [CrossRef]
- Das, G.; Patra, J.K.; Debnath, T.; Ansari, A.; Shin, H.-S. Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.). PLoS ONE 2019, 14, e0220950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdogan, O.; Abbak, M.; Demirbolat, G.M.; Birtekocak, F.; Aksel, M.; Pasa, S.; Ozge, C. Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS ONE 2019, 14, e0216496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamouda, R.A.; Hussein, M.H.; Abo-elmagd, R.A.; Bawazir, S.S. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci. Rep. 2019, 9, 13071. [Google Scholar] [CrossRef]
- Afifa, Q.; Rajesh, K.; Anupam, D. Green synthesis of silver nanoparticles by seed of Phoenix sylvestris L. and their role in the management of cosmetics embarrassment. Green Chem. Lett. Rev. 2018, 11, 176–188. [Google Scholar]
- Nayak, D.; Ashe, S.; Rauta, P.R.; Kumari, M.; Nayak, B. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater. Sci. Eng. C 2016, 58, 44–52. [Google Scholar] [CrossRef]
- Gao, X.; Yourick, J.J.; Topping, V.D.; Black, T.; Olejnik, N.; Keltner, Z. Toxicogenomic study in rat thymus of F1 generation offspring following maternal exposure to silver ion. Toxicol. Rep. 2015, 2, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Mah, T.F.C.; O’Toole, G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001, 9, 34–39. [Google Scholar] [CrossRef]
- Sihorkar, V.; Vyas, S.P. Biofilm consortia on biomedical and biological surfaces: Delivery and targeting strategies reference style. Pharm. Res. 2001, 18, 1247–1254. [Google Scholar] [CrossRef]
- Ansari, M.A.; Khan, H.M.; Khan, A.A.; Cameotra, S.S.; Alzohairy, M.A. Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian J. Med. Microbiol. 2015, 33, 101–109. [Google Scholar] [CrossRef]
- Kohler, B.; Sherman, R.; Howlader, N.; Jemal, A.; Ryerson, B.; Henry, K. Annual Report to the Nation on the Status of Cancer, 1975–2011, Featuring Incidence of Breast Cancer Subtypes by Race/Ethnicity, Poverty, and State. J. Natl. Cancer Inst. 2015, 30, 107. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yao, L.; Sun, H.; Wu, Y. Chemical composition and antitumor activity of different polysaccharides from the roots of Actinidia eriantha. Carbohydr. Polym. 2009, 78, 316–322. [Google Scholar] [CrossRef]
- Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer. 2002, 2, 48–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husseiny, S.M.; Salah, T.A.; Anter, H.A. Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. J. Basic Appl. Sci. 2015, 4, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Khare, C.P. Encyclopedia of Indian Medicinal Plants; Springes-Verlag: Heidelberg, Germany; New York, NY, USA, 2004. [Google Scholar]
- Mazahari, Y.; Torbati, M.; Azadmard, D.S.; Savage, G.P. A comprehensive review of the physicochemical, quality and nutritional properties of Nigella sativaoil. Food Rev. Int. 2019, 35, 342–362. [Google Scholar] [CrossRef]
- Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—An updated report. Saudi Pharm. J. 2016, 24, 473–484. [Google Scholar] [CrossRef]
- Ansari, M.A.; Alzohairy, M.A. One-pot facile green synthesis of silver nanoparticles using seed extract of Phoenix dactylifera and their bactericidal potential against MRSA. Evid.-Based Complement. Altern. Med. 2018. [Google Scholar] [CrossRef] [Green Version]
- Balasamy, R.J.; Ravinayagam, V.; Alomari, M.; Ansari, M.A.; Almofty, S.A.; Rehman, S.; Dafalla, H.; Marimuthu, P.R.; Akhtar, S.; Al Hamad, M. Cisplatin delivery, anticancer and antibacterial properties of Fe/SBA-16/ZIF-8 nanocomposite. RSC Adv. 2019, 9, 42395–42408. [Google Scholar] [CrossRef] [Green Version]
- Lewis, K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 2001, 45, 999–1007. [Google Scholar] [CrossRef] [Green Version]
- Ashour, A.A.; Raafat, D.; El-Gowelli, H.M.; El-Kamel, A.H. Green synthesis of silver nanoparticles using cranberry powder aqueous extract: Characterization and antimicrobial properties. Int. J. Nanomed. 2015, 10, 7207–7221. [Google Scholar]
- Preetha, D.; Prachi, K.; Chirom, A.; Arun, R. Synthesis and Characterization of Silver Nanoparticles Using Cannonball Leaves and Their Cytotoxic Activity against MCF-7 Cell Line. J. Nanotechnol. 2013, 5, 598328. [Google Scholar]
- Ranjan, P.; Das, M.P.; Kumar, M.S.; Anbarasi, P.; Sindhu, S.; Sagadevan, E.; Arumugam, P. Green synthesis and Characterization of Silver nanoparticles from Nigella sativa and its application against UTI causing Bacteria. J. Acad. Ind. Res. 2013, 2, 145–149. [Google Scholar]
- Jyoti, M.; Baunthiyal, M.; Singh, A. Characterization of silver nanoparticles synthesized using Urticadioica Linn leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 2016, 9, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Dada, A.O.; Ojediran, O.J.; Dada, F.E.; Olalekan, A.P.; Awakan, O.J. Green synthesis and characterization of silver nanoparticles using Calotropis procera extract. J. Appl. Chem. Sci. Int. 2017, 8, 137–143. [Google Scholar]
- Von White, G.; Kerscher, P.; Brown, R.M.; Morella, J.D.; McAllister, W.; Dean, D.; Kitchens, C.L. Green synthesis of robust, biocompatible silver nanoparticles using garlic extract. J. Nanomater. 2012, 55. [Google Scholar] [CrossRef] [PubMed]
- Ponarulselvam, S.; Panneerselvam, C.; Murugan, K. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac. J. Trop. 2012, 2, 574–580. [Google Scholar] [CrossRef] [Green Version]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef]
- Kasthuri, J.; Veerapandian, S.; Rajendiran, N. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf. B Biointerfaces 2009, 68, 55–60. [Google Scholar] [CrossRef]
- Otunola, G.A.; Afolayan, A.J.; Ajayi, E.O. Characterization, antibacterial and antioxidant properties of silver nanoparticles synthesized from aqueous extracts of Allium sativum, Zingiber officinale and Capsicum frutensces. Pharmacogn. Mag. 2017, 13, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Dudkiewicz, A.; Tiede, K.; Loeschner, K.; Jensen, L.H.; Jensen, E.; Wierzbicki, R. Characterization of nanomaterials in food by electron microscopy. Trends Analyt. Chem. 2011, 30, 28–43. [Google Scholar] [CrossRef]
- Bar, H.; Bhui, D.; Sahoo, G.P.; Sarkar, P.S.; Pyne, A.M. Green synthesis of silver nanoparticles using seed extract of Jatropha curcas, Colloids Surf. A Physicochem. Eng. 2009, 348, 212–216. [Google Scholar] [CrossRef]
- Saber, M.M.; Mirtajani, S.B.; Karimzadeh, K. Green synthesis of silver nanoparticles using Trapa natans extract and their anticancer activity against A431 human skin cancer cells. J. Drug Deliv. Sci. Technol. 2018, 47, 375–379. [Google Scholar] [CrossRef]
- Singh, P.; Pandit, S.; Garnæs, J.; Tunjic, S.; Mokkapati, V.R.S.S.; Sultan, A.; Thygesen, A.; Mackevica, A.; Mateiu, R.V.; Daugaard, A.E.; et al. Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. Int. J. Nanomed. 2018, 13, 3571–3591. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, R.; Olia, P.; Rezvani, M.B.; Taleghani, F.; Sharif, F. Comparison of the nanosilver and chlorhexidine antimicrobial effect on Streptococcus sanguis and actinomicosis viscosus. J. Islamic Dent. Assoc. 2010, 23, 225–231. [Google Scholar]
- Kalishwaralal, K.; BarathManiKanth, S.; Pandian, S.R.; Deepak, V.; Gurunathan, S. Silver nanoparticles impede the biofi lm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf. B 2010, 79, 340–344. [Google Scholar] [CrossRef]
- Malaikozhundan, B.; Vaseeharan, S.; Vijayakumar, R.; Sudhakaran, N.; Gobi, G.; Shanthini, G. Antibacterial and antibiofilm assessment of Momordica charantia fruit extract coated silver nanoparticle. Biocatal. Aric. Biotechnol. 2016, 8, 189–196. [Google Scholar] [CrossRef]
- Khateef, R.; Khadri, H.; Almatroudi, A.; Alsuhaibani, S.A.; Mobeen, S.A.; Khan, R.A. Potential in-vitro anti-breast cancer activity of green-synthesized silver nanoparticles preparation against human MCF-7 cell-lines. Adv. Nat. Sci. Nanosci. Nanotechnol. 2019, 10, 045012. [Google Scholar] [CrossRef]
S. No | Bacterial Strains | Synthesized Ns-AgNps | |
---|---|---|---|
MIC (µg/mL) | MBC (µg/mL) | ||
1 | Klebsiella pneumonia (MTCC 618) | 15 | 30 |
2 | Pseudomonas aeruginosa (MTCC 1688) | 30 | 60 |
3 | Escherichia coli (MTCC 40) | 15 | 30 |
4 | Staphylococcus aureus (MTCC 3160) | 6.5 | 15 |
5 | Enterococcus faecalis (MTCC 439) | 6.5 | 15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almatroudi, A.; Khadri, H.; Azam, M.; Rahmani, A.H.; Al Khaleefah, F.K.; Khateef, R.; Ansari, M.A.; Allemailem, K.S. Antibacterial, Antibiofilm and Anticancer Activity of Biologically Synthesized Silver Nanoparticles Using Seed Extract of Nigella sativa. Processes 2020, 8, 388. https://doi.org/10.3390/pr8040388
Almatroudi A, Khadri H, Azam M, Rahmani AH, Al Khaleefah FK, Khateef R, Ansari MA, Allemailem KS. Antibacterial, Antibiofilm and Anticancer Activity of Biologically Synthesized Silver Nanoparticles Using Seed Extract of Nigella sativa. Processes. 2020; 8(4):388. https://doi.org/10.3390/pr8040388
Chicago/Turabian StyleAlmatroudi, Ahmad, Habeeb Khadri, Mohd Azam, Arshad Husain Rahmani, Fahd Khaleefah Al Khaleefah, Riazunnisa Khateef, Mohammad Azam Ansari, and Khaled S. Allemailem. 2020. "Antibacterial, Antibiofilm and Anticancer Activity of Biologically Synthesized Silver Nanoparticles Using Seed Extract of Nigella sativa" Processes 8, no. 4: 388. https://doi.org/10.3390/pr8040388
APA StyleAlmatroudi, A., Khadri, H., Azam, M., Rahmani, A. H., Al Khaleefah, F. K., Khateef, R., Ansari, M. A., & Allemailem, K. S. (2020). Antibacterial, Antibiofilm and Anticancer Activity of Biologically Synthesized Silver Nanoparticles Using Seed Extract of Nigella sativa. Processes, 8(4), 388. https://doi.org/10.3390/pr8040388