Molecular Identification and VOMs Characterization of Saccharomyces cerevisiae Strains Isolated from Madeira Region Winery Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sampling
2.3. Microfermentation and S. cerevisiae Isolation
2.4. Molecular Identification
2.4.1. DNA Isolation
2.4.2. PCR-RFLP/5,8S-ITS of rDNA Analysis
2.4.3. RFLP—mtDNA Analysis
2.5. VOMs Characterisation
2.5.1. Inoculated Microfermentations
2.5.2. HS-SPME Conditions
2.5.3. GC-MS Conditions
3. Results
3.1. Spontaneous Microfermentation and Yeast Isolation
3.2. Molecular Identification
3.3. VOMs Characterization
Inoculated Microfermentations
4. Discussion
4.1. Intraspecific Variability
4.2. Screening of Volatile Profile
4.2.1. Higher Alcohols
4.2.2. Esters
4.2.3. Fatty Acids
4.2.4. Carbonyl Compounds
4.2.5. Terpenes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Conselho da União Europeia. Jornal Oficial da União Europeia. 2009. Available online: https://sites.google.com/site/leximigratoria/legisp%C3%A9dia-sef/links/anteriores-diplomas-1/direito-comunitario.
- Magalhães, N. Tratado de Vitiultura, A Videira—A Vinha e O “Terroir”, 1st ed.; Chaves Ferreira Publicações: Lisboa, Portugal, 2008; p. 605. [Google Scholar]
- Perestrelo, R.; Silva, C.; Gonçalves, C.; Castillo, M.; Câmara, J.S. An Approach of the Madeira Wine Chemistry. Beverages 2020, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Lambrechts, M.G.; Pretorius, I.S. Yeast and its Importance to Wine Aroma—A Review. S. Afr. J. Enol. Vitic. 2000, 21, 97–129. [Google Scholar] [CrossRef] [Green Version]
- Mauriello, G.; Capece, A.; D’Auria, M.; Garde-Cerdán, T.; Romano, P. SPME-GC method as a tool to differentiate VOC profiles in Saccharomyces cerevisiae wine yeasts. Food Microbiol. 2009, 26, 246–252. [Google Scholar] [CrossRef]
- Tofalo, R.; Perpetuini, G.; Schirone, M.; Fasoli, G.; Aguzzi, I.; Corsetti, A.; Suzzi, G. Biogeographical characterization of Saccharomyces cerevisiae wine yeast by molecular methods. Front. Microbiol. 2013, 4, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. Handbook of Enology—The Microbiology of Wine and Vinifications, 2nd ed.; John Wiley and Sons, Ltd.: West Sussex, UK, 2006; Volume 1, pp. 1–53. [Google Scholar]
- Aranda, A.; Matallana, E.; Del Olmo, M. Saccharomyces Yeasts I: Primary Fermentation. In Molecular Wine Microbiology, 1st ed.; Carrascosa, A., Muñoz, R., González, R., Eds.; Elsevier Inc.: London, UK, 2011; pp. 1–26. [Google Scholar]
- Schuller, D.; Alves, H.; Dequin, S.; Casal, M. Ecological survey of Saccharomyces cerevisiae strains from vineyards in the Vinho Verde Region of Portugal. FEMS Microbiol. Ecol. 2005, 51, 167–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Löoke, M.; Kristjuahan, K.; Kristjuhan, A. Extraction of Genomic DNA From Yeasts for PCR-Based Applications. Biotechniques 2011, 50, 325–328. [Google Scholar] [CrossRef]
- Querol, A.; Barrio, E.; Huerta, T.; Ramón, D. Molecular Monitoring of Wine Fermentations Conducted by Active Dry Yeast Strains. Appl. Environ. Microbiol. 1992, 58, 2948–2953. [Google Scholar] [CrossRef] [Green Version]
- White, T.J.; Bruns, S.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols, A Guide to Methods and Applications; Elsevier: Amsterdam, The Netherlands, 1990; pp. 315–322. [Google Scholar]
- Esteve-Zarzoso, B.; Belloch, C.; Uruburu, F.; Querol, A. Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int. J. Syst. Bacteriol. 1999, 4, 329–337. [Google Scholar] [CrossRef] [Green Version]
- Schuller, D.; Valero, E.; Dequin, S.; Casal, M. Survey of molecular methods for the typing of wine yeast strains. FEMS Microbiol. Lett. 2004, 231, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Perestrelo, R.; Barros, A.S.; Rocha, S.M.; Câmara, J.S. Optimization of solid-phase microextraction combined with gas chromatography-mass spectrometry based methodology to establish the global volatile signature in pulp and skin of Vitis vinifera L. grape varieties. Talanta 2011, 85, 1483–1493. [Google Scholar] [CrossRef]
- The Good Scents Company. Available online: http://www.thegoodscentscompany.com/ (accessed on 7 July 2019).
- Flavornet. Flavornet and Human Odor Space. Available online: http://www.flavornet.org/ (accessed on 7 July 2019).
- Pherobase. The Pherobase: Floral Compounds Sorted by CAS Number. Available online: http://www.pherobase.com/database/floral-compounds/floral-taxa-compounds-casenum.php (accessed on 7 July 2019).
- Tristezza, M.; Fantastico, L.; Vetrano, C.; Bleve, G.; Corallo, D.; Mita, G.; Grieco, F. Molecular and technological characterization of Saccharomyces cerevisiae strains isolated from natural fermentation of Susumaniello grape must in Apulia, Southern Italy. Int. J. Microbiol. 2014, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Querol, A.; Huerta, T.; Barrio, E.; Ramón, D. Dry Yeast Strain for use in Fermentation of Alicante Wines: Selection and DNA Patterns. J. Food Sci. 1992, 57, 183–185. [Google Scholar] [CrossRef]
- Formento, J.C.; Ercoli, E.; Diaz-Peralta, E.; Sfreddo, E.; Nazrala, J.; Galiotti, H.; Sánchez, L.; Luquez, C.; Biere, C.; Gomez, F.; et al. Aislamiento, Selección y Multiplicación Comercial de Levaduras Vínicas Autóctonas, de las Regiones Vitivinícolas de la Provincia de Mendoza. Rev. Enol. 2007, 2, 1–7. [Google Scholar]
- Cappello, M.S.; Bleve, G.; Grieco, F.; Dellaglio, F.; Zacheo, G. Characterization of Saccharomyces cerevisiae strains isolated from must of grape grown in experimental vineyard. J. Appl. Microbiol. 2004, 97, 1274–1280. [Google Scholar] [CrossRef] [PubMed]
- Zanol, G.C.; Baleiras-Couto, M.M.; Duarte, F.L. Restriction profiles of 26S rDNA as a molecular approach for wine yeasts identification. Ciencia Tec. Vitiv. 2010, 25, 75–85. [Google Scholar]
- Granchi, L.; Bosco, M.; Messini, A.; Vincenzini, M. Rapid detection and quantification of yeast species during spontaneous wine fermentation by PCR-RFLP analysis of the rDNA ITS region. J. Appl. Microbiol. 1999, 87, 949–956. [Google Scholar] [CrossRef]
- Guillamón, J.M.; Sabat, J.; Barrio, E.; Cano, J.; Querol, A. Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Arch. Microbiol. 1998, 169, 387–392. [Google Scholar] [CrossRef]
- Fernádez-Espinar, M.T.; Esteve-Zarzoso, B.; Querol, A.; Barrio, E. RFLP analysis of the ribosomal internal transcribed spacers and the 5.8S rRNA gene region of the genus Saccharomyces: A fast method for species identification and the differentiation of flor yeasts. Antonie Van Leeuwenhoek 2000, 78, 87–97. [Google Scholar] [CrossRef]
- Versavaud, A.; Courcoux, P.; Roulland, C.; Dulau, L.; Hallet, J.N. Genetic diversity and geographical distribution of wild Saccharomyces cerevisiae strains from the wine-producing area of Charentes, France. Appl. Environ. Microbiol. 1995, 61, 3521–3529. [Google Scholar] [CrossRef] [Green Version]
- Blanco, P.; Ramilo, A.; Cerdeira, M.; Orriols, I. Genetic diversity of wine Saccharomyces cerevisiae strains in an experimental winery from Galicia (NW Spain). Antonie Van Leeuwenhoek 2006, 89, 351–357. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, Z. Volatile compounds of young wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay varieties grown in the loess plateau region of China. Molecules 2010, 15, 9184–9196. [Google Scholar] [CrossRef] [Green Version]
- Hazelwood, L.A.; Darán, J.M.; Van Maris, A.J.A.; Pronk, J.T.; Dickinson, J.R. The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 2008, 74, 2259–2266. [Google Scholar] [CrossRef] [Green Version]
- Perestrelo, R.; Fernandes, A.; Albuquerque, F.F.; Marques, J.C.; Câmara, J.S. Analytical characterization of the aroma of Tinta Negra Mole red wine: Identification of the main odorants compounds. Anal. Chim. Acta 2006, 563, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.C.; Reis, M.S.; Saraiva, P.M.; Marques, J.C. Analysis and assessment of Madeira wine ageing over an extended time period through GC–MS and chemometric analysis. Anal. Chim. Acta 2010, 660, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.; Cacho, J.; Marques, J.C. Volatile profile of Madeira wines submitted to traditional accelerated ageing. Food Chem. 2014, 162, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Garde-Cerdán, T.; Ancín-Azpilicueta, C. Contribution of wild yeasts to the formation of volatile compounds in inoculated wine fermentations. Eur. Food Res. Technol. 2006, 222, 15–25. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology, the Chemistry of Wine: Stabilization and Treatments, 2nd ed.; John Wiley and Sons, Ltd.: West Sussex, UK, 2006; Volume 2, pp. 205–230. [Google Scholar]
- Carrau, F.M.; Medina, K.; Boido, E.; Farina, L.; Gaggero, C.; Dellacassa, E.; Versini, G.; Henschke, P.A. De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiol. Lett. 2005, 243, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Zoecklein, B.W.; Marcy, J.E.; Williams, J.M.; Jasinski, Y. Effect of native yeasts and selected strains of Saccharomyces cerevisiae on glycosyl glucose, potential volatile terpenes, and selected aglycones of white riesling (Vitis vinifera L.) wines. J. Food Compos. Anal. 1997, 10, 55–65. [Google Scholar] [CrossRef]
- Hock, R.; Benda, I.; Schreier, P. Formation of terpenes by yeasts during alcoholic fermentation. Z. Lebensm. Unters. Forsch. 1984, 179, 450–462. [Google Scholar] [CrossRef]
N° | Grape | Zone (*) | Id. | CFU/mL |
---|---|---|---|---|
1 | Sercial | Seixal | S1 | 4.20 × 106 |
2 | Tinta Negra | São Vicente | TN | 1.20 × 107 |
3 | Verdelho | São Vicente | V1 | 5.30 × 105 |
4 | Malvasia SJ | São Jorge | MSJ | 1.55 × 107 |
5 | Bastardo | São Jorge | Bt | 1.26 × 109 |
6 | Verdelho | Prazeres | V2 | 9.70 × 108 |
7 | Terrantez | Calheta | Tz | 1.37 × 108 |
8 | Boal | Campanário | Bo | 4.70 × 102 |
9 | Malvasia Cândida | Fajã dos Padres | MC | 7.70 × 105 |
10 | Sercial | Jardim da Serra | S2 | 4.70 × 106 |
Total Volatile Fraction (%) | ||||||
---|---|---|---|---|---|---|
Strain/Substrate | Esters | High Alcohols | Carbonyl Compounds | Fatty Acids | Terpenes | Miscellaneous |
MC | 4.10 (8) | 1.11 (2) | 89.07 (11) | 0.78 (1) | 3.02 (6) | 1.92 (4) |
A | 15.85 (15) | 63.18 (10) | 4.80 (12) | 9.24 (5) | 0.77 (6) | 6.10 (4) |
B | 23.13 (16) | 54.22 (12) | 3.84 (12) | 15.03 (7) | 1.24 (6) | 2.87 (7) |
C | 23.77 (17) | 54.92 (11) | 2.49 (13) | 10.48 (6) | 0.95 (7) | 7.38 (6) |
N° | RT (min) | KI | Total Volatile Fraction (%) | Aromatic Descriptors | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compound Families/VOMs | Id | MC | A | B | C | |||||||||
ESTERS | PRF | PRT | PRF | PRT | PRF | PRT | PRF | PRT | ||||||
1 | 6.793 | 1113 | Ethyl acetate | MS | 25.589 | 0.983 | 8.591 | 1.362 | 6.881 | 1.592 | 5.716 | 1.359 | Fruity, buttery [16] | |
2 | 10.913 | 1216 | Ethyl butanoate | MS | 10.295 | 0.395 | 1.008 | 0.160 | 0.563 | 0.130 | 0.677 | 0.161 | Apple [17] | |
3 | 14.627 | 1290 | Isoamly acetate | MS | 2.958 | 0.114 | 9.035 | 1.432 | 3.458 | 0.800 | 4.663 | 1.108 | Fresh, banana, pear [16] | |
4 | 20.831 | 1396 | Ethyl hexanoate | MS | 9.468 | 0.364 | 14.743 | 2.337 | 7.640 | 1.768 | 10.070 | 2.393 | Fruity, strawberry, anise [16] | |
5 | 23.413 | 1442 | Ethyl 5-hexanoate | MS | - | - | 0.610 | 0.097 | 0.286 | 0.066 | 0.163 | 0.039 | - | |
6 | 26.982 | 1500 | Ethyl heptanoate | MS | - | - | 0.259 | 0.041 | 0.228 | 0.053 | 0.101 | 0.024 | Fruity [17] | |
7 | 33.725 | 1612 | Ethyl octanoate | MS | 24.993 | 0.960 | 33.605 | 5.328 | 43.386 | 10.037 | 45.557 | 10.828 | Floral, menthol, anise [16] | |
8 | 36.369 | 1659 | Ethyl 7-Octanoate | MS | - | - | 1.282 | 0.203 | 0.885 | 0.205 | 0.566 | 0.135 | - | |
9 | 38.914 | 1702 | Ethyl nonoate | MS | - | - | - | - | 0.261 | 0.060 | 0.261 | 0.062 | - | |
10 | 39.661 | 1717 | Ethyl-3-(methylsulfanyl)propanoate | MS | - | - | - | - | 0.112 | 0.026 | - | - | Onion, sulfurous, pineapple [18] | |
11 | 44.266 | 1800 | Ethyl decanoate | MS | 10.757 | 0.413 | 6.030 | 0.956 | 15.957 | 3.691 | 13.388 | 3.182 | Fruit, grape [16] | |
12 | 45.212 | 1819 | 3-Methylbutyl octanoate | MS | - | - | - | - | - | - | 0.077 | 0.018 | Sweet fruit [18] | |
13 | 45.421 | 1823 | Diethyl Butanedioate | MS | 14.708 | 0.565 | 3.719 | 0.590 | 3.284 | 0.760 | 3.478 | 0.827 | Wine, fruit [18] | |
14 | 46.057 | 1835 | Ethyl hexadecanoate | MS | - | - | - | - | - | - | 0.193 | 0.046 | - | |
15 | 46.300 | 1840 | Ethyl decanoate | MS | - | - | 3.942 | 0.625 | 6.223 | 1.440 | 2.212 | 0.526 | Fruit, fat | |
16 | 49.130 | 1892 | Ethyl benzenoacetoate | MS | - | - | 0.415 | 0.066 | 0.312 | 0.072 | 0.311 | 0.074 | Sweet, cinnamon, waxy [16] | |
17 | 49.947 | 1908 | 2-Phenylethyl acetate | MS | - | - | 14.633 | 2.320 | 8.957 | 2.072 | 9.217 | 2.191 | Rose, honey, tobacco | |
18 | 50.945 | 1927 | Ethyl dodecanoate | MS | 1.234 | 0.047 | 2.129 | 0.338 | 1.567 | 0.362 | 3.349 | 0.796 | Leaf, mango [16] | |
ALCOHOLS | ||||||||||||||
19 | 10.809 | 1214 | 1-Propanol | MS | - | - | 0.692 | 0.426 | 0.541 | 0.280 | 0.729 | 0.416 | Fruit, plastic, penetrating [16] | |
20 | 13.204 | 1264 | 2-Methyl-1-propanol | MS | - | - | 8.398 | 5.176 | 8.147 | 4.222 | 4.772 | 2.724 | Leek, glue, liquor [16] | |
21 | 15.257 | 1301 | 1-Butanol | MS | - | - | - | - | 0.107 | 0.056 | 0.087 | 0.050 | Medicines, fruit [17] | |
22 | 19.131 | 1370 | 3-Methyl-1-butanol | MS | - | - | 71.005 | 43.761 | 65.329 | 33.854 | 65.293 | 37.280 | Balsamic, astringent [16] | |
23 | 29.132 | 1537 | 3-Ethoxy-1-propanol | MS | - | - | 0.061 | 0.038 | 0.042 | 0.022 | 0.293 | 0.168 | Fruit [18] | |
24 | 36.525 | 1662 | 2-Ethylhexanol | MS | 74.718 | 0.792 | 0.096 | 0.059 | 0.087 | 0.045 | - | - | Soft, oily, floral [16] | |
25 | 42.597 | 1771 | 2-(2-Ethoxyethanol) | MS | - | - | 0.104 | 0.064 | 0.062 | 0.032 | 0.082 | 0.047 | slightly ethereal [18] | |
26 | 44.909 | 1813 | 1-Nonanol | MS | - | - | - | - | 0.072 | 0.038 | 0.054 | 0.031 | Fresh, clean [18] | |
27 | 46.874 | 1851 | Methionol | MS | - | - | 0.214 | 0.132 | 0.444 | 0.230 | 0.378 | 0.216 | Sweet, potato [16] | |
28 | 47.211 | 1857 | 2-Undecanol | MS | - | - | 0.023 | 0.014 | 0.042 | 0.022 | 0.127 | 0.072 | Fresh, fat [18] | |
29 | 52.219 | 1952 | 2-Phenylethanol | MS | 25.282 | 0.268 | 19.406 | 11.960 | 25.128 | 13.022 | 28.185 | 16.093 | Honey, floral, roses [17] | |
CARBONYL COMPOUNDS | ||||||||||||||
30 | 4.900 | 1071 | Acetaldehyde | MS | 0.358 | 0.285 | 12.413 | 0.524 | 8.499 | 0.287 | 27.120 | 0.581 | Fresh, fruity [16] | |
31 | 5.766 | 1089 | Butanal | MS | - | - | 0.517 | 0.022 | 0.547 | 0.018 | 0.532 | 0.011 | Chocolate [18] | |
32 | 7.409 | 1131 | 3-Methylbutanal | MS | 0.631 | 0.502 | - | - | - | - | 0.847 | 0.018 | Caramel, cream, pineapple [16] | |
33 | 15.013 | 1296 | 4-Methyl-3-penten-2-one | MS | 0.559 | 0.444 | - | - | - | - | - | - | Flowers [17] | |
34 | 17.676 | 1346 | 2-Heptanone | MS | 0.212 | 0.168 | - | - | - | - | - | - | - | |
35 | 19.107 | 1369 | 4-Methyl-2-heptanone | MS | 0.256 | 0.204 | - | - | - | - | - | - | Almond, toasted sugar [16] | |
36 | 21.278 | 1403 | 4,6-Dimethyl-2-heptanone | MS | 0.798 | 0.635 | - | - | - | - | - | - | - | |
37 | 22.007 | 1417 | 3-Octanone | MS | 94.423 | 75.091 | 74.797 | 3.158 | 80.984 | 2.732 | 54.653 | 1.171 | Mushrooms, hebaceous [17] | |
38 | 23.546 | 1444 | 3-Hydroxy-2-butanone | MS | - | - | 1.261 | 0.053 | 1.410 | 0.048 | 6.140 | 0.132 | Fat, milk [18] | |
39 | 24.029 | 1452 | Octanal | MS | 0.185 | 0.147 | - | - | - | - | - | - | - | |
40 | 30.304 | 1557 | 2-Nonanone | MS | - | - | 0.610 | 0.026 | 0.686 | 0.023 | 2.952 | 0.063 | Fruit, fresh [18] | |
41 | 36.990 | 1670 | Decanal | MS | 0.850 | 0.676 | 1.656 | 0.070 | 1.455 | 0.049 | 2.417 | 0.052 | Apple, rose, honey [16] | |
42 | 37.719 | 1682 | Benzaldehyde | MS | 1.555 | 1.236 | 4.330 | 0.183 | 4.831 | 0.163 | 1.152 | 0.025 | - | |
43 | 41.930 | 1759 | 2-Undecanona | MS | - | - | - | - | - | - | 4.188 | 0.090 | Fruit, fat [18] | |
44 | 49.827 | 1905 | 3,5-Dimethylbenzaldehyde | MS | - | - | 2.312 | 0.098 | 1.587 | 0.054 | - | - | - | |
45 | 50.858 | 1926 | 2,4,6-Trimethyl acetophenone | MS | 0.173 | 0.138 | 2.106 | 0.089 | - | - | - | - | - | |
ACIDS | ||||||||||||||
46 | 34.506 | 1626 | Acetic acid | MS | - | - | 63.237 | 5.846 | 53.430 | 8.030 | 54.558 | 5.718 | Sour [17] | |
47 | 40.355 | 1730 | 2-Methyl propanoic acid | MS | - | - | 5.992 | 0.554 | 4.228 | 0.635 | 2.730 | 0.286 | Sour cheese [18] | |
48 | 43.524 | 1788 | Butanoic acid | MS | - | - | - | - | 0.342 | 0.051 | 0.618 | 0.065 | Acetic, cheese [18] | |
49 | 50.847 | 1925 | Hexanoic acid | MS | 100.000 | 0.654 | 2.340 | 0.216 | 12.798 | 1.923 | 5.384 | 0.564 | Sweet [17] | |
50 | 55.032 | 2104 | Octanoic acid | MS | - | - | 18.874 | 1.745 | 13.519 | 2.032 | 19.896 | 2.085 | Sweet, cheese [17] | |
51 | 58.788 | 2182 | Decanoic acid | MS | - | - | 9.555 | 0.883 | 13.033 | 1.959 | 16.813 | 1.762 | Rancidity, fat [17] | |
52 | 67.582 | 2362 | Hexadecanoic acid | MS | - | - | - | - | 2.650 | 0.398 | - | - | Oily [17] | |
TERPENES | ||||||||||||||
53 | 14.213 | 1283 | Geranyl oxide | MS | 5.657 | 0.164 | - | - | - | - | - | - | - | - |
54 | 18.931 | 1366 | D-Limonene | MS | 0.642 | 0.019 | - | - | - | - | - | - | Citrus, lemon [17] | |
55 | 39.068 | 1705 | Linalool | MS | 2.456 | 0.071 | 10.124 | 0.078 | 8.629 | 0.107 | 3.534 | 0.034 | Citrus, floral | |
56 | 40.259 | 1728 | 4-Ethylresorcinol | MS | 49.511 | 1.435 | - | - | - | - | 5.176 | 0.049 | - | |
57 | 48.052 | 1873 | Dehydro-air-ionene | MS | 26.521 | 0.769 | - | - | - | - | - | - | Liqueur [18] | |
58 | 48.391 | 1879 | Nerol | MS | - | - | 4.481 | 0.035 | 6.769 | 0.084 | 3.669 | 0.035 | Floral, sweet [18] | |
59 | 48.606 | 1883 | R-Citronelol | MS | - | - | 16.249 | 0.125 | 8.396 | 0.104 | 45.597 | 0.434 | - | |
60 | 50.717 | 1923 | Cis-Geraniol | MS | - | - | 15.477 | 0.119 | 16.274 | 0.201 | 4.880 | 0.046 | Floral, sweet [18] | |
61 | 51.015 | 1929 | Geranyl acetone | MS | 15.213 | 0.441 | - | - | - | - | - | - | - | |
62 | 54.716 | 1998 | E-Nerolidol | MS | - | - | 20.593 | 0.159 | 13.315 | 0.165 | 14.828 | 0.141 | Citrus, wood [18] | |
63 | 60.577 | 2220 | Farnesol | MS | - | - | 33.076 | 0.255 | 46.617 | 0.577 | 22.315 | 0.213 | Fresh, sweet [17] | |
MISCELLANEOUS | - | |||||||||||||
64 | 4.623 | 1065 | Etoxyethane (isomer I) | MS | - | - | 0.703 | 0.056 | - | - | 0.630 | 0.052 | - | |
65 | 4.828 | 1069 | Etoxyethene (isomer II) | MS | - | - | 1.634 | 0.129 | 1.343 | 0.069 | 2.394 | 0.198 | - | |
66 | 5.100 | 1075 | Cyclohexane | MS | 82.049 | 9.861 | 5.055 | 0.400 | 6.183 | 0.316 | 1.715 | 0.142 | Fruit, crema [17] | |
67 | 5.897 | 1091 | Ethyl hydrogenoxalate | MS | - | - | 0.920 | 0.073 | 0.283 | 0.014 | - | - | - | |
68 | 6.914 | 1117 | 1.1, Diethoxy-ethane | MS | 14.321 | 1.721 | 64.828 | 5.125 | 41.600 | 2.128 | 76.575 | 6.331 | Ether, nuts | |
69 | 11.057 | 1220 | Toluene | MS | - | - | - | - | 1.390 | 0.071 | 0.654 | 0.054 | Ink [17] | |
70 | 14.045 | 1280 | 1-(1-Ethoxyethoxy)-pentane | MS | - | - | 6.979 | 0.552 | 3.458 | 0.177 | 10.157 | 0.840 | - | |
71 | 33.334 | 1604 | 1,3-Bis (1,1-dimethylethyl)-benzene | MS | - | - | - | - | 1.194 | 0.061 | 0.436 | 0.036 | - | |
72 | 43.005 | 1778 | Butyrolactone-dihydro-2 (3H)-furanone | MS | - | - | - | - | 0.394 | 0.020 | 0.368 | 0.030 | - | |
73 | 43.613 | 1789 | Hexadecane | MS | - | - | - | - | 0.743 | 0.038 | - | - | - | |
74 | 45.113 | 1817 | 2,6-Dimethyl, 2,6-octadiene | MS | - | - | - | - | - | - | 1.000 | 0.083 | - | |
75 | 48.548 | 1882 | Cyclodecane | MS | 1.908 | 0.229 | - | - | 0.664 | 0.034 | - | - | Sweet, fresh [16] | |
76 | 56.808 | 2142 | 2,6-Diisopropylnaphthalene | MS | 1.722 | 0.207 | - | - | - | - | - | - | - | |
77 | 59.492 | 2197 | 2,4-bis(dimethylethylphenol) | MS | - | - | 19.881 | 1.572 | 42.748 | 2.187 | 6.071 | 0.502 | Phenolic [18] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo, M.; Silva, E.d.; Câmara, J.S.; Khadem, M. Molecular Identification and VOMs Characterization of Saccharomyces cerevisiae Strains Isolated from Madeira Region Winery Environments. Processes 2020, 8, 1058. https://doi.org/10.3390/pr8091058
Castillo M, Silva Ed, Câmara JS, Khadem M. Molecular Identification and VOMs Characterization of Saccharomyces cerevisiae Strains Isolated from Madeira Region Winery Environments. Processes. 2020; 8(9):1058. https://doi.org/10.3390/pr8091058
Chicago/Turabian StyleCastillo, Mariangie, Emanuel da Silva, José S. Câmara, and Mahnaz Khadem. 2020. "Molecular Identification and VOMs Characterization of Saccharomyces cerevisiae Strains Isolated from Madeira Region Winery Environments" Processes 8, no. 9: 1058. https://doi.org/10.3390/pr8091058
APA StyleCastillo, M., Silva, E. d., Câmara, J. S., & Khadem, M. (2020). Molecular Identification and VOMs Characterization of Saccharomyces cerevisiae Strains Isolated from Madeira Region Winery Environments. Processes, 8(9), 1058. https://doi.org/10.3390/pr8091058