Catalytic Performance of Metal Oxides Promoted Nickel Catalysts Supported on Mesoporous γ-Alumina in Dry Reforming of Methane
Abstract
:1. Introduction
2. Experimental Part
2.1. Materials
2.2. Synthesis of Nickel Oxide Supported on Mesoporous-γ-Al2O3 Doped with Metal Oxide
2.3. Catalytic Testing
2.4. Catalyst Characterization
2.4.1. N2 Physisorption
2.4.2. XRD
2.4.3. TPR
2.4.4. Temperature-Programmed Oxidation (TPO)
2.4.5. Thermo-Gravimetric Analysis (TGA)
2.4.6. Laser Raman (NMR-4500) Spectrometer
3. Results and Discussion
3.1. BET (Brunauer–Emmett–Teller) and the BJH (Barrett, Joyner, and Halenda) analyses
3.2. Temperature-Programmed Reduction (TPR)
3.3. Catalytic Activity
3.4. Temperature Programmed Oxidation (TPO)
3.5. Thermogravimetric analysis (TGA) of Spent Catalyst
3.6. Scanning Electron Microscope (SEM)
3.7. Raman Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aghamohammadi, S.; Haghighi, M.; Karimipour, S. A Comparative Synthesis and Physicochemical Characterizations of Ni/Al2O3–MgO Nanocatalyst via Sequential Impregnation and Sol–Gel Methods Used for CO2 Reforming of Methane. J. Nanosci. Nanotechnol. 2013, 13, 4872–4882. [Google Scholar] [CrossRef]
- Fan, M.-S.; Abdullah, A.Z.; Bhatia, S. Hydrogen production from carbon dioxide reforming of methane over Ni–Co/MgO–ZrO2 catalyst: Process optimization. Int. J. Hydrog. Energy 2011, 36, 4875–4886. [Google Scholar] [CrossRef]
- Xu, L.; Song, H.; Chou, L. Mesoporous nanocrystalline ceria–zirconia solid solutions supported nickel based catalysts for CO2 reforming of CH4. Int. J. Hydrog. Energy 2012, 37, 18001–18020. [Google Scholar] [CrossRef]
- Batiot-Dupeyrat, C.; Valderrama, G.; Meneses, A.; Martinez, F.; Barrault, J.; Tatibouët, J.M. Pulse study of CO2 reforming of methane over LaNiO3. Appl. Catal. A Gen. 2003, 248, 143–151. [Google Scholar] [CrossRef]
- Gallego, G.S.; Batiot-Dupeyrat, C.; Barrault, J.; Florez, E.; Mondragón, F. Dry reforming of methane over LaNi1−yByO3±δ (B=Mg, Co) perovskites used as catalyst precursor. Appl. Catal. A Gen. 2008, 334, 251–258. [Google Scholar] [CrossRef]
- Osman, A.I. Catalytic Hydrogen Production from Methane Partial Oxidation: Mechanism and Kinetic Study. Chem. Eng. Technol. Accept. 2020. [CrossRef]
- Sutthiumporn, K. Development of Nickel Based Catalystssynthesized over Different Precursors for Dry CO2 Reforming of Methane to Syngas Production. Master’s Thesis, National University of Singapore, Singapore, 2011; pp. 7–10. Available online: https://core.ac.uk/download/pdf/48655900.pdf (accessed on 28 February 2020).
- Zhan, H.-J.; Shi, X.-Y.; Huang, X.; Zhao, N. Highly coke-resistant ordered mesoporous Ni/SiC with large surface areas in CO2 reforming of CH4. J. Fuel Chem. Technol. 2019, 47, 942–948. [Google Scholar] [CrossRef]
- Fakeeha, A.H.; Al-Fatesh, A.S.; Ibrahim, A.A.; Abasaeed, A.E. Effect of Calcium Promoter on Ni-Based Catalysts Supported on α-Al2O3 and TiO2-P25. Appl. Mech. Mater. 2012, 204–208, 3909–3913. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.A.; Ibrahim, A.A.; Fakeeha, A.H.; Abasaeed, A.E. Activity and Carbon Formation of a Low Ni-Loading Alumina-Supported Catalyst. J. Chem. Eng. Jpn. 2011, 44, 328–335. [Google Scholar] [CrossRef]
- Serrano-Lotina, A.; Daza, L. Influence of the operating parameters over dry reforming of methane to syngas. Int. J. Hydrog. Energy 2014, 39, 4089–4094. [Google Scholar] [CrossRef]
- Karam, L.; Reboul, J.; El Hassan, N.; Nelayah, J.; Massiani, P. Nanostructured Nickel Aluminate as a Key Intermediate for the Production of Highly Dispersed and Stable Nickel Nanoparticles Supported within Mesoporous Alumina for Dry Reforming of Methane. Molecules 2019, 24, 4107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karam, L.; Reboul, J.; Casale, S.; Massiani, P.; El Hassan, N. Porous Nickel-Alumina Derived from Metal-Organic Framework (MIL-53): A New Approach to Achieve Active and Stable Catalysts in Methane Dry Reforming. ChemCatChem 2020, 12, 373–385. [Google Scholar] [CrossRef] [Green Version]
- Shen, D.; Huo, M.; Li, L.; Lyu, S.; Wang, J.; Wang, X.; Zhang, Y.; Li, J. Effects of alumina morphology on dry reforming of methane over Ni/Al2O3 catalysts. Catal. Sci. Technol. 2020, 10, 510–516. [Google Scholar] [CrossRef]
- Sajjadi, S.M.; Haghighi, M.; Rahmani, F. Dry reforming of greenhouse gases CH4/CO2 over MgO-promoted Ni–Co/Al2O3–ZrO2 nanocatalyst: Effect of MgO addition via sol–gel method on catalytic properties and hydrogen yield. J. Sol-Gel Sci. Technol. 2014, 70, 111–124. [Google Scholar] [CrossRef]
- Dias, J.A.C.; Assaf, J.M. Influence of calcium content in Ni/CaO/γ-Al2O3 catalysts for CO2-reforming of methane. Catal. Today 2003, 85, 59–68. [Google Scholar] [CrossRef]
- Osman, A.I.; Abu-Dahrieh, J.K.; Cherkasov, N.; Fernandez-Garcia, J.; Walker, D.; Walton, R.I.; Rooney, D.W.; Rebrov, E. A highly active and synergistic Pt/Mo2C/Al2O3 catalyst for water-gas shift reaction. Mol. Catal. 2018, 455, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Hou, Z.; Yokota, O.; Tanaka, T.; Yashima, T. Investigation of CH4 Reforming with CO2 on Meso-Porous Al2O3-Supported Ni Catalyst. Catal. Lett. 2003, 89, 121–127. [Google Scholar] [CrossRef]
- Abbas, H.F.; Wan Daud, W.M.A. Hydrogen production by methane decomposition: A review. Int. J. Hydrog. Energy 2010, 35, 1160–1190. [Google Scholar] [CrossRef]
- Paksoy, A.I.; Caglayan, B.S.; Aksoylu, A.E. A study on characterization and methane dry reforming performance of Co–Ce/ZrO2 catalyst. Appl. Catal. B Environ. 2015, 168–169, 164–174. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S. Promotional effect of Gd over Ni/Y2O3 catalyst used in dry reforming of CH4 for H2 production. Int. J. Hydrog. Energy 2017, 42, 18805–18816. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Ibrahim, A.A.; Abu-Dahrieh, J.K.; Al-Awadi, A.S.; El-Toni, A.M.; Fakeeha, A.H.; Abasaeed, A.E. Gallium-Promoted Ni Catalyst Supported on MCM-41 for Dry Reforming of Methane. Catalysts 2018, 8, 229. [Google Scholar] [CrossRef] [Green Version]
- Al-Fatesh, A.S.; Atia, H.; Ibrahim, A.A.; Fakeeha, A.H.; Singh, S.K.; Labhsetwar, N.K.; Shaikh, H.; Qasim, S.O. CO2 reforming of CH4: Effect of Gd as promoter for Ni supported over MCM-41 as catalyst. Renew. Energy 2019, 140, 658–667. [Google Scholar] [CrossRef]
- Arbag, H.; Yasyerli, S.; Yasyerli, N.; Dogu, G. Activity and stability enhancement of Ni-MCM-41 catalysts by Rh incorporation for hydrogen from dry reforming of methane. Int. J. Hydrog. Energy 2010, 35, 2296–2304. [Google Scholar] [CrossRef]
- Sharifi, M.; Haghighi, M.; Rahmani, F.; Karimipour, S. Syngas production via dry reforming of CH4 over Co- and Cu-promoted Ni/Al2O3–ZrO2 nanocatalysts synthesized via sequential impregnation and sol–gel methods. J. Nat. Gas Sci. Eng. 2014, 21, 993–1004. [Google Scholar] [CrossRef]
- Park, J.-H.; Yeo, S.; Kang, T.-J.; Shin, H.-R.; Heo, I.; Chang, T.-S. Effect of Zn promoter on catalytic activity and stability of Co/ZrO2 catalyst for dry reforming of CH4. J. CO2 Util. 2018, 23, 10–19. [Google Scholar] [CrossRef]
- Schwarz, J.A.; Contescu, C.; Contescu, A. Methods for preparation of catalytic materials. Chem. Rev. 1995, 95, 477–510. [Google Scholar] [CrossRef]
- Hao, Z.; Zhu, Q.; Jiang, Z.; Hou, B.; Li, H. Characterization of aerogel Ni/Al2O3 catalysts and investigation on their stability for CH4-CO2 reforming in a fluidized bed. Fuel Process. Technol. 2009, 90, 113–121. [Google Scholar] [CrossRef]
- Osman, A.I.; Abu-Dahrieh, J.K.; McLaren, M.; Laffir, F.; Rooney, D.W. Characterisation of Robust Combustion Catalyst from Aluminium Foil Waste. ChemistrySelect 2018, 3, 1545–1550. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-González, C.; Boukha, Z.; de Rivas, B.; González-Velasco, J.R.; Gutiérrez-Ortiz, J.I.; López-Fonseca, R. Behaviour of nickel–alumina spinel (NiAl2O4) catalysts for isooctane steam reforming. Int. J. Hydrog. Energy 2015, 40, 5281–5288. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Kumar, R.; Kasim, S.O.; Ibrahim, A.A.; Fakeeha, A.H.; Abasaeed, A.E.; Alrasheed, R.; Bagabas, A.; Chaudhary, M.L.; Frusteri, F.; et al. The effect of modifier identity on the performance of Ni-based catalyst supported on γ-Al2O3 in dry reforming of methane. Catal. Today 2020, in press. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, W.; Wang, J.; Li, Z.; Ma, J. Characterization and Analysis of Carbon Deposited during the Dry Reforming of Methane over Ni/La2O3/Al2O3 Catalysts. Chin. J. Catal. 2009, 30, 1076–1084. [Google Scholar] [CrossRef]
- Hou, Z.; Yashima, T. Meso-porous Ni/Mg/Al catalysts for methane reforming with CO2. Appl. Catal. A Gen. 2004, 261, 205–209. [Google Scholar] [CrossRef]
- Asai, K.; Takane, K.; Nagayasu, Y.; Iwamoto, S.; Yagasaki, E.; Inoue, M. Decomposition of methane in the presence of carbon dioxide over Ni catalysts. Chem. Eng. Sci. 2008, 63, 5083–5088. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Tian, H.; Zeng, L.; Zhao, Z.-J.; Gong, J. Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles. Appl. Catal. B Environ. 2017, 202, 683–694. [Google Scholar] [CrossRef]
- Liu, D.; Lau, R.; Borgna, A.; Yang, Y. Carbon dioxide reforming of methane to synthesis gas over Ni-MCM-41 catalysts. Appl. Catal. A Gen. 2009, 358, 110–118. [Google Scholar] [CrossRef]
- Zhang, J.; Li, F. Coke-resistant Ni@SiO2 catalyst for dry reforming of methane. Appl. Catal. B Environ. 2015, 176–177, 513–521. [Google Scholar] [CrossRef]
Catalyst | SBET, m2·g−1 | VP, cm3·g−1 | dp, nm |
---|---|---|---|
5NiAl | 182 | 0.61 | 11.3 |
5Ni+1Cu/Al | 185 | 0.59 | 11.4 |
5Ni+1Zn/Al | 187 | 0.60 | 11.4 |
5Ni+1Ga/Al | 185 | 0.61 | 11.3 |
5Ni+1Gd/Al | 193 | 0.62 | 11.4 |
Catalyst | Xi (CH4) | Xf (CH4) | H2/CO Mole Ratio a | DF b | Coke c |
---|---|---|---|---|---|
% | % | % | %wt Loss | ||
5Ni/Al | 79.3 | 78.6 | 0.97 | 0.90 | 4.0 |
5Ni+1Cu/Al | 77.4 | 76.1 | 0.97 | 1.70 | 5.8 |
5Ni+1Zn/Al | 80.0 | 79.4 | 1.00 | 0.75 | 4.8 |
5Ni+1Ga/Al | 79.0 | 78.7 | 0.99 | 0.38 | 5.5 |
5Ni+1Gd/Al | 83.4 | 83.2 | 1.00 | 0.24 | 6.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fakeeha, A.H.; Bagabas, A.A.; Lanre, M.S.; Osman, A.I.; Kasim, S.O.; Ibrahim, A.A.; Arasheed, R.; Alkhalifa, A.; Elnour, A.Y.; Abasaeed, A.E.; et al. Catalytic Performance of Metal Oxides Promoted Nickel Catalysts Supported on Mesoporous γ-Alumina in Dry Reforming of Methane. Processes 2020, 8, 522. https://doi.org/10.3390/pr8050522
Fakeeha AH, Bagabas AA, Lanre MS, Osman AI, Kasim SO, Ibrahim AA, Arasheed R, Alkhalifa A, Elnour AY, Abasaeed AE, et al. Catalytic Performance of Metal Oxides Promoted Nickel Catalysts Supported on Mesoporous γ-Alumina in Dry Reforming of Methane. Processes. 2020; 8(5):522. https://doi.org/10.3390/pr8050522
Chicago/Turabian StyleFakeeha, Anis H., Abdulaziz A. Bagabas, Mahmud S. Lanre, Ahmed I. Osman, Samsudeen O. Kasim, Ahmed A. Ibrahim, Rasheed Arasheed, Abdulmajeed Alkhalifa, Ahmed Y. Elnour, Ahmed E. Abasaeed, and et al. 2020. "Catalytic Performance of Metal Oxides Promoted Nickel Catalysts Supported on Mesoporous γ-Alumina in Dry Reforming of Methane" Processes 8, no. 5: 522. https://doi.org/10.3390/pr8050522
APA StyleFakeeha, A. H., Bagabas, A. A., Lanre, M. S., Osman, A. I., Kasim, S. O., Ibrahim, A. A., Arasheed, R., Alkhalifa, A., Elnour, A. Y., Abasaeed, A. E., & Al-Fatesh, A. S. (2020). Catalytic Performance of Metal Oxides Promoted Nickel Catalysts Supported on Mesoporous γ-Alumina in Dry Reforming of Methane. Processes, 8(5), 522. https://doi.org/10.3390/pr8050522