Analysis of Oil Droplet Deposition Characteristics and Determination of Impact State Criterion in Aero-Engine Bearing Chamber
Abstract
:1. Introduction
2. Theory and Calculation Model
2.1. The Governing Equation of Oil Droplet Impacting with the Wall
2.2. Numerical Model of Oil Droplet Impacting with Wall
3. Results and Discussion
3.1. Deposition Characteristics of Oil Droplet under Different Oil Droplet Diameter, Velocity, and Incident Angle
3.2. Determination of Impact State Criterion
3.3. Verification and Comparison of Impact State between Oil Droplet and the Wall
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
ρ | average density of fluid |
μ | average dynamic viscosity of fluid |
ρl | oil density |
ρg | gas density |
μl | oil dynamic viscosity |
σl | oil surface tension coefficient |
μg | air dynamic viscosity |
θ | incident angle of oil droplet |
κ | surface curvature |
Ω | oil volume fraction |
p | fluid pressure |
D | diameter of oil droplet |
F | momentum source term generated by oil surface |
g | gravity acceleration |
n | normal direction of the free interface between oil droplet and air |
v | impacting velocity of oil droplet |
We | Weber number |
Re | Reynolds number |
K | dimensionless splashing coefficient |
Kc | Critical dimensionless splashing coefficient |
References
- Worthington, A.M. On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. Lond. 1876, 25, 171–178. [Google Scholar]
- Mundo, C.; Sommerfeld, M.; Tropea, C. Droplet wall collisions: Experimental studies of the deformation and breakup process. Int. J. Multiph. Flow 1995, 21, 151–173. [Google Scholar] [CrossRef]
- Glahn, A.; Kurreck, M.; Willmann, M.; Wittig, S. Feasibility study on oil droplet flow investigations inside aero engine bearing chambers—PDPA techniques in combination with numerical approaches. J. Eng. Gas Turbines Power 1996, 118, 749–755. [Google Scholar] [CrossRef]
- Simmons, K.; Hibberd, S.; Wang, Y.; Care, I. Numerical study of the two-phase air/oil flow within an aero-engine bearing chamber model using a coupled Lagrangian droplet tracking method. In Proceedings of the ASME Pressure Vessels and Piping Conference, Vancouver, BC, Canada, 5–9 August 2002. [Google Scholar]
- Cossali, G.E.; Coghe, A.; Marengo, M. The impact of a single drop on a wetted solid surface. Exp. Fluids 1997, 22, 463–473. [Google Scholar] [CrossRef]
- Sikalo, S.; Tropea, C.; Ganic, E.N. Impact of droplets onto inclined surfaces. J. Colloid Interface Sci. 2005, 286, 661–669. [Google Scholar] [CrossRef]
- Sikalo, S.; Ganic, E.N. Phenomena of droplet surface interactions. Exp. Therm. Fluid Sci. 2006, 31, 97–110. [Google Scholar] [CrossRef]
- Rioboo, R.; Tropea, C.; Marengo, M. Outcomes from a drop impact on solid surfaces. At. Sprays 2001, 11, 155–165. [Google Scholar] [CrossRef]
- Rioboo, R.; Marengo, M.; Tropea, C. Time evaluation of liquid drop impact onto solid dry surfaces. Exp. Fluids 2002, 33, 112–121. [Google Scholar] [CrossRef]
- Hitoshi, F.; Yu, S. Three-dimensional numerical analysis of the deformation behavior of droplets impinging onto a solid substrate. Int. J. Multiph. Flow 2007, 33, 317–332. [Google Scholar]
- Shen, S.Q.; Cui, Y.Y.; Guo, Y.L. Numerical simulation of droplet striking on inclined isothermal surface. J. Therm. Sci. Technol. 2009, 8, 194–197. (In Chinese) [Google Scholar]
- Wang, J.; Chen, G.D.; Liu, Y.J. Analysis of the oil droplet motion and deposition Characteristics in an aeroengine bearing chamber. Tribology 2010, 30, 362–366. (In Chinese) [Google Scholar]
- Fujimoto, H.; Ogino, T. Collision of a droplet with a hemispherical static droplet on a solid. Int. J. Multiph. Flow 2001, 27, 1227–1245. [Google Scholar] [CrossRef]
- Fukai, J.; Tanaka, M.; Miyatake, O. Maximum spreading of liquid droplets upon impact on flat surface. J. Chem. Eng. Jpn. 1998, 31, 456–461. [Google Scholar] [CrossRef]
- Lu, J.; Chen, X.L.; Cao, X.K. Characteristic phenomenon and analysis of a single liquid droplet impacting on a dry surface. Chem. React. Eng. Technol. 2007, 12, 505–511. (In Chinese) [Google Scholar]
- Weinstock, V.D.; Heister, S.D. Modeling oil flows in engine sumps: Drop dynamics and wall impact simulation. J. Eng. Gas Turbines Power Trans. ASME 2006, 128, 163–172. [Google Scholar] [CrossRef]
- Gorse, P.; Dullenkopf, K.; Bauer, H.-J.; Wittig, S. An Experimental Study on Droplet Generation in Bearing Chambers Caused by Roller Bearings. In Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air, Berlin, Germany, 9–13 June 2008. [Google Scholar]
- Farrall, M.; Simmons, S.; Hibberd, S.; Gorse, P. Modeling Oil Droplet/Film Interaction in an Aero-Engine Bearing Chamber and Comparison with Experimental Data. ASME Paper No. GT2004–53698. In Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air, Vienna, Austria, 14–17 June 2004. [Google Scholar]
- Chen, B.; Chen, G.D.; Wang, T. Flow characteristics analysis of wall oil film with consideration of oil droplet deformation and secondary oil droplet deposition in aeroengine bearing chamber. Acta Aeronaut. Astronaut. Sin. 2013, 34, 1980–1989. [Google Scholar]
- Tembely, M.; Vadillo, D.; Soucemarianadin, A.; Dolatabadi, A. Numerical Simulations of Polymer Solution Droplet Impact on Surfaces of Different Wettabilities. Processes 2019, 7, 798. [Google Scholar] [CrossRef] [Green Version]
- Adeniyi, A.A.; Morvan, H.P.; Simmons, K.A. A Transient CFD Simulation of the Flow in a Test Rig of an Aeroengine Bearing Chamber. In Proceedings of the ASME Turbo Expo2014: Turbine Technical Conference and Exposition, Düsseldorf, Germany, 16–20 June 2014. [Google Scholar]
- Bristot, A.; Morvan, H.; Simmons, K. Evaluation of a volume of fluid CFD methodology for the oil film thickness estimation in an aero-engine bearing chamber. In Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, Korea, 13–17 June 2016. [Google Scholar]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Youngs, D.L. Time dependent multi-material flow with large fluid distortion. In Numerical Methods for Fluid Dynamics; Morton, K.W., Baines M.J., Eds.; Academic Press: New York, NY, USA, 1982; pp. 273–285. [Google Scholar]
- Brackbill, J.U.; Kothe, D.B.; Zemach, C. A continuum method for modeling surface-tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Pan, K.L.; Tseng, K.C.; Wang, C.H. Breakup of a droplet at high velocity impacting a solid surface. Exp. Fluids 2010, 48, 143–156. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Impacting velocity v (m/s) | 10,15,20,25,30 |
Incident angle θ (°) | 30,45,60,75 |
Oil droplet diameter D (μm) | 100,150,200,250,300 |
D (mm) | ρl (kg/m3) | μl (Pa·s) | σl (N/m) | θ (°) | v (m/s) | Experimental Results of [2,6,26] | Dimensionless Splashing Coefficient K of This Paper | Judgement Results of This Paper |
---|---|---|---|---|---|---|---|---|
0.132 | 786 | 0.0024 | 0.021 | 54° | 17 | splashing [2] | 196.74 | splashing |
0.5 | 1000 | 0.000894 | 0.072 | 90° | 18.81 | splashing [26] | 502.02 | splashing |
0.5 | 1000 | 0.000894 | 0.072 | 90° | 32.54 | splashing [26] | 995.98 | splashing |
0.5 | 1000 | 0.0021 | 0.069 | 90° | 18.27 | splashing [26] | 399.41 | splashing |
0.5 | 1050 | 0.0021 | 0.069 | 90° | 32.92 | splashing [26] | 864.90 | splashing |
0.5 | 684 | 0.000387 | 0.020 | 90° | 14.23 | splashing [26] | 623.14 | splashing |
0.5 | 684 | 0.000387 | 0.020 | 90° | 8.93 | splashing [26] | 348.05 | splashing |
0.5 | 714 | 0.000720 | 0.022 | 90° | 7.56 | splashing [26] | 238.29 | splashing |
0.5 | 714 | 0.000720 | 0.022 | 90° | 13.28 | splashing [26] | 481.90 | splashing |
2.45 | 1220 | 0.116 | 0.063 | 90° | 1.04 | deposited [6] | 16.30 | deposited |
2.72 | 996 | 0.001 | 0.072 | 10° | 3.25 | deposited [6] | 193.119 | deposited |
2.72 | 996 | 0.001 | 0.072 | 45° | 3.25 | splashing [6] | 193.11 | splashing |
2.72 | 996 | 0.001 | 0.072 | 45° | 1.55 | deposited [6] | 76.54 | deposited |
3.3 | 786 | 0.0024 | 0.021 | 45° | 2.1 | splashing [6] | 161.08 | splashing |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Wang, L.; Chen, G. Analysis of Oil Droplet Deposition Characteristics and Determination of Impact State Criterion in Aero-Engine Bearing Chamber. Processes 2020, 8, 741. https://doi.org/10.3390/pr8060741
Wang F, Wang L, Chen G. Analysis of Oil Droplet Deposition Characteristics and Determination of Impact State Criterion in Aero-Engine Bearing Chamber. Processes. 2020; 8(6):741. https://doi.org/10.3390/pr8060741
Chicago/Turabian StyleWang, Fei, Lin Wang, and Guoding Chen. 2020. "Analysis of Oil Droplet Deposition Characteristics and Determination of Impact State Criterion in Aero-Engine Bearing Chamber" Processes 8, no. 6: 741. https://doi.org/10.3390/pr8060741
APA StyleWang, F., Wang, L., & Chen, G. (2020). Analysis of Oil Droplet Deposition Characteristics and Determination of Impact State Criterion in Aero-Engine Bearing Chamber. Processes, 8(6), 741. https://doi.org/10.3390/pr8060741