Designing the Next Generation of Fe0-Based Filters for Decentralized Safe Drinking Water Treatment: A Conceptual Framework
Abstract
:1. Introduction
2. Conventional Biological Sand Filter (BSF)
3. Conceptual Designs of Fe0-BSF Multi-Barrier and Multi-Stage Systems
3.1. Fundamental Physico-Chemical Reactions in the Fe0/H2O System
3.2. Amending a BSF with Metallic Iron (Fe0-BSFs)
3.3. The Next-Generation Fe0-BSFs Multi-Stage Systems
3.3.1. Controlling Preferential Flow
3.3.2. Avoiding the Use of Exhausted Drinking Water Filters
4. Future Perspectives
4.1. Beyond Safe Drinking Water Provision
4.2. Future Research
4.3. The Novelty of the Envisioned Fe-Based Biosand Filters
- (1)
- A filter clock device based on the expansive nature of iron corrosion to warn the end-users when the filter reaches the end of its design service life.
- (2)
- Flow equalizing units to enhance contaminant removal by preventing short-circuiting or preferential flow.
- (3)
- A robust and flexible modular design that allows the incorporation of exchangeable filter units and process trains for treating raw water with a variable initial quality.
- (4)
- An initial roughing unit for the removal of grit, turbidity, and other suspended solids that are likely to interfere with subsequent treatment processes.
- (5)
- Multi-barrier systems, with each barrier layer tailor-made to remove a particular contaminant, including dissolved toxic geogenic pollutants such as arsenic, uranium, and fluoride.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ali, I. Water Treatment by Adsorption Columns: Evaluation at Ground Level. Sep. Purif. Rev. 2014, 43, 175–205. [Google Scholar] [CrossRef]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marinas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. In Nanoscience and Technology: A Collection of Reviews from Nature Journals; World Scientific: Singapore, 2010; pp. 337–346. [Google Scholar]
- Singh, G.; Kumari, B.; Sinam, G.; Kumar, N.; Mallick, S. Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspective—A review. Environ. Pollut. 2018, 239, 95–108. [Google Scholar] [CrossRef]
- Truslove, J.P.; Coulson, A.B.; Nhlema, M.; Mbalame, E.; Kalin, R.M. Reflecting SDG 6.1 in Rural Water Supply Tariffs: Considering ‘Affordability’Versus ‘Operations and Maintenance Costs’ in Malawi. Sustainability 2020, 12, 744. [Google Scholar] [CrossRef] [Green Version]
- Øhlenschlæger, M.; Christensen, S.C.B.; Bregnhøj, H.; Albrechtsen, H.-J. Submerged pond sand filter—A novel approach to rural water supply. Water 2016, 8, 250. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, B.J.; Slawson, D.; Quinn, M.; Scheuerman, P.; Ogunleye, O.O. Review of biosand water filters. Waterlines 2017, 36, 233–242. [Google Scholar] [CrossRef]
- Huisman, L.; Wood, W.E. Slow Sand Filtration; World Health Organization: Geneva, Switzerland, 1974. [Google Scholar]
- Faisal, A.A.H.; Sulaymon, A.H.; Khaliefa, Q.M. A review of permeable reactive barrier as passive sustainable technology for groundwater remediation. Int. J. Environ. Sci. Technol. 2018, 15, 1123–1138. [Google Scholar] [CrossRef]
- Wydra, K.; Becker, P.; Aulich, H. Sustainable solutions for solar energy driven drinking water supply for rural settings in Sub-Saharan Africa: A case study of Nigeria. J. Photonics Energy 2019, 9, 1947–7988. [Google Scholar] [CrossRef] [Green Version]
- Hering, J.G.; Maag, S.; Schnoor, J.L.X. A Call for Synthesis of Water Research to Achieve the Sustainable Development Goals by 2030. Environ. Sci. Technol. 2016, 50, 6122–6123. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.H.; Rasul, S.B.; Munir, A.K.M.; Habibuddowla, M.; Alauddin, M.; Newaz, S.S.; Hussam, A. Appraisal of a simple arsenic removal method for ground water of Bangladesh. J. Environ. Sci. Health Part A 2000, 35, 1021–1041. [Google Scholar] [CrossRef]
- Ngai, T.K.K.; Murcott, S.; Shrestha, R.R.; Dangol, B.; Maharjan, M. Development and dissemination of Kanchan™ Arsenic Filter in rural Nepal. Water Sci. Technol. Water Supply 2006, 6, 137–146. [Google Scholar] [CrossRef]
- Leupin, O.X.; Hug, S.J.; Badruzzaman, A.B.M. Arsenic removal from Bangladesh tube well water with filter columns containing zerovalent iron filings and sand. Environ. Sci. Technol. 2005, 39, 8032–8037. [Google Scholar] [CrossRef] [PubMed]
- Chiew, H.; Sampson, M.L.; Huch, S.; Ken, S.; Bostick, B.C. Effect of groundwater iron and phosphate on the efficacy of arsenic removal by iron-amended BioSand filters. Environ. Sci Technol. 2009, 43, 6295–6300. [Google Scholar] [CrossRef] [PubMed]
- Noubactep, C.; Schöner, A. Fe0-based alloys for environmental remediation: Thinking outside the box. J. Hazard. Mater. 2009, 165, 1210–1214. [Google Scholar] [CrossRef] [PubMed]
- Noubactep, C.; Schöner, A. Metallic iron: Dawn of a new era of drinking water treatment research? Fresenius Environ. Bull. 2010, 19, 1661–1668. [Google Scholar]
- Noubactep, C.; Temgoua, E.; Rahman, M.A. Designing Iron-Amended Biosand Filters for Decentralized Safe Drinking Water Provision. Clean Soil Air Water 2012, 40, 798–807. [Google Scholar] [CrossRef] [Green Version]
- Tepong-Tsindé, R.; Ndé-Tchoupé, A.I.; Noubactep, C.; Nassi, A.; Ruppert, H. Characterizing a Newly Designed Steel-Wool-Based Household Filter for Safe Drinking Water Provision: Hydraulic Conductivity and Efficiency for Pathogen Removal. Processes 2019, 7, 966. [Google Scholar] [CrossRef] [Green Version]
- Noubactep, C. The fundamental mechanism of aqueous contaminant removal by metallic iron. Water Sa 2010, 36. [Google Scholar] [CrossRef] [Green Version]
- Caré, S.; Crane, R.; Calabrò, P.S.; Ghauch, A.; Temgoua, E.; Noubactep, C. Modeling the permeability loss of metallic iron water filtration systems. Clean Soil Air Water 2013, 41, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Domga, R.; Togue-Kamga, F.; Noubactep, C.; Tchatchueng, J.-B. Discussing porosity loss of Fe0 packed water filters at ground level. Chem. Eng. J. 2015, 263, 127–134. [Google Scholar] [CrossRef]
- Ndé-Tchoupé, A.I.; Crane, R.A.; Mwakabona, H.T.; Noubactep, C.; Njau, K.N. Technologies for decentralized fluoride removal: Testing metallic iron-based filters. Water 2015, 7, 6750–6774. [Google Scholar] [CrossRef] [Green Version]
- Tepong-Tsindé, R.; Crane, R.; Noubactep, C.; Nassi, A.; Ruppert, H. Testing metallic iron filtration systems for decentralized water treatment at pilot scale. Water 2015, 7, 868–897. [Google Scholar] [CrossRef] [Green Version]
- Btatkeu-K, B.D.; Tchatchueng, J.B.; Noubactep, C.; Caré, S. Designing metallic iron based water filters: Light from methylene blue discoloration. J. Environ. Manag. 2016, 166, 567–573. [Google Scholar] [CrossRef]
- Noubactep, C. Research on metallic iron for environmental remediation: Stopping growing sloppy science. Chemosphere 2016, 153, 528–530. [Google Scholar] [CrossRef] [PubMed]
- Nanseu-Njiki, C.P.; Gwenzi, W.; Pengou, M.; Rahman, M.A.; Noubactep, C. Fe0/H2O filtration systems for decentralized safe drinking water: Where to from here? Water 2019, 11, 429. [Google Scholar] [CrossRef] [Green Version]
- Xiao, M.; Hu, R.; Cui, X.; Gwenzi, W.; Noubactep, C. Understanding the Operating Mode of Fe0/Fe-Sulfide/H2O Systems for Water Treatment. Processes 2020, 8, 409. [Google Scholar] [CrossRef] [Green Version]
- Bretzler, A.; Nikiema, J.; Lalanne, F.; Hoffmann, L.; Biswakarma, J.; Siebenaller, L.; Demange, D.; Schirmer, M.; Hug, S.J. Arsenic removal with zero-valent iron filters in Burkina Faso: Field and laboratory insights. Sci. Tot. Environ. 2020, 737, 139466. [Google Scholar] [CrossRef]
- Hildebrant, B. Characterizing the reactivity of commercial steel wool for water treatment. Freib. Online Geosci. 2018, 53, 1–60. [Google Scholar]
- Hu, R.; Cui, X.; Xiao, M.; Qiu, P.; Lufingo, M.; Gwenzi, W.; Noubactep, C. Characterizing the suitability of granular Fe0 for the water treatment industry. Processes 2019, 7, 652. [Google Scholar] [CrossRef] [Green Version]
- Hu, R.; Ndé-Tchoupé, A.I.; Lufingo, M.; Xiao, M.; Nassi, A.; Noubactep, C.; Njau, K.N. The impact of selected pretreatment procedures on iron dissolution from metallic iron specimens used in water treatment. Sustainability 2019, 11, 671. [Google Scholar] [CrossRef] [Green Version]
- Hildebrant, B.; Ndé-Tchoupé, A.I.; Lufingo, M.; Licha, T.; Noubactep, C. Steel wool for water treatment: Intrinsic reactivity and defluoridation efficiency. Processes 2020, 8, 265. [Google Scholar] [CrossRef] [Green Version]
- Lufingo, M.; Ndé-Tchoupé, A.I.; Hu, R.; Njau, K.N.; Noubactep, C. A novel and facile method to characterize the suitability of metallic iron for water treatment. Water 2019, 11, 2465. [Google Scholar] [CrossRef] [Green Version]
- Davis, F. An Elementary Handbook on Potable Water; Silver, Burdett & Company: New York, NY, USA, 1891. [Google Scholar]
- Langenbach, K. Slow Sand Filtration of Secondary Effluent for Wastewater Reuse: Evaluation of Performance and Modeling of Bacteria Removal; Technische Universität München: Munich, Germany, 2009. [Google Scholar]
- Haig, S.J.; Collins, G.; Davies, R.L.; Dorea, C.C.; Quince, C. Biological aspects of slow sand filtration: Past, present and future. Water Sci. Technol. Water Supply 2011, 11, 468–472. [Google Scholar] [CrossRef]
- Koch, R. Die Cholera in Deutschland Während des Winters 1892 bis 1893; Robert Koch-Institut: Berlin, Germany, 2010. [Google Scholar]
- Manz, D.H.; Eng, P. BioSand water filter technology household concrete design. Retrieved Oct. 2007, 22, 2008. [Google Scholar]
- Janjaroen, D. Biosand filter (BSF): Types and mechanisms behind its efficiency. Appl. Environ. Res. 2016, 38, 87–102. [Google Scholar] [CrossRef]
- Campos, L.C. Modelling and Simulation of the Biological and Physical Processes of Slow Sand Filtration; University of London: London, UK, 2002. [Google Scholar]
- Logsdon, G.S.; Kohne, R.; Abel, S.; LaBonde, S. Slow sand filtration for small water systems. J. Environ. Eng. Sci. 2002, 1, 339–348. [Google Scholar] [CrossRef]
- Elliott, M.A.; Stauber, C.E.; Koksal, F.; DiGiano, F.A.; Sobsey, M.D. Reductions of E. coli, echovirus type 12 and bacteriophages in an intermittently operated household-scale slow sand filter. Water Res. 2008, 42, 2662–2670. [Google Scholar] [CrossRef]
- Kubare, M.; Haarhoff, J. Rational design of domestic biosand filters. J. Water Supply Res. Technol. Aqua 2010, 59, 1–15. [Google Scholar] [CrossRef]
- Elliott, M.; Stauber, C.E.; DiGiano, F.A.; Aceituno, D.; Fabiszewski, A.; Sobsey, M.D. Investigation of E. coli and virus reductions using replicate, bench-scale biosand filter columns and two filter media. Int. J. Environ. Res. Public Health 2015, 12, 10276–10299. [Google Scholar] [CrossRef]
- Ngai, T.K.K.; Coff, B.; Baker, D.; Lentz, R.; Nakamoto, N.; Graham, N.; Collins, M.R.; Gimbel, R. Global review of the adoption, use, and performance of the biosand filter. Progess Slow Sand Altern. Biofiltration Process. 2014, 14, 309–317. [Google Scholar]
- Gwenzi, W.; Chaukura, N.; Noubactep, C.; Mukome, F.N.D. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. J. Environ. Manag. 2017, 197, 732–749. [Google Scholar] [CrossRef]
- Devonshire, E. The purification of water by means of metallic iron. J. Frankl. Inst. 1890, 129, 449–461. [Google Scholar] [CrossRef]
- Richardson, J.P.; Nicklow, J.W. In situ permeable reactive barriers for groundwater contamination. Soil Sediment Contam. 2002, 11, 241–268. [Google Scholar] [CrossRef]
- Henderson, A.D.; Demond, A.H. Long-term performance of zero-valent iron permeable reactive barriers: A critical review. Environ. Eng. Sci. 2007, 24, 401–423. [Google Scholar] [CrossRef] [Green Version]
- Noubactep, C.; Schoner, A.; Woafo, P. Metallic Iron Filters for Universal Access to Safe Drinking Water. Clean-Soil Air Water 2009, 37, 930–937. [Google Scholar] [CrossRef] [Green Version]
- Obiri-Nyarko, F.; Grajales-Mesa, S.J.; Malina, G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 2014, 111, 243–259. [Google Scholar] [CrossRef]
- You, Y.; Han, J.; Chiu, P.C.; Jin, Y. Removal and inactivation of waterborne viruses using zerovalent iron. Environ. Sci. Technol. 2005, 39, 9263–9269. [Google Scholar] [CrossRef]
- Newton, B.T. Noble gases as applied tracers for investigating hydrologic and chemical processes in permeable reactive barriers. Ph.D Thesis, Queens University Belfast, Northern Ireland, 2013. [Google Scholar]
- Guan, X.; Sun, Y.; Qin, H.; Li, J.; Lo, I.M.C.; He, D.; Dong, H. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994–2014). Water Res. 2015, 75, 224–248. [Google Scholar] [CrossRef]
- Brown, G.E., Jr.; Henrich, V.E.; Casey, W.H.; Clark, D.L.; Eggleston, C.; Felmy, A.; Goodman, D.W.; Gratzel, M.; Maciel, G.; McCarthy, M.I.; et al. Metal Oxide Surfaces and Their Interactions with Aqueous Solutions and Microbial Organisms. Chem. Rev. 1999, 99, 77–174. [Google Scholar] [CrossRef] [Green Version]
- Chaves, L.H.G. The role of green rust in the environment: A review. Rev. Bras. De Eng. Agrícola E Ambient. 2005, 9, 284–288. [Google Scholar] [CrossRef] [Green Version]
- Hussam, A.; Munir, A.K.M. A simple and effective arsenic filter based on composite iron matrix: Development and deployment studies for groundwater of Bangladesh. J. Environ. Sci. Health Part A 2007, 42, 1869–1878. [Google Scholar] [CrossRef]
- Ngai, T.K.K.; Shrestha, R.R.; Dangol, B.; Maharjan, M.; Murcott, S.E. Design for sustainable development—Household drinking water filter for arsenic and pathogen treatment in Nepal. J. Environ. Sci. Health Part A 2007, 42, 1879–1888. [Google Scholar] [CrossRef] [PubMed]
- Bradley, I.; Straub, A.; Maraccini, P.; Markazi, S.; Nguyen, T.H. Iron oxide amended biosand filters for virus removal. Water Res. 2011, 45, 4501–4510. [Google Scholar] [CrossRef] [Green Version]
- Banerji, T.; Chaudhari, S. A cost-effective technology for arsenic removal: Case study of zerovalent iron-based IIT Bombay arsenic filter in West Bengal. In Water and Sanitation in the New Millennium; Springer: Berlin, Germany, 2017; pp. 127–137. [Google Scholar]
- Banerji, T.; Kalawapudi, K.; Salana, S.; Vijay, R. Review of processes controlling arsenic retention and release in soils and sediments of Bengal basin and suitable iron based technologies for its removal. Groundw. Sustain. Dev. 2019, 8, 358–367. [Google Scholar] [CrossRef]
- Matheson, L.J.; Tratnyek, P.G. Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 1994, 28, 2045–2053. [Google Scholar] [CrossRef] [PubMed]
- Noubactep, C. A critical review on the process of contaminant removal in Fe0-H2O systems. Environ. Technol. 2008, 29, 909–920. [Google Scholar] [CrossRef] [Green Version]
- Gheju, M. Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems. Water Air Soil Pollut. 2011, 222, 103–148. [Google Scholar] [CrossRef]
- Gheju, M.; Balcu, I.; Vancea, C. An investigation of Cr (VI) removal with metallic iron in the co-presence of sand and/or MnO2. J. Environ. Manag. 2016, 170, 145–151. [Google Scholar] [CrossRef]
- Noubactep, C. Metallic iron for environmental remediation: A review of reviews. Water Res. 2015, 85, 114–123. [Google Scholar] [CrossRef]
- Hu, R.; Yang, H.; Tao, R.; Cui, X.; Xiao, M.; Amoah, B.K.; Cao, V.; Lufingo, M.; Soppa-Sangue, N.P.; Ndé-Tchoupé, A.I.; et al. Metallic Iron for Environmental Remediation: Starting an Overdue Progress in Knowledge. Water 2020, 12, 641. [Google Scholar] [CrossRef] [Green Version]
- Pilling, N.B. The oxidation of metals at high temperature. J. Inst. Met. 1923, 29, 529–582. [Google Scholar]
- Caré, S.; Nguyen, Q.T.; l’Hostis, V.; Berthaud, Y. Mechanical properties of the rust layer induced by impressed current method in reinforced mortar. Cem. Concr. Res. 2008, 38, 1079–1091. [Google Scholar] [CrossRef]
- Moraci, N.; Ielo, D.; Bilardi, S.; Calabrò, P.S. Modelling long-term hydraulic conductivity behaviour of zero valent iron column tests for permeable reactive barrier design. Can. Geotech. J. 2016, 53, 946–961. [Google Scholar] [CrossRef]
- Litter, M.I.; Alarcón-Herrera, M.T.; Arenas, M.J.; Armienta, M.A.; Avilés, M.; Cáceres, R.E.; Cipriani, H.N.; Cornejo, L.; Dias, L.E.; Cirelli, A.F. Small-scale and household methods to remove arsenic from water for drinking purposes in Latin America. Sci. Total Environ. 2012, 429, 107–122. [Google Scholar] [CrossRef]
- Neumann, A.; Kaegi, R.; Voegelin, A.; Hussam, A.; Munir, A.K.M.; Hug, S.J. Arsenic removal with composite iron matrix filters in Bangladesh: A field and laboratory study. Environ. Sci. Technol. 2013, 47, 4544–4554. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.; Li, Z.; Chen, B.; Liang, H.; Zhang, X.; Xu, R.; Li, Z.; Dai, H.; Wei, C.; Liu, S. Comparison of sand-based water filters for point-of-use arsenic removal in China. Chemosphere 2017, 168, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Wenk, C.B.; Kaegi, R.; Hug, S.J. Factors affecting arsenic and uranium removal with zero-valent iron: Laboratory tests with Kanchan-type iron nail filter columns with different groundwaters. Environ. Chem. 2014, 11, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Mwakabona, H.T.; Ndé-Tchoupé, A.I.; Njau, K.N.; Noubactep, C.; Wydra, K.D. Metallic iron for safe drinking water provision: Considering a lost knowledge. Water Res. 2017, 117, 127–142. [Google Scholar] [CrossRef]
- Gottinger, A.M.; McMartin, D.W.; Wild, D.J.; Moldovan, B. Integration of zero valent iron sand beds into biological treatment systems for uranium removal from drinking water wells in rural Canada. Can. J. Civ. Eng. 2013, 40, 945–950. [Google Scholar] [CrossRef]
- Kowalski, K.P.; Søgaard, E.G. Implementation of zero-valent iron (ZVI) into drinking water supply–Role of the ZVI and biological processes. Chemosphere 2014, 117, 108–114. [Google Scholar] [CrossRef]
- Casentini, B.; Falcione, F.T.; Amalfitano, S.; Fazi, S.; Rossetti, S. Arsenic removal by discontinuous ZVI two steps system for drinking water production at household scale. Water Res. 2016, 106, 135–145. [Google Scholar] [CrossRef]
- Tuladhar, S.; Smith, L.S. SONO filter: An excellent technology for save water in Nepal. Sophen 2009, 7, 18–24. [Google Scholar]
- Heimann, S. Testing granular iron for fluoride removal. Freib. Online Geosci. 2018, 52, 1–80. [Google Scholar]
- Noubactep, C. Designing Metallic Iron Packed-Beds for Water Treatment: A Critical Review. Clean–Soil Air Water 2016, 44, 411–421. [Google Scholar] [CrossRef]
- Liu, X.; Millero, F.J. The solubility of iron hydroxide in sodium chloride solutions. Geochim. Et Cosmochim. Acta 1999, 63, 3487–3497. [Google Scholar] [CrossRef]
- Ghauch, A. Iron-based metallic systems: An excellent choice for sustainable water treatment. Fog-Freib. Online Geosci. 2015, 38, 1–80. [Google Scholar]
- Kamolpornwijit, W.; Liang, L.; West, O.R.; Moline, G.R.; Sullivan, A.B. Preferential flow path development and its influence on long-term PRB performance: Column study. J. Contam. Hydrol. 2003, 66, 161–178. [Google Scholar] [CrossRef]
- Noubactep, C. Metallic Iron for Safe Drinking Water Production. Fog Freib. Online Geosci. 2011, 27, 38. [Google Scholar]
- Miyajima, K. Optimizing the Design of Metallic Iron Filters for Water Treatment. Fog Freib. Online Geosci. 2012, 32, 567–573. [Google Scholar]
- Mackenzie, P.D.; Horney, D.P.; Sivavec, T.M. Mineral precipitation and porosity losses in granular iron columns. J. Hazard. Mater. 1999, 68, 1–17. [Google Scholar] [CrossRef]
- Notter, J.L. The purification of water by filtration. Br. Med J. 1878, 2, 556. [Google Scholar] [CrossRef] [Green Version]
- Ndé-Tchoupé, A.I.; Nanseu-Njiki, C.P.; Hu, R.; Nassi, A.; Noubactep, C.; Licha, T. Characterizing the reactivity of metallic iron for water defluoridation in batch studies. Chemosphere 2019, 219, 855–863. [Google Scholar] [CrossRef]
- Delaire, C.; Peletz, R.; Kumpel, E.; Kisiangani, J.; Bain, R.; Khush, R. How much will it cost to monitor microbial drinking water quality in sub-Saharan Africa? Environ. Sci. Technol. 2017, 51, 5869–5878. [Google Scholar] [CrossRef] [PubMed]
- Lilje, J.; Mosler, H.-J. Continuation of health behaviors: Psychosocial factors sustaining drinking water chlorination in a longitudinal study from Chad. Sustainability 2016, 8, 1149. [Google Scholar] [CrossRef] [Green Version]
- Misati, A.G.; Ogendi, G.; Peletz, R.; Khush, R.; Kumpel, E. Can sanitary surveys replace water quality testing? Evidence from Kisii, Kenya. Int. J. Environ. Res. Public Health 2017, 14, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakatsuki, T.; Esumi, H.; Omura, S. High performance and N & P-removable on-site domestic waste water treatment system by multi-soil-layering method. Water Sci. Technol. 1993, 27, 31–40. [Google Scholar]
- Chopyk, J.; Kulkarni, P.; Nasko, D.J.; Bradshaw, R.; Kniel, K.E.; Chiu, P.; Sharma, M.; Sapkota, A.R. Zero-valent iron sand filtration reduces concentrations of virus-like particles and modifies virome community composition in reclaimed water used for agricultural irrigation. Bmc Res. Notes 2019, 12, 223. [Google Scholar] [CrossRef]
- Qi, Q.; Marwa, J.; Mwamila, T.B.; Gwenzi, W.; Noubactep, C. Making Rainwater Harvesting a Key Solution for Water Management: The Universality of the Kilimanjaro Concept. Sustainability 2019, 11, 5606. [Google Scholar] [CrossRef] [Green Version]
- Erickson, A.J.; Gulliver, J.S.; Weiss, P.T. Enhanced sand filtration for storm water phosphorus removal. J. Environ. Eng. 2007, 133, 485–497. [Google Scholar] [CrossRef] [Green Version]
- Co., H.E. Selenium Removal Study. Report to Panoche Drainage District. Harza Engineering Co.: Firebaugh, CA, USA, 1986. [Google Scholar]
- Schneider, P.; Neitzel, P.L.; Osenbrück, K.; Noubacteb, C.; Merkel, B.; Hurst, S. In-situ Treatment of Radioactive Mine Water using Reactive Materials–Results of Laboratory and Field Experiments in Uranium Ore Mines in Germany. Acta Hydrochim. Et Hydrobiol. 2001, 29, 129–138. [Google Scholar] [CrossRef]
- Lee, C.; Kim, J.Y.; Lee, W.I.; Nelson, K.L.; Yoon, J.; Sedlak, D.L. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ. Sci. Technol. 2008, 42, 4927–4933. [Google Scholar] [CrossRef] [Green Version]
- Hussam, A. Contending with a development disaster: SONO filters remove arsenic from well water in Bangladesh (innovations case discussion: SONO filters). Innov. Technol. Gov. Glob. 2009, 4, 89–102. [Google Scholar] [CrossRef]
- Ingram, D.T.; Callahan, M.T.; Ferguson, S.; Hoover, D.G.; Shelton, D.R.; Millner, P.D.; Camp, M.J.; Patel, J.R.; Kniel, K.; Sharma, M. Use of zero-valent iron biosand filters to reduce Escherichia coli O157: H12 in irrigation water applied to spinach plants in a field setting. J. Appl. Microbiol. 2012, 112, 551–560. [Google Scholar] [CrossRef]
- Shi, C.; Wei, J.; Jin, Y.; Kniel, K.E.; Chiu, P.C. Removal of viruses and bacteriophages from drinking water using zero-valent iron. Sep. Purif. Technol. 2012, 84, 72–78. [Google Scholar] [CrossRef]
- Bradshaw, R. Assessment of Zero-Valent Iron Capabilities to Reduce Food-Borne Pathogens Via Filtration and Residual Activities in Irrigation Water; Digital Repository at the University of Maryland: College Park, MD, USA, 2017. [Google Scholar]
- Shearer, A.E.H.; Kniel, K.E. Enhanced removal of norovirus surrogates, Murine norovirus and Tulane virus, from aqueous systems by zero-valent iron. J. Food Prot. 2018, 81, 1432–1438. [Google Scholar] [CrossRef]
- Chopyk, J. Diversity, Dynamics, and Dissemination of Microbial Communities in Reclaimed and Untreated Surface Waters Used for Agricultural Irrigation. Ph.D Thesis, University of Maryland, College Park, MD, USA, 2019. [Google Scholar]
- Kulkarni, P.; Raspanti, G.A.; Bui, A.Q.; Bradshaw, R.N.; Kniel, K.E.; Chiu, P.C.; Sharma, M.; Sapkota, A.; Sapkota, A.R. Zerovalent iron-sand filtration can reduce the concentration of multiple antimicrobials in conventionally treated reclaimed water. Environ. Res. 2019, 172, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Marik, C.M.; Anderson-Coughlin, B.; Gartley, S.; Craighead, S.; Bradshaw, R.; Kulkarni, P.; Sharma, M.; Kniel, K.E. The efficacy of zero valent iron-sand filtration on the reduction of Escherichia coli and Listeria monocytogenes in surface water for use in irrigation. Environ. Res. 2019, 173, 33–39. [Google Scholar] [CrossRef]
- Noubactep, C.; Meinrath, G.; Dietrich, P.; Sauter, M.; Merkel, B.J. Testing the suitability of zerovalent iron materials for reactive walls. Environ. Chem. 2005, 2, 71–76. [Google Scholar] [CrossRef]
- Velimirovic, M.; Larsson, P.-O.; Simons, Q.; Bastiaens, L. Reactivity screening of microscale zerovalent irons and iron sulfides towards different CAHs under standardized experimental conditions. J. Hazard. Mater. 2013, 252, 204–212. [Google Scholar] [CrossRef]
- Kim, H.; Yang, H.; Kim, J. Standardization of the reducing power of zero-valent iron using iodine. J. Environ. Sci. Health Part A 2014, 49, 514–523. [Google Scholar] [CrossRef]
- Li, S.; Ding, Y.; Wang, W.; Lei, H. A facile method for determining the Fe (0) content and reactivity of zero valent iron. Anal. Methods 2016, 8, 1239–1248. [Google Scholar] [CrossRef]
- Hu, R.; Gwenzi, W.; Sipowo-Tala, V.R.; Noubactep, C. Water treatment using metallic iron: A tutorial review. Processes 2019, 7, 622. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Dou, X.; Qin, H.; Sun, Y.; Yin, D.; Guan, X. Characterization methods of zerovalent iron for water treatment and remediation. Water Res. 2019, 148, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Ndé-Tchoupé, A.I.; Hu, R.; Gwenzi, W.; Nassi, A.; Noubactep, C. Characterizing the reactivity of metallic iron for water treatment: H2 evolution in H2SO4 and uranium removal efficiency. Water 2020, 12, 1523. [Google Scholar] [CrossRef]
- Hilson, G. The environmental impact of small-scale gold mining in Ghana: Identifying problems and possible solutions. Geogr. J. 2002, 168, 57–72. [Google Scholar] [CrossRef]
- Ingram, V.; Tieguhong, J.C.; Schure, J.; Nkamgnia, E.; Tadjuidje, M.H. Where artisanal mines and forest meet: Socio-economic and environmental impacts in the Congo Basin. Nat. Resour. Forum 2011, 35, 304–320. [Google Scholar] [CrossRef] [Green Version]
- Walsh, A. After the rush: Living with uncertainty in a Malagasy mining town. Africa 2012, 82, 235–251. [Google Scholar] [CrossRef]
- Oldright, G.L. Precipitation of Lead and Copper from Solution on Sponge Iron; US Government Printing Office: Washington, DC, USA , 1928. [Google Scholar]
- Gould, J.P. The kinetics of hexavalent chromium reduction by metallic iron. Water Res. 1982, 16, 871–877. [Google Scholar] [CrossRef]
- Vollprecht, D.; Krois, L.-M.; Sedlazeck, K.P.; Müller, P.; Mischitz, R.; Olbrich, T.; Pomberger, R. Removal of critical metals from waste water by zero-valent iron. J. Clean. Prod. 2019, 208, 1409–1420. [Google Scholar] [CrossRef]
- Vollprecht, D.; Plessl, K.; Neuhold, S.; Kittinger, F.; Öfner, W.; Müller, P.; Mischitz, R.; Sedlazeck, K.P. Recovery of Molybdenum, Chromium, Tungsten, Copper, Silver, and Zinc from Industrial Waste Waters Using Zero-Valent Iron and Tailored Beneficiation Processes. Processes 2020, 8, 279. [Google Scholar] [CrossRef] [Green Version]
Removed Species | Year | Application | Refs. |
---|---|---|---|
Arsenic and pathogens | 2006 | drinking water | [12] |
Escherichia coli | 2008 | agricultural irrigation | [99] |
Arsenic and pathogens | 2009 | drinking water | [100] |
MS2 bacteriophage (virus) | 2011 | drinking water | [59] |
Escherichia coli O157:H12 | 2012 | agricultural irrigation | [101] |
Viruses and bacteriophages | 2012 | drinking water | [102] |
Arsenic | 2013 | drinking water | [72] |
Arsenic and uranium | 2014 | drinking water | [74] |
Food-borne pathogens | 2017 | agricultural irrigation | [103] |
Norovirus surrogates, murine norovirus and tulane virus | 2018 | agricultural irrigation | [104] |
Diverse microbial communities | 2019 | agricultural irrigation | [105] |
Antimicrobial agents | 2019 | agricultural irrigation | [106] |
Escherichia coli and Listeria monocytogenes | 2019 | agricultural irrigation | [107] |
No. | Research Topic | Rationale |
---|---|---|
1 | Fe0 intrinsic reactivity | There is actually no unified tool to compare/select Fe0 materials |
2 | Characterizing steel wool | Steel wool is universally available (7 different grades). Which grades are better suitable for some applications? |
3 | Characterizing sponge iron | Widely available but sparely tested for Fe0 filters |
4 | Characterizing iron wire | Iron wire should be as available as iron nails |
5 | Characterizing iron nails | Iron nails have been widely tested, but not really characterized |
6 | Characterizing scrap iron | Scrap iron can be collected from mechanical workshops |
7 | New Fe0 materials | Designed Fe0 materials could be developed and characterized |
8 | Compare classes of Fe0 | Comparatively characterize the reactivity of Fe0 |
No. | Research Topic | Description |
---|---|---|
1 | Equalizing units | A small filter designed to attenuate the impact of preferential flow |
2 | Filter clock | A small Fe0 filter designed to stop flow at system exhaustion |
3 | Exchangeable BSF | Change the first BSF after certain intervals to avoid permeability loss |
4 | Fe0 unit | Determine the optimal Fe0/sand ratio for sustainable systems |
5 | Number of Fe0 units | Depending on the water quality a modular approach can be adopted |
6 | Roughing filters (RF) | Depending on the water turbidity, RF could precede BSF |
7 | Multi-barrier | For contaminants insensitive to Fe0 (e.g., fluoride), add new units |
8 | System testing | Laboratory and field experiments lasting for at least one year |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Hu, R.; Ndé-Tchoupé, A.I.; Gwenzi, W.; Ruppert, H.; Noubactep, C. Designing the Next Generation of Fe0-Based Filters for Decentralized Safe Drinking Water Treatment: A Conceptual Framework. Processes 2020, 8, 745. https://doi.org/10.3390/pr8060745
Yang H, Hu R, Ndé-Tchoupé AI, Gwenzi W, Ruppert H, Noubactep C. Designing the Next Generation of Fe0-Based Filters for Decentralized Safe Drinking Water Treatment: A Conceptual Framework. Processes. 2020; 8(6):745. https://doi.org/10.3390/pr8060745
Chicago/Turabian StyleYang, Huichen, Rui Hu, Arnaud Igor Ndé-Tchoupé, Willis Gwenzi, Hans Ruppert, and Chicgoua Noubactep. 2020. "Designing the Next Generation of Fe0-Based Filters for Decentralized Safe Drinking Water Treatment: A Conceptual Framework" Processes 8, no. 6: 745. https://doi.org/10.3390/pr8060745
APA StyleYang, H., Hu, R., Ndé-Tchoupé, A. I., Gwenzi, W., Ruppert, H., & Noubactep, C. (2020). Designing the Next Generation of Fe0-Based Filters for Decentralized Safe Drinking Water Treatment: A Conceptual Framework. Processes, 8(6), 745. https://doi.org/10.3390/pr8060745