The Effect of Variations of Flow from Tributary Channel on the Flow Behavior in a T-Shape Confluence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Model
2.2. Numerical Model
2.3. Governing Equations
2.4. Turbulence Modeling
2.5. Boundary Conditions and Gridding
3. Model Verification
Simulation Scenarios
4. Results and Discussion
4.1. Velocity Distribution
4.2. Flow Patterns and Vortical Structure
4.2.1. Flow Surface Profile
4.2.2. Streamlines and Flow Patterns
4.3. Turbulent Kinetic Energy
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mohammaduin, S.; Salehi Neyshaburi, S.; Naser, G.; Parhizkar, H.; Vahabi, H. Effects of open-channel geometry on flow pattern in a 90° junction. Iran. J. Sci. Tech. Trans. Civil Eng. 2015, 39, 559–573. [Google Scholar]
- Karami, H.; Farzin, S.; Tavakol Sadrabadi, M.; Moazeni, H. Simulation of flow pattern at rectangular lateral intake with different dike and submerged vane scenarios. Water Sci. Eng. 2017, 10, 246–255. [Google Scholar] [CrossRef]
- Taylor, E.H. Flow characteristics at rectangular open-channel junctions. Trans. ASCE 1944, 109, 893–902. [Google Scholar]
- Webber, N.B.; Greated, C.A. An investigation of flow behaviour at the junction of rectangular channels. ICE Proc. 1966, 34, 321–334. [Google Scholar] [CrossRef]
- Shumate, E.D. Experimental Description of Flow at an Open-Channel Junction. Master’s Thesis, University of Iowa, Iowa City, IA, USA, 1998. [Google Scholar]
- Mignot, E.; Vinkovic, I.; Doppler, D.; Riviere, N. Mixing layer in open-channel junctions. J. Environ. Fluid Mech. 2013, 14, 1027–1041. [Google Scholar] [CrossRef] [Green Version]
- Weber, L.J.; Schumate, E.D.; Mawer, N. Experiments on flow at a 90° open-channel junction. J. Hydraul. Eng. 2001, 127, 340–350. [Google Scholar] [CrossRef]
- Liu, T.; Fan, B.; Lu, J. Sediment–flow interactions at channel confluences: A flume study. Adv. Mech. Eng. 2015, 7, 1–9. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, W.; Wu, C. Effect of discharge ratio on flow characteristics in 90° equal-width open-channel junction. J. Hydrodyn. Ser. B 2009, 21, 541–549. [Google Scholar] [CrossRef]
- Zeng, C.; Li, C.W. A hybrid RANS-LES model for combining flows in open-channel T-Junctions. J. Hydrodyn. Ser. B 2010, 22, 154–159. [Google Scholar] [CrossRef]
- Ting, A.; Xu, W.L.; Wu, C. Hydrodynamics of right-angled channel confluences by a 2D numerical model. Iran. J. Sci. Tech. Trans. Civil Eng. 2011, 37, 271–283. [Google Scholar]
- Riley, J.D.; Rhoads, B.L. Flow structure and channel morphology at a natural confluent meander bend. Geomorphology 2012, 163, 84–98. [Google Scholar] [CrossRef]
- LIU, T.H.; Li, C.; FAN, B.L. Experimental study on flow pattern and sediment transportation at a 90° open-channel confluence, Int. J. Sed. Res. 2012, 27, 178–187. [Google Scholar] [CrossRef]
- Biswal, S.K.; Mohapatra, P.; Muralidhar, K. Hydraulics of combining flow in a right-angled compound open channel junction. Sadhana 2016, 41, 97–110. [Google Scholar] [CrossRef] [Green Version]
- Sharifipour, M.; Bonakdari, H.; Zaji, A.H.; Shamshirband, S. Numerical investigation of flow field and flowmeter accuracy in open-channel junctions. Eng. App. Comput. Fluid Mech. 2015, 9, 280–290. [Google Scholar] [CrossRef] [Green Version]
- Schindfessel, L.; Creëlle, S.; De Mulder, T. Flow patterns in an open channel confluence with increasingly dominant tributary inflow. Water 2015, 7, 4724–4751. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, H.; Yan, X.; Liu, X.; Duan, H.F. Experimental Study on the Hydrodynamic Influence of River Flow Confluences to the Open Channel Stage-Discharge Relationship. Hydrologic. Sci. J. 2016, 64, 2025–2039. [Google Scholar] [CrossRef]
- Sui, B.; Huang, S.H. Numerical analysis of flow separation zone in a confluent meander bend channel. J. Hydrodyn. Ser. B. 2017, 29, 716–723. [Google Scholar] [CrossRef]
- Ramos, P.X.; Schindfessel, L.; Pêgo, J.P.; De Mulder, T. Influence of bed elevation discordance on flow patterns and head losses in an open-channel confluence, Water Sci. Eng. 2019, 12, 235–243. [Google Scholar]
- Ramos, P.X.; Schindfessel, L.; Pêgo, J.P.; De Mulder, T. Flat vs. curved rigid-lid LES computations of an open-channel confluence. J. Hydroinform. 2019, 21, 318–334. [Google Scholar] [CrossRef]
- Harlow, F.H.; Nakayama, P.I. Turbulence Transport Equations. Physic. Fluid. 1967, 10, 2323–2332. [Google Scholar] [CrossRef]
- Launder, B.E.; Spaulding, D. Mathematical Models of Turbulence; Academic Press: London, UK; New York, NY, USA, 1972. [Google Scholar]
- Hsu, C.C.; Lee, W.J.; Chang, C.H. Subcritical open-channel junction flow. J. Hydraul. Eng. 1998, 124, 847–855. [Google Scholar] [CrossRef]
Case No. | Qsc (Lit/s) | Qmc (Lit/s) | Qt (Lit/s) | Q* = Qsc/Qt | Frsc | Frmc | Frt | Fr* = Frsc/Frmc |
---|---|---|---|---|---|---|---|---|
1 | 35 | 127 | 162 | 0.22 | 0.07 | 0.26 | 0.33 | 0.28 |
2 | 42 | 127 | 169 | 0.25 | 0.09 | 0.26 | 0.34 | 0.33 |
3 | 49 | 127 | 176 | 0.28 | 0.10 | 0.26 | 0.36 | 0.39 |
4 | 56 | 127 | 183 | 0.31 | 0.11 | 0.26 | 0.37 | 0.44 |
5 | 56 | 115 | 171 | 0.33 | 0.11 | 0.23 | 0.35 | 0.49 |
6 | 56 | 106 | 162 | 0.35 | 0.11 | 0.22 | 0.33 | 0.53 |
7 | 56 | 95 | 151 | 0.37 | 0.11 | 0.19 | 0.31 | 0.59 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azma, A.; Zhang, Y. The Effect of Variations of Flow from Tributary Channel on the Flow Behavior in a T-Shape Confluence. Processes 2020, 8, 614. https://doi.org/10.3390/pr8050614
Azma A, Zhang Y. The Effect of Variations of Flow from Tributary Channel on the Flow Behavior in a T-Shape Confluence. Processes. 2020; 8(5):614. https://doi.org/10.3390/pr8050614
Chicago/Turabian StyleAzma, Aliasghar, and Yongxiang Zhang. 2020. "The Effect of Variations of Flow from Tributary Channel on the Flow Behavior in a T-Shape Confluence" Processes 8, no. 5: 614. https://doi.org/10.3390/pr8050614
APA StyleAzma, A., & Zhang, Y. (2020). The Effect of Variations of Flow from Tributary Channel on the Flow Behavior in a T-Shape Confluence. Processes, 8(5), 614. https://doi.org/10.3390/pr8050614