Investigation of Plume Offset Characteristics in Bubble Columns by Euler–Euler Simulation
Abstract
:1. Introduction
2. Experimental Data in the Literature
3. Models and Numerical Details
4. Simulation Results and Discussion
4.1. Model Validation
4.2. Transient Evolution of Bubble Plume
4.3. Analysis of the Vorticity Distribution and Velocity
4.4. Effect of the Gas Volume Flux on the Offset Characteristics of the Plume
4.5. Effect of the Aspect Ratio on the Offset Characteristics of Plume
4.6. Correlations
4.7. Plume Oscillation Period
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Symbol | Denomination (Unit) | ε | turbulent dissipation rate (m2 s−3) |
ap | the center coefficient (-) | κ | turbulent kinetic energy (m2 s−2) |
anb | influence coefficients for the neighboring cells (-) | ρi | gas density (kg/m3) |
dB | bubble diameter (mm) | μi | dynamic viscosity (Pa s) |
CD | coefficient of drag force (-) | σ | surface tension (N/m) |
CL | coefficient of lift force (-) | ϕ | Variable (-) |
CTD | coefficient of turbulent dispersion force (-) | ξ | aspect ratio (H/W) |
CVM | coefficient of virtual mass force (-) | ||
CW | coefficient of wall lubrication force (-) | Index | Denomination |
DB | bubble diameter distribution (mm) | ||
D | depth of the column (m) | e | effective value |
EO | Eötvös number (-) | g | gas phase |
F | interaction force (N) | l | liquid phase |
H | height of the column (m) | inter | at interface |
g | acceleration of gravity (m s−2) | i | gas and liquid |
p | pressure (N m−2) | lam | laminar flow |
POP(s) | plume oscillation period (s) | t | turbulent flow |
R | gas volume flux (LPH) | ||
t | time (s) | Abbreviation | Denomination |
T | temperature (K) | CARPT | computer-aided radioactive particle tracking |
T | stress tensor (N m2) | CFD-PBM | Computational fluid dynamics coupled with a population balance model |
u | velocity (m/s) | CFL | Courant–Friedrichs–Lewy number |
Ug | superficial gas velocity (m/s) | LDA | laser Doppler anemometry |
W | width of the column (m) | LIF | laser-induced fluorescence |
X | axial coordinate (m) | LPH | liter per hour |
Y | vertical coordinate (m) | SKE | standard κ-ε turbulence model |
Z | spanwise coordinate (m) | PIV | particle image velocimetry |
αi | gas volume fraction (-) | TFM | two-fluid model |
References
- Tomiyama, A.; Celata, G.; Hosokawa, S.; Yoshida, S. Terminal velocity of single bubbles in surface tension force dominant regime. Int. J. Multiph. Flow 2002, 28, 1497–1519. [Google Scholar] [CrossRef]
- Tomiyama, A.; Tamai, H.; Zun, I.; Hosokawa, S. Transverse migration of single bubbles in simple shear flows. Chem. Eng. Sci. 2002, 57, 1849–1858. [Google Scholar] [CrossRef]
- Antal, S.; Lahey, R.; Flaherty, J. Analysis of phase distribution in fully developed laminar bubbly two-phase flow. Int. J. Multiph. Flow 1991, 17, 635–652. [Google Scholar] [CrossRef]
- Bannari, R.; Kerdouss, F.; Selma, B.; Bannari, A.; Proulx, P. Three-dimensional mathematical modeling of dispersed two-phase flow using class method of population balance in bubble columns. Comput. Chem. Eng. 2008, 32, 3224–3237. [Google Scholar] [CrossRef]
- Becker, S.; De Bie, H.; Sweeney, J. Dynamic flow behaviour in bubble columns. Chem. Eng. Sci. 1999, 54, 4929–4935. [Google Scholar] [CrossRef]
- Besagni, G.; Gallazzini, L.; Inzoli, F. On the scale-up criteria for bubble columns. Petroleum 2019, 5, 114–122. [Google Scholar] [CrossRef]
- Besbes, S.; El Hajem, M.; Ben Aissia, H.; Champagne, J.; Jay, J. PIV measurements and Eulerian–Lagrangian simulations of the unsteady gas–liquid flow in a needle sparger rectangular bubble column. Chem. Eng. Sci. 2015, 126, 560–572. [Google Scholar] [CrossRef]
- Besbes, S.; Gorrab, I.; Elhajem, M.; Ben Aissia, H.; Champagne, J.Y. Effect of bubble plume on liquid phase flow structures using PIV. Part. Sci. Technol. 2019, 1–10. [Google Scholar] [CrossRef]
- Buffo, A.; Marchisio, D.L.; Vanni, M.; Renze, P. Simulation of polydisperse multiphase systems using population balances and example application to bubbly flows. Chem. Eng. Res. Des. 2013, 91, 1859–1875. [Google Scholar] [CrossRef]
- Burns, A.D.; Frank, T.; Hamill, I.; Shi, J.M. The Favre Averaged Drag Model for Turbulent Dispersion in Eulerian Multi-Phase Flows. In Proceedings of the 5th International Conference on Multiphase Flow, Yokohama, Japan, 30 May 30–4 June 2004. [Google Scholar]
- Buwa, V.V.; Ranade, V.V. Dynamics of gas–liquid flow in a rectangular bubble column: Experiments and single/multi-group CFD simulations. Chem. Eng. Sci. 2002, 57, 4715–4736. [Google Scholar] [CrossRef]
- Cachaza, E.M.; Díaz, M.E.; Montes, F.J.; Galán, M.A. Unified study of flow regimes and gas holdup in the presence of positive and negative surfactants in a non-uniformly aerated bubble column. Chem. Eng. Sci. 2011, 66, 4047–4058. [Google Scholar] [CrossRef]
- Cheung, S.C.P.; Deju, L.; Yeoh, G.H.; Tu, J. Modeling of bubble size distribution in isothermal gas–liquid flows: Numerical assessment of population balance approaches. Nucl. Eng. Des. 2013, 265, 120–136. [Google Scholar] [CrossRef]
- Cheung, S.C.P.; Yeoh, G.H.; Tu, J. Population balance modeling of bubbly flows considering the hydrodynamics and thermomechanical processes. AIChE J. 2008, 54, 1689–1710. [Google Scholar] [CrossRef]
- Díaz, M.E.; Iranzo, A.; Cuadra, D.; Barbero, R.; Montes, F.J.; Galán, M.A. Numerical simulation of the gas–liquid flow in a laboratory scale bubble column. Chem. Eng. J. 2008, 139, 363–379. [Google Scholar] [CrossRef]
- Díaz, M.E.; Montes, F.J.; Galán, M.A. Experimental study of the transition between unsteady flow regimes in a partially aerated two-dimensional bubble column. Chem. Eng. Process. Process. Intensif. 2008, 47, 1867–1876. [Google Scholar] [CrossRef]
- Díaz, M.E.; Montes, F.J.; Galán, M.A. Influence of Aspect Ratio and Superficial Gas Velocity on the Evolution of Unsteady Flow Structures and Flow Transitions in a Rectangular Two-Dimensional Bubble Column. Ind. Eng. Chem. Res. 2006, 45, 7301–7312. [Google Scholar] [CrossRef]
- Fleck, S.; Rzehak, R. Investigation of bubble plume oscillations by Euler-Euler simulation. Chem. Eng. Sci. 2019, 207, 853–861. [Google Scholar] [CrossRef]
- Guo, K.; Wang, T.; Liu, Y.; Wang, J. CFD-PBM simulations of a bubble column with different liquid properties. Chem. Eng. J. 2017, 329, 116–127. [Google Scholar] [CrossRef]
- Gupta, A.; Roy, S. Euler–Euler simulation of bubbly flow in a rectangular bubble column: Experimental validation with Radioactive Particle Tracking. Chem. Eng. J. 2013, 225, 818–836. [Google Scholar] [CrossRef]
- Hallmark, B.; Chen, C.-H.; Davidson, J. Experimental and simulation studies of the shape and motion of an air bubble contained in a highly viscous liquid flowing through an orifice constriction. Chem. Eng. Sci. 2019, 206, 272–288. [Google Scholar] [CrossRef]
- Huang, Z.; McClure, D.D.; Barton, G.; Fletcher, D.; Kavanagh, J. Assessment of the impact of bubble size modelling in CFD simulations of alternative bubble column configurations operating in the heterogeneous regime. Chem. Eng. Sci. 2018, 186, 88–101. [Google Scholar] [CrossRef]
- Kantarci, N.; Borak, F.; Ulgen, K.O. Bubble column reactors. Process. Biochem. 2005, 40, 2263–2283. [Google Scholar] [CrossRef]
- Krepper, E.; Vanga, B.N.R.; Zaruba, A.; Prasser, H.-M.; De Bertodano, M.A.L. Experimental and numerical studies of void fraction distribution in rectangular bubble columns. Nucl. Eng. Des. 2007, 237, 399–408. [Google Scholar] [CrossRef]
- Li, G.; Wang, B.; Wu, H.; DiMarco, S.F. Impact of bubble size on the integral characteristics of bubble plumes in quiescent and unstratified water. Int. J. Multiph. Flow 2020, 125, 103230. [Google Scholar] [CrossRef]
- Liu, L.; Yan, H.; Ziegenhein, T.; Hessenkemper, H.; Li, Q.; Lucas, D. A systematic experimental study and dimensionless analysis of bubble plume oscillations in rectangular bubble columns. Chem. Eng. J. 2019, 372, 352–362. [Google Scholar] [CrossRef]
- Liu, Q.; Luo, Z.-H. Modeling bubble column reactor with the volume of fluid approach: Comparison of surface tension models. Chin. J. Chem. Eng. 2019, 27, 2659–2665. [Google Scholar] [CrossRef]
- Masood, R.; Delgado, A. Numerical investigation of the interphase forces and turbulence closure in 3D square bubble columns. Chem. Eng. Sci. 2014, 108, 154–168. [Google Scholar] [CrossRef]
- McGinnis, D.F.; Lorke, A.; Wüest, A.; Stöckli, A.; Little, J.C. Interaction between a bubble plume and the near field in a stratified lake. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef] [Green Version]
- Murgan, I.; Bunea, F.; Ciocan, G.D. Experimental PIV and LIF characterization of a bubble column flow. Flow Meas. Instrum. 2017, 54, 224–235. [Google Scholar] [CrossRef]
- Pfleger, D.; Gomes, S.; Gilbert, N.; Wagner, H.-G. Hydrodynamic simulations of laboratory scale bubble columns fundamental studies of the Eulerian–Eulerian modelling approach. Chem. Eng. Sci. 1999, 54, 5091–5099. [Google Scholar] [CrossRef]
- Clift, R.; Grace, J.R.; Weber, M.E. Bubbles, Drops, and Particles; A Subsidiary of Harcourr Brace Jovanovic: New York, NY, USA, 1978. [Google Scholar]
- Rensen, J.; Roig, V. Experimental study of the unsteady structure of a confined bubble plume. Int. J. Multiph. Flow 2001, 27, 1431–1449. [Google Scholar] [CrossRef]
- Shang, X.; Ng, B.F.; Wan, M.P.; Ding, S. Investigation of CFD-PBM simulations based on fixed pivot method: Influence of the moment closure. Chem. Eng. J. 2020, 382, 122882. [Google Scholar] [CrossRef]
- Silva, M.K.; D’Ávila, M.A.; Mori, M. Study of the interfacial forces and turbulence models in a bubble column. Comput. Chem. Eng. 2012, 44, 34–44. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Pant, H.J.; Roy, S. Liquid flow patterns in rectangular air-water bubble column investigated with Radioactive Particle Tracking. Chem. Eng. Sci. 2013, 96, 152–164. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, H.; Luo, J.; Wang, T. Drag force of bubble swarms and numerical simulations of a bubble column with a CFD-PBM coupled model. Chem. Eng. Sci. 2018, 192, 714–724. [Google Scholar] [CrossRef]
- Zhang, H.; Sayyar, A.; Wang, Y.; Wang, T. Generality of the CFD-PBM coupled model for bubble column simulation. Chem. Eng. Sci. 2020, 219, 115514. [Google Scholar] [CrossRef]
Refs. | W-D-H, cm | Aspect Ratio | Gas Distributor | Simplified Structure, mm | Gas Volume Flux, L/h | DB, mm |
---|---|---|---|---|---|---|
[10] | 20–5–45 | 2.25 | sparger (8 holes) | rectangle (24 × 12) | 20–90 | 1–10 |
[4] | 20–4–45 | 2.25 | single-orifice hole | diameter of 1 | 48 | 1–10 |
[34] | 20–5–120 | 6 | sparger (8 holes) | rectangle (18 × 6) | 56–296 | 1–10 |
[16] | 20–4–180 | 1.25–2.25 | sparger (8 holes) | none | 69–613 | 1–10 |
[13] | 20–4–45 | 2.25 | sparger (8 holes) | rectangle (18 × 6) | 69–613 | 1–10 |
[22] | 20–5–120 | 1.05–4 | sparger (8 holes) | none | 48–600 | 1–10 |
[35] | 26.7–1.5–50 | 1.87 | needle | diameter of 0.4 | 3–12 | 1.5–2.5 |
Models | Equations | Refs./Remarks |
---|---|---|
Conservation equations | ||
Turbulence Equations for water phase | ||
Turbulence viscosity of air phase | - | |
Interphase forces | ||
Drag forces | [36] | |
Transverse lift forces | [37] | |
Wall lubrication forces | [6] | |
Turbulent dispersion forces | [38] | |
Virtual mass forces | CVM=0.5 | |
Inlet | C is Constant value | |
Outlet | - | |
Wall | - | |
Convergence criterion | n, n + 1 are the steps of iterations |
Materials | Density, kg/m3 | Viscosity, Pa·s | Temperature, °C | Surface Tension, N/m |
---|---|---|---|---|
air | 1.225 | 1.79 × 10−5 | 25 | 0.0725 |
tap water | 998.2 | 1.01 × 10−3 |
Test Case (Partial) | Aspect Ratio | Gas Volume Flux, l/h | DB, mm | dB, mm | Ug, mm/s |
---|---|---|---|---|---|
ξ1R1 | 2 | 136 | 1–10 | 5 | 3.77 |
ξ2R2 | 2.5 | 226 | 1–10 | 5 | 6.26 |
ξ3R3 | 3 | 317 | 1–10 | 5 | 8.78 |
ξ4R4 | 3.5 | 407 | 1–10 | 5 | 11.28 |
ξ5R5 | 4 | 497 | 1–10 | 5 | 13.78 |
ξ6R6 | 4.5 | 588 | 1–10 | 5 | 16.29 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Zhang, Q.; Jiang, P.; Zhang, K.; Wei, W. Investigation of Plume Offset Characteristics in Bubble Columns by Euler–Euler Simulation. Processes 2020, 8, 795. https://doi.org/10.3390/pr8070795
Cheng Y, Zhang Q, Jiang P, Zhang K, Wei W. Investigation of Plume Offset Characteristics in Bubble Columns by Euler–Euler Simulation. Processes. 2020; 8(7):795. https://doi.org/10.3390/pr8070795
Chicago/Turabian StyleCheng, Yixuan, Qiong Zhang, Pan Jiang, Kaidi Zhang, and Wei Wei. 2020. "Investigation of Plume Offset Characteristics in Bubble Columns by Euler–Euler Simulation" Processes 8, no. 7: 795. https://doi.org/10.3390/pr8070795
APA StyleCheng, Y., Zhang, Q., Jiang, P., Zhang, K., & Wei, W. (2020). Investigation of Plume Offset Characteristics in Bubble Columns by Euler–Euler Simulation. Processes, 8(7), 795. https://doi.org/10.3390/pr8070795