Electro-Discharge Machining of Zr67Cu11Ni10Ti9Be3: An Investigation on Hydroxyapatite Deposition and Surface Roughness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. BMG Shaping and Coating Preparation
2.3. Screening and Optimization Experiment
3. Results and Discussion
3.1. Hydroxyapatite Coating
3.2. Phases Formation
3.3. Effect of HA on the Surface Morphology
3.4. Screening Results Analysis
3.5. Modelling and Optimization of HDR and SR
4. Conclusions
- HAm-EDM process can be used to synthesize a novel biomimetic biocompatible oxide and carbide coatings on the Zr67Cu11Ni10Ti9Be3 BMG surface.
- The experimental result revealed a HA coating containing mainly biocompatible oxides and hard carbide of 25.2-µm thickness, synthesized on the Zr67Cu11Ni10Ti9Be3 BMG material by HAm-EDM process. The main hydroxyapatite elements (Ca, O, and K) were found deposited on the HAm-EDMed Zr67Cu11Ni10Ti9Be3 BMG surface.
- The model equations for both HDR and SR were successfully developed. Furthermore, the optimum parameters setting for minimizing SR and maximizing HDR are achieved. The predicted error of both SR and HDR was found to be 5.09% and 4.94% respectively. Therefore, the errors were considered within the acceptable limit.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Inoue, A.; Nishiyama, N. New bulk metallic glasses for applications as magnetic-sensing, chemical, and structural materials. MRS Bullatin 2007, 32, 651–658. [Google Scholar] [CrossRef]
- Wei, S.; Weiqi, G.; Hongjun, A. The In Vivo Evaluation of the Biocompatibility and Bone Bonding Efficiency of Zr-Based Bulk Metallic Glass Implant Material. J. Biomert. Tissue Eng. 2018, 8, 1464–1468. [Google Scholar] [CrossRef]
- Eliaz, N. Corrosion of Metallic Biomaterials: A Review. Materials 2019, 12, 407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Axinte, E.; Bofu, A.; Wang, Y. An overview on the conventional and nonconventional methods for manufacturing the metallic glasses. MATEC Web Conf. EDP Sci. 2017, 03003. [Google Scholar] [CrossRef] [Green Version]
- Bakkal, M.; Nakş ler, V. Cutting mechanics of bulk metallic glass materials on meso-end milling. Mater. Manuf. Process. 2009, 24, 1249–1255. [Google Scholar] [CrossRef]
- Han, D.; Wang, G.; Li, J.; Chan, K.; To, S.; Wu, F.; Gao, Y.; Zhai, Q. Cutting characteristics of Zr-based bulk metallic glass. J. Mater. Sci. Tech. 2015, 31, 153–158. [Google Scholar] [CrossRef]
- Jiao, Y.; Brousseau, E.; Han, Q.; Zhu, H.; Bigot, S. Investigations in nanosecond laser micromachining on the Zr52.8Cu17.6Ni14.8Al9.9Ti4.9 bulk metallic glass: Experimental and theoretical study. J. Mater. Process. Tech. 2019, 273, 116232. [Google Scholar] [CrossRef]
- Yeo, S.H.; Tan, P.C.; Aligiri, E.; Tor, S.B.; Loh, N.H. Processing of zirconium-based bulk metallic glass (BMG) using micro electrical discharge machining (Micro-EDM). Mater. Manuf. Process. 2009, 24, 1242–1248. [Google Scholar] [CrossRef]
- Axinte, E.; Fua-Nizan, R. Investigation of nanoporosities fabricated on metallic glass surface by hydroxyapatite mixed EDM for orthopedic application. Malays. J. Fundl. Appl. Sci. 2017, 13, 523–528. [Google Scholar]
- Aliyu, A.A.A.; Abdul-Rani, A.M.; Ginta, T.L.; Prakash, C.; Axinte, E.; Razak, M.A.; Ali, S. A Review of Additive Mixed-Electric Discharge Machining: Current Status and Future Perspectives for Surface Modification of Biomedical Implants. Adv. Mater. Sci. Eng. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Prakash, C.; Kansal, H.; Pabla, B.; Puri, S. Electric dischargemachining—A potential choice for surface modification of metallic implants for orthopedic applications: A review. J. Eng. Manuf. 2015, 230, 331–353. [Google Scholar] [CrossRef]
- Ou, S.-F.; Wang, C.-Y. Effects of bioceramic particles in dielectric of powder-mixed electrical discharge machining on machining and surface characteristics of titanium alloys. J. Mater. Process. Tech. 2017, 245, 70–79. [Google Scholar] [CrossRef]
- Aliyu, A.A.A.; Abdul-Rani, A.M.; Ginta, T.L.; Rao, T.; Selvamurugan, N.; Roy, S. Hydroxyapatite mixed-electro discharge formation of bioceramic Lakargiite (CaZrO3) on Zr–Cu–Ni–Ti–Be for orthopedic application. Mater. Manuf. Process. 2018, 33, 1734–1744. [Google Scholar] [CrossRef]
- Aliyu, A.A.A.; Abdul-Rani, A.M.; Rao, T.V.V.L.N.; Axinte, E.; Hastuty, S.; Parameswari, R.P.; Subramaniam, J.R.; Thyagarajan, S.P. Characterization, adhesion strength and in-vitro cytotoxicity investigation of hydroxyapatite coating synthesized on Zr-based BMG by electro discharge process. Surf. Coat. Tech. 2019, 370, 213–226. [Google Scholar] [CrossRef]
- Rahang, M.; Patowari, P.K. Parametric optimization for selective surface modification in EDM using Taguchi analysis. Mater. Manuf. Process. 2016, 31, 422–431. [Google Scholar] [CrossRef]
- Ahmed, A. Deposition and analysis of composite coating on aluminum using Ti–B4C powder metallurgy tools in EDM. Mater. Manuf. Process. 2016, 31, 467–474. [Google Scholar] [CrossRef]
- Watane, K.H.; Gudadhe, M. Enhancement of Surface Hardness of Cutting Tools by Surface Coating Using EDM. Int. J. Mech. Eng. Infor. Tech. 2014, 2, 614–630. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: New York City, NY, USA, 2017. [Google Scholar]
- Danish, M.; Yahya, S.M.; Saha, B.B. Modelling and optimization of thermophysical properties of aqueous titania nanofluid using response surface methodology. J. Therm. Anal. Calorim. 2019, 1–13. [Google Scholar] [CrossRef]
- Popescu, M.; Manolea, O.; Diaconu, A.; Mercuţ, V. Zirconia Biocompatibility in Animal Studies—A Systematic Review. Mater. Tech. Dent. 2017, 376, 12–28. [Google Scholar] [CrossRef]
- Ahmad, M.A.; Abdul Azeez, A.A.; Sri, H.; Turnad, L.G.; Rao, T.V.V.L.N.; Ali, S. Enhancing surface quality of Zr-Cu-Ni-Ti-Be through hydroxyapatite mixed EDM for potential orthopedic application. In AIP Conference Proceedings; AIP Publishing LLC.: Kuala Lumpur, Malaysia, 2018; Volume 2035, p. 080010. [Google Scholar] [CrossRef]
- Sales, W.F.; Oliveira, A.R.F.; Raslan, A.A. Titanium perovskite (CaTiO3) formation in Ti6Al4V alloy using the electrical discharge machining process for biomedical applications. Surf. Coat. Technol. 2016, 307 Pt A, 1011–1015. [Google Scholar] [CrossRef]
- Chander, P.; Uddin, M.S. Surface modification of β-phase Ti implant by hydroaxyapatite mixed electric discharge machining to enhance the corrosion resistance and in-vitro bioactivity. Surf. Coat. Technol. 2017, 326 Pt A, 134–145. [Google Scholar]
- Aliyu, A.A.; Hamidon, M.; Rohani, J.M. Parametric Study Of Powder Mixed Electrical Discharge Machining And Mathematical Modeling of SiSiC Using Copper Electrode. Proc. Adv. Mater. Res. 2014, 845, 878–882. [Google Scholar] [CrossRef]
- Mir, M.J.; Sheikh, K.; Singh, B.; Malhotra, N. Modeling and analysis of machining parameters for surface roughness in powder mixed EDM using RSM approach. Int. J. Eng. Sci. Tech. 2012, 4, 45–52. [Google Scholar] [CrossRef]
- Aliyu, A.A.; Rohani, J.M.; Abdul Rani, A.M.; Musa, H. Optimization of Electrical Discharge Machining Parameters of SiSiC through Respons Surface Methodology. J. Teknol. 2017, 79, 119–129. [Google Scholar]
Parameters | Unit | Level I | Level II |
---|---|---|---|
Peak current | A | 5 | 12 |
Discharge duration | µs | 4 | 16 |
HA concentration | g/L | 5 | 20 |
Tool-electrode polarity | + | − | |
Off-time | µs | 16 | 32 |
Gap voltage | V | 10 | 15 |
Std Order | Run Order | Pc (A) | Dd (µs) | C (g/L) | Ep | HDR (g/min) | SR (µm) |
---|---|---|---|---|---|---|---|
17 | 1 | 5 | 16 | 5 | + | 0.00067 | 4.342 |
18 | 2 | 8 | 16 | 10 | + | 0.00072 | 9.953 |
5 | 3 | 12 | 8 | 10 | − | 0.00081 | 8.183 |
1 | 4 | 5 | 4 | 5 | − | 0.00019 | 2.292 |
4 | 5 | 8 | 8 | 10 | − | 0.00094 | 3.337 |
7 | 6 | 8 | 4 | 20 | − | 0.0014 | 1.782 |
22 | 7 | 5 | 16 | 20 | + | 0.00144 | 3.830 |
21 | 8 | 12 | 4 | 20 | + | 0.0075 | 3.802 |
19 | 9 | 12 | 16 | 10 | + | 0.00036 | 26.623 |
23 | 10 | 5 | 16 | 20 | + | 0.00194 | 5.404 |
12 | 11 | 12 | 16 | 20 | − | 0.00022 | 5.800 |
11 | 12 | 12 | 8 | 20 | − | 0.00089 | 5.327 |
10 | 13 | 5 | 8 | 20 | − | 0.0022 | 4.040 |
24 | 14 | 12 | 16 | 20 | + | 0.00078 | 22.662 |
3 | 15 | 12 | 16 | 5 | − | 0.00027 | 18.381 |
20 | 16 | 5 | 4 | 15 | + | 0.0011 | 3.102 |
16 | 17 | 8 | 8 | 5 | + | 0.00071 | 6.361 |
14 | 18 | 12 | 4 | 5 | + | 0.00056 | 24.33 |
13 | 19 | 5 | 4 | 5 | + | 0.00024 | 7.101 |
2 | 20 | 12 | 16 | 5 | − | 0.00028 | 18.959 |
15 | 21 | 12 | 4 | 5 | + | 0.00035 | 24.330 |
9 | 22 | 5 | 8 | 20 | − | 0.0025 | 1.618 |
6 | 23 | 5 | 16 | 10 | − | 0.00067 | 4.592 |
8 | 24 | 8 | 4 | 20 | − | 0.0016 | 1.854 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | |
---|---|---|---|---|---|---|
Model | 17.82 | 13 | 1.37 | 26.35 | <0.0001 | significant |
A-Pc | 0.39 | 1 | 0.39 | 7.52 | 0.0208 | |
B-Dd | 0.42 | 1 | 0.42 | 8.15 | 0.0171 | |
C-C | 6.24 | 1 | 6.24 | 119.9 | <0.0001 | |
D-Ep | 1.67 | 1 | 1.67 | 32.17 | 0.0002 | |
AB | 1.49 | 1 | 1.49 | 28.67 | 0.0003 | |
AC | 0.066 | 1 | 0.066 | 1.26 | 0.2875 | |
AD | 0.35 | 1 | 0.35 | 6.81 | 0.0261 | |
BC | 2.56 | 1 | 2.56 | 49.15 | <0.0001 | |
BD | 0.082 | 1 | 0.082 | 1.57 | 0.2383 | |
CD | 1.07 | 1 | 1.07 | 20.58 | 0.0011 | |
A2 | 0.086 | 1 | 0.086 | 1.65 | 0.2286 | |
B2 | 1.38 | 1 | 1.38 | 26.51 | 0.0004 | |
C2 | 0.055 | 1 | 0.055 | 1.06 | 0.3268 | |
Residual | 0.52 | 10 | 0.052 | |||
Lack of Fit | 0.35 | 5 | 0.071 | 2.1 | 0.217 | not significant |
Pure Error | 0.17 | 5 | 0.034 | |||
Cor Total | 18.34 | 23 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | |
---|---|---|---|---|---|---|
Model | 14.66 | 4 | 3.67 | 21.63 | <0.0001 | Significant |
A-Pc | 6.78 | 1 | 6.78 | 40.03 | <0.0001 | |
B-Dd | 1.64 | 1 | 1.64 | 9.67 | 0.0058 | |
C-C | 2.37 | 1 | 2.37 | 13.96 | 0.0014 | |
D-Ep | 1.84 | 1 | 1.84 | 10.85 | 0.0038 | |
Residual | 3.22 | 19 | 0.17 | |||
Lack of Fit | 2.74 | 14 | 0.2 | 2.04 | 0.2213 | not significant |
Pure Error | 0.48 | 5 | 0.096 | |||
Cor Total | 17.88 | 23 |
Source | Std. Dev. | R-Squared | Adjusted R-Squared | Predicted R-Squared | PRESS | |
---|---|---|---|---|---|---|
Linear | 0.64 | 0.5788 | 0.4901 | 0.2712 | 13.37 | |
2FI | 0.39 | 0.8918 | 0.8085 | 0.5517 | 8.22 | |
Quadratic | 0.23 | 0.9716 | 0.9348 | 0.771 | 4.2 | Suggested |
Cubic | 0.18 | 0.9909 | 0.9579 | + | Aliased |
Source | Std. Dev. | R-Squared | Adjusted R-Squared | Predicted R-Squared | PRESS | |
---|---|---|---|---|---|---|
Linear | 0.41 | 0.8199 | 0.782 | 0.7 | 5.36 | Suggested |
2FI | 0.35 | 0.911 | 0.8426 | 0.5191 | 8.6 | |
Quadratic | 0.37 | 0.9242 | 0.8257 | 0.2428 | 13.54 | |
Cubic | 0.31 | 0.9732 | 0.8767 | + | Aliased |
Number | Pc | Dd | C | Ep | HDR | Desirability | |
---|---|---|---|---|---|---|---|
1 | 9.081 | 7.227 | 19.973 | + | 0.008 | 1 | Selected |
2 | 9.302 | 6.492 | 19.996 | + | 0.008 | 1 | |
3 | 10.415 | 6.703 | 19.997 | + | 0.008 | 1 | |
4 | 10.261 | 5.904 | 20 | + | 0.008 | 1 | |
5 | 9.705 | 6.963 | 19.953 | + | 0.008 | 1 |
Number | Pc | Dd | C | Ep | SR | Desirability | |
---|---|---|---|---|---|---|---|
1 | 5.016 | 4.568 | 19.23 | − | 1.55 | 1 | Selected |
2 | 5.007 | 4.584 | 19.434 | − | 1.533 | 1 | |
3 | 5.142 | 4.742 | 19.066 | − | 1.61 | 1 | |
4 | 5.346 | 4.625 | 19.794 | − | 1.601 | 1 | |
5 | 5.034 | 4.878 | 19.76 | − | 1.539 | 1 |
Run Order | Pc (A) | Dd (µs) | Ep | C (g/L) | SR (µm) | HDR (g/min) |
---|---|---|---|---|---|---|
1 | 8.0 | 7.0 | + | 20 | 4.325 | 0.00693 |
2 | 8.0 | 7.0 | + | 20 | 4.809 | 0.00701 |
3 | 8.0 | 7.0 | + | 20 | 4.4642 | 0.00712 |
4 | 8.0 | 7.0 | + | 20 | 5.038 | 0.00718 |
5 | 8.0 | 7.0 | + | 20 | 5.092 | 0.00687 |
Run Order | Experimental SR (µm) | Predicated SR (µm) | Percentage Error (%) | Experimental HDR (g/min) | Predicated HDR (g/min) | Percentage Error (%) |
---|---|---|---|---|---|---|
1 | 5.092 | 5.033 | 1.17 | 0.00693 | 0.00739 | 5.82 |
2 | 4.809 | 5.011 | 4.03 | 0.00701 | 0.00738 | 5.01 |
3 | 4.642 | 5.053 | 8.10 | 0.00712 | 0.00740 | 3.78 |
4 | 5.038 | 5.011 | 0.53 | 0.00718 | 0.00739 | 2.84 |
5 | 5.690 | 5.095 | 11.6 | 0.00687 | 0.00741 | 7.29 |
Average prediction error (%) | 5.09 | 4.94 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliyu, A.A.; Abdul-Rani, A.M.; Rubaiee, S.; Danish, M.; Bryant, M.; Hastuty, S.; Razak, M.A.; Ali, S. Electro-Discharge Machining of Zr67Cu11Ni10Ti9Be3: An Investigation on Hydroxyapatite Deposition and Surface Roughness. Processes 2020, 8, 635. https://doi.org/10.3390/pr8060635
Aliyu AA, Abdul-Rani AM, Rubaiee S, Danish M, Bryant M, Hastuty S, Razak MA, Ali S. Electro-Discharge Machining of Zr67Cu11Ni10Ti9Be3: An Investigation on Hydroxyapatite Deposition and Surface Roughness. Processes. 2020; 8(6):635. https://doi.org/10.3390/pr8060635
Chicago/Turabian StyleAliyu, Abdul’Azeez Abdu, Ahmad Majdi Abdul-Rani, Saeed Rubaiee, Mohd Danish, Michael Bryant, Sri Hastuty, Muhammad Al’Hapis Razak, and Sadaqat Ali. 2020. "Electro-Discharge Machining of Zr67Cu11Ni10Ti9Be3: An Investigation on Hydroxyapatite Deposition and Surface Roughness" Processes 8, no. 6: 635. https://doi.org/10.3390/pr8060635
APA StyleAliyu, A. A., Abdul-Rani, A. M., Rubaiee, S., Danish, M., Bryant, M., Hastuty, S., Razak, M. A., & Ali, S. (2020). Electro-Discharge Machining of Zr67Cu11Ni10Ti9Be3: An Investigation on Hydroxyapatite Deposition and Surface Roughness. Processes, 8(6), 635. https://doi.org/10.3390/pr8060635