Significance of Pretreatment in Enhancing the Performance of Dry Anaerobic Digestion of Food Waste: An Insight on Full Scale Implementation Strategy with Theoretical Analogy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate and Composition
2.2. Inoculum
2.3. Pretreatment of Food Waste
2.4. Experimental Set up and Operational Procedure
2.5. Analytical Methods
2.6. Kinetic Model for Biogas Generation
- ➢
- where Y represents the cumulative biogas generation by anaerobic digestion time t (mL/day);
- ➢
- Y0 represents the highest biogas generation obtained in mL biogas;
- ➢
- Rm represents the maximum biogas generation rate in L biogas/day;
- ➢
- λ represents the lag phase period between the VFA generation happening and adaption of microbial consortia;
- ➢
- t represents the operation time period in days;
- ➢
- e is the Euler’s constant and the value of the e is 2.7183.
3. Results and Discussion
3.1. Effect of Pressurized Pretreatment on Physio Chemical Characteristics of the Food Waste
3.2. Impact of Pretreatment at Different Pressures on Biogas Generation
3.2.1. Cumulative Biogas and Methane Generation
3.2.2. Methane Yield and Volatile Solids Reduction
3.3. Impact of Time of Pretreatment at 2-kg/cm2 Pressure on Cumulative Biogas Generation and Methane Concentration
3.3.1. Cumulative Biogas and Methane Generation
3.3.2. Methane Yield and Volatile Solids Reduction
3.4. Effect of Pretreatment on pH and VFA Profile
3.5. Morphologic Characterization of Pretreated Food Waste at Different Time Intervals
3.6. Kinetic Potential
3.7. Comparative Analysis of Experimental and Theoretical Methane Yield
3.8. Enhanced Methane Yield in Dry AD Due to Pretreatment: Inferences
3.9. Pretreatment of Food Waste in Dry AD and Energy Balance: Boon or Bane?
3.10. Digestate Characteristics (N, P and K) after dry AD of Food Waste
3.11. Insights on Implications at Full Scale Based on Laboratory Investigations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuruti, K.; Begum, S.; Ahuja, S.; Anupoju, G.; Juntupally, S.; Gandu, B.; Ahuja, D. Exploitation of rapid acidification phenomena of food waste in reducing the hydraulic retention time (HRT) of high rate anaerobic digester without conceding on biogas yield. Bioresour. Technol. 2017, 226, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Omran, A.; Gavrilescu, M. Municipal solid waste managementin developing countries: A perspective on vietnam. Environ. Eng. Manag. J. 2008, 7, 469–478. [Google Scholar] [CrossRef]
- Zohoori, M.; Ghani, A. Municipal Solid Waste Management Challenges and Problems for Cities in Low-Income and Developing Countries. Int. J. Sci. Eng. Appl. 2017, 6, 039–048. [Google Scholar] [CrossRef]
- Begum, S.; Golluri, K.; Anupoju, G.; Ahuja, S.; Gandu, B.; Kuruti, K.; Maddala, R.; YerramsettiVenkata, S. Cooked and uncooked food waste: A viable feedstock for generation of value added products through biorefinery approach. Chem. Eng. Res. Des. 2015, 107, 43–51. [Google Scholar] [CrossRef]
- Ranjith, A.K. Sustainable Solid Waste Management in India. In Waste-to-Energy Research and Technology Council (WTERT); Columbia University: New York, NY, USA, 2012. [Google Scholar]
- Anukam, A.; Mohammadi, A.; Naqvi, M.; Granström, K. A Review of the Chemistry of Anaerobic Digestion: Methods of Accelerating and Optimizing Process Efficiency. Processes 2019, 7, 504. [Google Scholar] [CrossRef] [Green Version]
- Paritosh, K.; Kushwaha, S.; Yadav, M.; Pareek, N.; Chawade, A.; Vivekanand, V. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling. BioMed Res. Int. 2017, 2017, 1–19. [Google Scholar] [CrossRef]
- Jain, S. Global Food Waste Management: An Implementation Guide for Cities|Urban Food Actions Platform|Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/urban-food-actions/knowledge-products/resources-detail/en/c/1136010/ (accessed on 6 May 2020).
- Arelli, V.; Begum, S.; Anupoju, G.; Kuruti, K.; Shailaja, S. Dry anaerobic co-Digestion of food waste and cattle manure: Impact of total solids, substrate ratio and thermal pre treatment on methane yield and quality of biomanure. Bioresour. Technol. 2018, 253, 273–280. [Google Scholar] [CrossRef]
- Abbassi-Guendouz, A.; Brockmann, D.; Trably, E.; Dumas, C.; Delgenes, J.; Steyer, J.; Escudie, R. Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresour. Technol. 2012, 111, 55–61. [Google Scholar] [CrossRef]
- Madsen, M.; Holm-Nielsen, J.; Esbensen, K. Monitoring of anaerobic digestion processes: A review perspective. Renew. Sustain. Energy Rev. 2011, 15, 3141–3155. [Google Scholar] [CrossRef] [Green Version]
- Kothari, R.; Pandey, A.; Kumar, S.; Tyagi, V.; Tyagi, S. Different aspects of dry anaerobic digestion for bio-energy: An overview. Renew. Sustain. Energy Rev. 2014, 39, 174–195. [Google Scholar] [CrossRef]
- Holliger, C.; Fruteau de Laclos, H.; Hack, G. Methane Production of Full-Scale Anaerobic Digestion Plants Calculated from Substrate’s Biomethane Potentials Compares Well with the One Measured On-Site. Front. Energy Res. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Begum, S.; Ahuja, S.; Anupoju, G.; Ahuja, D.; Arelli, V.; Juntupally, S. Operational strategy of high rate anaerobic digester with mixed organic wastes: Effect of co-Digestion on biogas yield at full scale. Environ. Technol. 2018, 41, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Forster-Carneiro, T.; Perez, M.; Romero, L. Influence of total solid and inoculums contents on performance of anaerobic reactors treating food waste. Bioresour. Technol. 2008, 99, 6994–7002. [Google Scholar] [CrossRef] [PubMed]
- Luning, L.; van Zundert, E.; Brinkmann, A. Comparison of dry and wet digestion for solid waste. Water Sci. Technol. 2003, 48, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Capson-Tojo, G.; Rouez, M.; Crest, M.; Trably, E.; Steyer, J.-P.; Bernet, N.; Delgenes, J.-P.; Escudie, R. Kinetic study of dry anaerobic co-Digestion of food waste and cardboard for methane production. Waste Manag. 2017, 69, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Liu, R.; Cheng, Y.; Stanisavljevic, N.; Li, L.; Djatkov, D.; Peng, X.; Wang, X. Anaerobic co-Digestion of food waste and sewage sludge under mesophilic and thermophilic conditions: Focusing on synergistic effects on methane production. Bioresour. Technol. 2020, 301, 122765. [Google Scholar] [CrossRef]
- Jansson, A.; Patinvoh, R.; Sárvári Horváth, I.; Taherzadeh, M. Dry Anaerobic Digestion of Food and Paper Industry Wastes at Different Solid Contents. Fermentation 2019, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Dennehy, C.; Lawlor, P.; Hu, Z.; McCabe, M.; Cormican, P.; Zhan, X.; Gardiner, G.E. Exploring the roles of and interactions among microbes in dry co-Digestion of food waste and pig manure using high-throughput 16S rRNA gene amplicon sequencing. Biotechnol. Biofuels 2019, 12. [Google Scholar] [CrossRef] [Green Version]
- Rocamora, I.; Wagland, S.; Villa, R.; Simpson, E.; Fernández, O.; Bajón-Fernández, Y. Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance. Bioresour. Technol. 2020, 299, 122681. [Google Scholar] [CrossRef]
- Habarakada Liyanage, T.; Babel, S. Thermal, ultrasonic and electrochemical pretreatment methods to enhance the solubilization of organic substance and methane generation in food waste. J. Mater. Cycles Waste Manag. 2020. [Google Scholar] [CrossRef]
- Chen, L.; Qin, Y.; Chen, B.; Wu, C.; Zheng, S.; Chen, R.; Yang, S.; Yan, L.; Liu, Z. Enhancing degradation and biogas production during anaerobic digestion of food waste using alkali pretreatment. Environ. Res. 2020, 188, 109743. [Google Scholar] [CrossRef]
- Moon, H.; Song, I. Enzymatic Hydrolysis of FoodWaste and Methane Production Using UASB Bioreactor. Int. J. Green Energy 2011, 8, 361–371. [Google Scholar] [CrossRef]
- Izumi, K.; Okishio, Y.; Nagao, N.; Niwa, C.; Yamamoto, S.; Toda, T. Effects of particle size on anaerobic digestion of food waste. Int. Biodeterior. Biodegrad. 2010, 64, 601–608. [Google Scholar] [CrossRef]
- Cho, S.; Im, W.; Kim, D.; Kim, M.; Shin, H.; Oh, S. Dry anaerobic digestion of food waste under mesophilic conditions: Performance and methanogenic community analysis. Bioresour. Technol. 2013, 131, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Zielinski, M.; Dębowski, M.; Grala, A.; Dudek, M.; Kupczyk, K.; Rokicka, M. The effect of pressure and temperature pretreatment on the biogas output from algal biomass. Environ. Technol. 2014, 36, 693–698. [Google Scholar] [CrossRef] [PubMed]
- APHA-AWWA-WPCF. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Yeshanew, M.; Frunzo, L.; Lens, P.; Pirozzi, F.; Esposito, G. Mass Loss Controlled Thermal Pretreatment System to Assess the Effects of Pretreatment Temperature on Organic Matter Solubilization and Methane Yield from Food Waste. Front. Environ. Sci. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Arun, C.; Sivashanmugam, P. Solubilization of waste activated sludgeusing a garbage enzyme produced from different pre-consumer organic waste. RSC Adv. 2015, 5, 51421–51427. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, T.; Li, X.; Huang, J.; Peng, D.; Maurer, C.; Kranert, M. Experiments and Modeling for Flexible Biogas Production by Co-Digestion of Food Waste and Sewage Sludge. Energies 2020, 13, 818. [Google Scholar] [CrossRef] [Green Version]
- Oda, V.; Korkmaz, M.; Özkurt, E. Some sigmoidal models used in estimating the growth curve and biological parameters obtained:Von Bertalanffy pattern sample. Ordu Univ. J. Sci. Tech. 2016, 6. Available online: https://dergipark.org.tr/tr/donload/article-file/227497 (accessed on 28 May 2020).
- Pramanik, S.; Suja, F.; Porhemmat, M.; Pramanik, B. Performance and Kinetic Model of a Single-Stage Anaerobic Digestion System Operated at Different Successive Operating Stages for the Treatment of Food Waste. Processes 2019, 7, 600. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Li, Y.; Ge, X.; Yang, L.; Li, Y. Anaerobic digestion of food waste–Challenges and opportunities. Bioresour. Technol. 2018, 247, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Zhang, Y.; Xia, X.; Qi, H.; Li, M.; Pan, H.; Xi, B. Effect of inoculation with a microbial consortium that degrades organic acids on the composting efficiency of food waste. Microb. Biotechnol. 2018, 11, 1124–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dioha, I.J.; Ikeme, C.H.; Nafiu, T.; Soba, N.I.; Yusuf, M.B.S. Effect of carbon to nitrogen ratio on biogas production. Int. Res. J. Nat. Sci. 2013, 3, 1–10. [Google Scholar]
- Morales-Polo, C.; del Mar Cledera-Castro, M.; Moratilla Soria, B. Reviewing the Anaerobic Digestion of Food Waste: From Waste Generation and Anaerobic Process to Its Perspectives. Appl. Sci. 2018, 8, 1804. [Google Scholar] [CrossRef] [Green Version]
- Gnaoui, Y.; Karouach, F.; Bakraoui, M.; Barz, M.; Bari, H. Mesophilic anaerobic digestion of food waste: Effect of thermal pretreatment on improvement of anaerobic digestion process. Energy Rep. 2019, 6, 417–422. [Google Scholar] [CrossRef]
- Merkle, W.; Baer, K.; Haag, N.; Zielonka, S.; Ortloff, F.; Graf, F.; Lemmer, A. High-Pressure anaerobic digestion up to 100 kg/cm2: Influence of initial pressure on production kinetics and specific methane yields. Environ. Technol. 2016, 38, 337–344. [Google Scholar] [CrossRef]
- Deepanraj, B.; Sivasubramanian, V.; Jayaraj, S. Effect of substrate pretreatment on biogas production through anaerobic digestion of food waste. Int. J. Hydrog. Energy 2017, 42, 26522–26528. [Google Scholar] [CrossRef]
- Raju, C.; Sutaryo, S.; Ward, A.; Møller, H. Effects of high-Temperature isochoric pre-treatment on the methane yields of cattle, pig and chicken manure. Environ. Technol. 2013, 34, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Prabhudessai, V.; Salgaonkar, B.; Braganca, J.; Mutnuri, S. Pretreatment of Cottage Cheese to Enhance Biogas Production. BioMed Res. Int. 2014, 2014, 374562. [Google Scholar] [CrossRef] [Green Version]
- Ariunbaatar, J.; Panico, A.; Esposito, G.; Pirozzi, F.; Lens, P. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energy 2014, 123, 143–156. [Google Scholar] [CrossRef]
- Naran, E.; Toor, U.A.; Kim, D.J. Effect of pretreatment and anaerobic co-Digestion of food waste and waste activated sludge on stabilization and methane production. Biodegradation 2016, 113, 17–21. [Google Scholar] [CrossRef]
- Achinas, S.; Li, Y.; Achinas, V.; Euverink, G. Biogas Potential from the Anaerobic Digestion of Potato Peels: Process Performance and Kinetics Evaluation. Energies 2019, 12, 2311. [Google Scholar] [CrossRef] [Green Version]
- Kalle, G.; Nayak, K.; De Sa, C. An approach to improve methanogenesis through the use of mixed cultures isolated from biogas digester. J. Biosci. 1985, 9, 137–144. [Google Scholar] [CrossRef]
- Qian, M.; Zhang, Y.; Li, R.; Nelles, M.; Stinner, W.; Li, Y. Effects of Percolate Recirculation on Dry Anaerobic Co-Digestion of Organic Fraction of Municipal Solid Waste and Corn Straw. Energy Fuels 2017, 31, 12183–12191. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, M.; Zhang, J.; He, Q.; Yang, K.; Wang, H.; Li, W. The Response of Biogas Production and Methanogenic Community to the Variation of Intermediate Vfas Produced During the Anaerobic Digestionof Food Waste. J. Bioremediation Biodegrad. 2017, 8. [Google Scholar] [CrossRef]
- Juntupally, S.; Begum, S.; Allu, S.; Nakkasunchi, S.; Madugula, M.; Anupoju, G. Relative evaluation of micronutrients (MN) and its respective nanoparticles (NPs) as additives for the enhanced methane generation. Bioresour. Technol. 2017, 238, 290–295. [Google Scholar] [CrossRef]
- Gandhi, P.; Paritosh, K.; Pareek, N.; Mathur, S.; Lizasoain, J.; Gronauer, A.; Bauer, A.; Vivekanand, V. Multicriteria Decision Model and Thermal Pretreatment of Hotel Food Waste for Robust Output to Biogas: Case Study from City of Jaipur, India. BioMed Res. Int. 2018, 2018, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Buswell, A.; Mueller, H. Mechanism of Methane Fermentation. Ind. Eng. Chem. 1952, 44, 550–552. [Google Scholar] [CrossRef]
- Da Costa Gomez, C. Biogas as an Energy Option: An Overview. In The Biogas Handbook; Elsevier Science: Burlington, MA, USA, 2013; pp. 1–16. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S.; Zhao, B.; Tong, H.; Chen, C. Absorption of carbon dioxide in aqueous ammonia. Energy Procedia 2009, 1, 933–940. [Google Scholar] [CrossRef] [Green Version]
- Lemmer, A.; Merkle, W.; Baer, K.; Graf, F. Effects of high-Pressure anaerobic digestion up to 30 kg/cm2 on pH-value, production kinetics and specific methane yield. Energy 2017, 138, 659–667. [Google Scholar] [CrossRef]
- Ma, X.; Abe, Y.; Kaneko, A.; Fujimoto, S.; Murakami, C. Study on Dissolution Process of Liquid CO2 into Water under High Pressure Condition for CCS. Energy Procedia 2017, 114, 5430–5437. [Google Scholar] [CrossRef]
- Saady, N. Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: Unresolved challenge. Int. J. Hydrog. Energy 2013, 38, 13172–13191. [Google Scholar] [CrossRef]
- Ragsdale, S.; Pierce, E. Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2008, 1784, 1873–1898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enzmann, F.; Mayer, F.; Rother, M.; Holtmann, D. Methanogens: Biochemical Background and Biotechnological Applications. In AMB Express; Springer: New York, NY, USA, 2018; Volume 8. [Google Scholar]
- Rabii, A.; Aldin, S.; Dahman, Y.; Elbeshbishy, E. A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration. Energies 2019, 12, 1106. [Google Scholar] [CrossRef] [Green Version]
- Thorin, E.; Olsson, J.; Schwede, S.; Nehrenheim, E. Co-Digestion of sewage sludge and microalgae–Biogas production investigations. Appl. Energy 2018, 227, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Engineeringtoolbox.com. Steam Heating Process-Load Calculating. 2019. Available online: https://www.engineeringtoolbox.com/steam-heating-process-d_437.html (accessed on 15 October 2019).
- Fang, W.; Zhang, P.; Shang, R.; Ye, J.; Wu, Y.; Zhang, H.; Liu, J.; Gou, X.; Zeng, G.; Zhou, S. Effect of high pressure homogenization on anaerobic digestion of the sludge pretreated by combined alkaline and high pressure homogenization. Desalin. Water Treat. 2017, 62, 168–174. [Google Scholar] [CrossRef]
- Gao, T.; Li, X. Using thermophilic anaerobic digestate effluent to replace freshwater for bioethanol production. Bioresour. Technol. 2011, 102, 2126–2129. [Google Scholar] [CrossRef]
- Uggetti, E.; Sialve, B.; Latrille, E.; Steyer, J. Anaerobic digestate as substrate for microalgae culture: The role of ammonium concentration on the microalgae productivity. Bioresour. Technol. 2014, 152, 437–443. [Google Scholar] [CrossRef] [Green Version]
- Available online: http://fert.nic.in/what-fertilizer-control-order (accessed on 18 January 2020).
- Angelonidi, E.; Smith, S. A comparison of wet and dry anaerobic digestion processes for the treatment of municipal solid waste and food waste. Water Environ. J. 2015, 29, 549–557. [Google Scholar] [CrossRef]
S. No | Bio Reactor | Pretreatment Conditions (Temperature and Pressure) | Time Interval |
---|---|---|---|
1 | Batch reactor with mixed microbial consortia | NA | NA |
2 | Batch Reactor with untreated food waste | No pretreatment | NA |
Pretreatment (Phase I): Pretreatment at different pressures | |||
3 | Batch reactor | 0.5 kg/cm2 (81.3 °C) | 20 min |
4 | Batch reactor | 1 kg/cm2 (99.6 °C) | 20 min |
5 | Batch reactor | 1.5 kg/cm2 (111.3 °C) | 20 min |
6 | Batch reactor | 2 kg/cm2 (120 °C) | 20 min |
7 | Batch reactor | 2.5 kg/cm2 (127 °C) | 20 min |
Pretreatment (Phase II): Pretreatment at 2-kg/cm2 pressure and 120 °C for different time intervals | |||
8 | Batch reactor | 120 °C, 2 kg/cm2 | 20 min |
9 | Batch reactor | 120 °C, 2 kg/cm2 | 40 min |
10 | Batch reactor | 120 °C, 2 kg/cm2 | 60 min |
11 | Batch reactor | 120 °C, 2 kg/cm2 | 80 min |
12 | Batch reactor | 120 °C, 2 kg/cm2 | 100 min |
Parameter | Unit | Food Waste |
---|---|---|
pH | NA | 4.5 ± 0.01 |
TS | % | 25 ± 0.7 |
VS | % | 20 ± 0.7 |
MC | % | 75 ± 0.7 |
VS/TS | NA | 0.8 ± 0.01 |
COD | g/L | 102 ± 7.07 |
Soluble COD | g/L | 51 ± 7.07 |
BOD | g/L | 70 ± 3 |
BOD/COD | NA | 0.68 ± 0.00 |
VFA | g/L | 5.5 ± 2.12 |
Alkalinity | g/L | 6.3 ± 0.7 |
VFA/Alkalinity | NA | 0.8 ± 0.01 |
C | % | 45.5 ± 0.14 |
H | % | 7.1 ± 0.01 |
N | % | 1.9 ± 0.07 |
S | % | 0.085 ± 0.01 |
O | % | 37 ± 0.08 |
C/N | NA | 24.1 ± 1.02 |
Parameter | 0.5 kg/cm2 | 1 kg/cm2 | 1.5 kg/cm2 | 2 kg/cm2 | 2.5 kg/cm2 |
---|---|---|---|---|---|
pH | 4.02 ± 0.01 | 4.22 ± 0.01 | 4.07 ± 0.02 | 4.21 ± 0.01 | 4.25 ± 0.01 |
TS (%) | 25 ± 0.35 | 25.6 ± 0.07 | 25.6 ± 0.14 | 25.8 ± 0.21 | 26.2 ± 0.3 |
VS (%) | 20.5 ± 0.07 | 20.8 ± 0.07 | 20.9 ± 0.2 | 20.8 ± 0.07 | 21.5 ± 0.1 |
MC (%) | 75 ± 0.35 | 74.4 ± 0.07 | 74.4 ± 0.14 | 74.2 ± 0.21 | 73.8 ± 0.3 |
VS/TS | 0.82 ± 0.01 | 0.81 ± 0.01 | 0.81 ± 0.004 | 0.8 ± 0.01 | 0.82 ± 0.1 |
Soluble COD (g/L) | 52 ± 1.41 | 55 ± 3.53 | 58 ± 1.41 | 58.6 ± 3.53 | 60.1 ± 0.70 |
C/N | 24 ± 0.14 | 24 ± 0.14 | 23.9 ± 0.14 | 23.2 ± 0.15 | 23.2 ± 0.14 |
Parameter | 20 min | 40 min | 60 min | 80 min | 100 min |
---|---|---|---|---|---|
pH | 4.21 ± 0.01 | 4.25 ± 0.01 | 4.01 ± 0.02 | 3.95 ± 0.01 | 3.8 ± 0.02 |
TS (%) | 25.8 ± 0.21 | 26 ± 0.3 | 26.4 ± 0.14 | 26.5 ± 0.2 | 26.5 ± 0.21 |
VS (%) | 20.8 ± 0.07 | 21.1 ± 0.07 | 21.5 ± 0.07 | 21.8 ± 0.0 | 22.1 ± 0.07 |
MC (%) | 74.2 ± 0.21 | 74 ± 0.3 | 73.6 ± 0.14 | 73.5 ± 0.2 | 73.5 ± 0.21 |
VS/TS | 0.79 ± 0.01 | 0.81 ± 0.01 | 0.814 ± 0.002 | 0.82 ± 0.01 | 0.83 ± 0.01 |
Soluble COD (g/L) | 58.6 ± 3.5 | 62 ± 4.0 | 68 ± 2.5 | 72 ± 1.4 | 85 ± 1.4 |
C/N | 23.2 ± 0.14 | 23 ± 0.14 | 23.5 ± 0.14 | 22.9 ± 0.15 | 22.4 ± 0.14 |
(a) | ||||||
Untreated Food Waste | 0.5 kg/cm2 | 1 kg/cm2 | 1.5 kg/cm2 | 2 kg/cm2 | 2.5 kg/cm2 | |
Cumulative biogas generation (Y) from the experiment (mL) | 32,240 | 37,000 | 40,175 | 43,840 | 453,00 | 46,150 |
Cumulative biogas generation (P) from the Gompertz relation (mL) | 41,800 | 42,800 | 47,600 | 49,800 | 50,800 | 51,700 |
Maximum methane yield production rate(Rm), mL/day | 1061 | 1275 | 1383 | 1574 | 1706 | 1698 |
Lag phase period (λ), days | 6.5 | 5.3 | 5.4 | 5.8 | 5.7 | 5.5 |
R2 | 0.995 | 0.997 | 0.997 | 0.998 | 0.998 | 0.998 |
(b) | ||||||
20 min | 40 min | 60 min | 80 min | 100 min | ||
Cumulative biogas generation (Y) from the experiment (mL) | 45,300 | 47,200 | 53,500 | 57,502 | 60,800 | |
Cumulative biogas generation (P) from the Gompertz relation (mL) | 50,800 | 52,100 | 57,800 | 60,900 | 64,000 | |
Maximum methane yield production rate(Rm), mL/day | 1706 | 1692 | 2052 | 2240 | 2284 | |
Lag phase period (λ), days | 5.7 | 4.4 | 4.4 | 4.1 | 3.3 | |
R2 | 0.998 | 0.99 | 0.99 | 0.99 | 0.99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arelli, V.; Juntupally, S.; Begum, S.; Anupoju, G.R. Significance of Pretreatment in Enhancing the Performance of Dry Anaerobic Digestion of Food Waste: An Insight on Full Scale Implementation Strategy with Theoretical Analogy. Processes 2020, 8, 1018. https://doi.org/10.3390/pr8091018
Arelli V, Juntupally S, Begum S, Anupoju GR. Significance of Pretreatment in Enhancing the Performance of Dry Anaerobic Digestion of Food Waste: An Insight on Full Scale Implementation Strategy with Theoretical Analogy. Processes. 2020; 8(9):1018. https://doi.org/10.3390/pr8091018
Chicago/Turabian StyleArelli, Vijayalakshmi, Sudharshan Juntupally, Sameena Begum, and Gangagni Rao Anupoju. 2020. "Significance of Pretreatment in Enhancing the Performance of Dry Anaerobic Digestion of Food Waste: An Insight on Full Scale Implementation Strategy with Theoretical Analogy" Processes 8, no. 9: 1018. https://doi.org/10.3390/pr8091018
APA StyleArelli, V., Juntupally, S., Begum, S., & Anupoju, G. R. (2020). Significance of Pretreatment in Enhancing the Performance of Dry Anaerobic Digestion of Food Waste: An Insight on Full Scale Implementation Strategy with Theoretical Analogy. Processes, 8(9), 1018. https://doi.org/10.3390/pr8091018