Highly-Efficient Caffeine Recovery from Green Coffee Beans under Ultrasound-Assisted SC–CO2 Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coffee Sample and Chemicals
2.2. Supercritical CO2 Extraction (SFE–CO2) and Ultrasound-Assisted Supercritical CO2 Extraction (US–SFE–CO2)
2.3. Conventional Caffeine Extraction
2.4. Qualitative and Quantitative Analyses
3. Results and Discussion
3.1. SFE–CO2, LE–CO2 and US–SFE–CO2 of Green Coffee Beans
3.2. US–SFE–CO2 Efficiency
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vuong, Q.V.; Roach, P.D. Caffeine in green tea: Its removal and isolation. Sep. Purif. Rev. 2014, 43, 155–174. [Google Scholar] [CrossRef]
- Global $350M Caffeine Market Outlook and Forecast 2020–2027. Available online: https://www.globenewswire.com/news-release/2020/03/02/1993360/0/en/Global-350M-Caffeine-Market-Outlook-and-Forecast-2020-2027.html (accessed on 1 August 2020).
- Shinde, R.R.; Shinde, N.H. Extraction of caffeine from coffee and preparation of anacin drug. Int. J. Eng. Res. Technol. 2017, 10, 236–239. [Google Scholar]
- Andreeva, E.Y.; Dmitrienko, S.G.; Zolotov, Y.A. Methylxanthines: Properties and determination in various objects. Russ. Chem. Rev. 2012, 81, 397–414. [Google Scholar] [CrossRef]
- Belay, A.; Ture, K.; Redi, M.; Asfaw, A. Measurement of caffeine in coffee beans with UV/vis spectrometer. Food Chem. 2008, 108, 310–315. [Google Scholar] [CrossRef]
- Kumar, V.; Ravishankar, G.A. Current trends in producing low levels of caffeine in coffee berry and processed coffee powder. Food Rev. Int. 2009, 25, 175–197. [Google Scholar] [CrossRef]
- Hasan, N.; Farouk, B. Mass transfer enhancement in supercritical fluid extraction by acoustic waves. J. Supercrit. Fluids 2013, 80, 60–70. [Google Scholar] [CrossRef]
- Machmudah, S.; Kitada, K.; Sasaki, M.; Goto, M.; Munemasa, J.; Yamagata, M. Simultaneous Extraction and Separation Process for Coffee Beans with Supercritical CO2 and Water. Ind. Eng. Chem. Res. 2011, 50, 2227–2235. [Google Scholar] [CrossRef]
- Reddy, V.; Saharay, M. Solubility of Caffeine in Supercritical CO2: A Molecular Dynamics Simulation Study. J. Phys. Chem. B 2019, 123, 9685–9691. [Google Scholar] [CrossRef]
- Marco, I.D.; Riemma, S.; Iannone, R. Life cycle assessment of supercritical CO2 extraction of caffeine from coffee beans. J. Supercrit. Fluid 2018, 133, 393–400. [Google Scholar] [CrossRef]
- Araújo, M.N.; Paladonai, A.Q.; Azevedo, L.; Hamerski, F.; Pedersen Voll, F.A.; Corazza, M.L. Enhanced extraction of spent coffee grounds oil using high-pressure CO2 plus ethanol solvents. Ind. Crop. Prod. 2019, 141, 111723. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Zhang, Z.; Sun, D.-W.; Sivagnanam, S.P.; Tiwari, B.K. Combination of emerging technologies for the extraction of bioactive compounds. Crit. Rev. Food Sci. Nutr. 2020, 60, 1826–1841. [Google Scholar] [CrossRef] [PubMed]
- Farouk, B.; Hasan, N. Acoustic wave generation in near-critical supercritical fluids: Effects on mass transfer and extraction. J. Supercrit. Fluids 2015, 96, 200–210. [Google Scholar] [CrossRef]
- Shirsath, S.R.; Sonawane, S.H.; Gogate, P.R. Intensification of extraction of natural products using ultrasonic irradiations—A review of current status. Chem. Eng. Process. Proc. Intens. 2012, 53, 10–23. [Google Scholar] [CrossRef]
- Heilmann, W. Decaffeination of Coffee. In Coffee: Recent Developments; Clarke, R.J., Vitzthum, O.G., Eds.; Blackwell Science Ltd.: London, UK, 2001; pp. 108–124. [Google Scholar]
- Dassoff, E.S.; Li, Y.O. Mechanisms and effects of ultrasound-assisted supercritical CO2 extraction. Trends Food Sci. Technol. 2019, 86, 492–501. [Google Scholar] [CrossRef]
- Riera, E.; Blanco, A.; García, J.; Benedito, J.; Mulet, A.; Gallego-Juárez, J.A. High-power ultrasonic system for the enhancement of mass transfer in super-critical CO2 extraction processes. Phys. Proced. 2010, 3, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Saldana, M.D.A.; Mohamed, R.S.; Baer, M.G.; Mazzafera, P. Extraction of purine alkaloids from mate (Ilex paraguariensis) using supercritical CO2. J. Agric. Food Chem. 1999, 47, 3804–3808. [Google Scholar] [CrossRef]
- Rodríguez, Ó.; Ortuño, C.; Simal, S.; Benedito, J.; Femenia, A.; Rosselló, C. Acoustically assisted supercritical CO2 extraction of cocoa butter: Effects on kinetics and quality. J. Supercrit. Fluids 2014, 94, 30–37. [Google Scholar]
- Tang, W.Q.; Li, D.C.; Lv, Y.X.; Jiang, J.G. Extraction and removal of caffeine from green tea by ultrasonic-enhanced supercritical fluid. J. Food Sci. 2010, 75, C363–C368. [Google Scholar] [CrossRef]
- Hu, A.; Zhao, S.; Liang, H.; Qiu, T.; Chen, G. Ultrasound assisted supercritical fluid extraction of oil and coixenolide from adlay seed. Ultrason. Sonochem. 2007, 14, 219–224. [Google Scholar] [CrossRef]
- Balachandran, S.; Kentish, S.E.; Mawson, R.; Ashokkumar, M. Ultrasonic en- hancement of the supercritical extraction from ginger. Ultrason. Sonochem. 2006, 13, 471–479. [Google Scholar] [CrossRef] [PubMed]
Entry | Sample (g) | Temperature (°C) | Pressure (bar) | Extraction Method | Total Caffeine (mg) | Extract Caffeine % | Caffeine mg/g Coffee Beans | Decaffein. % | Time (h) |
---|---|---|---|---|---|---|---|---|---|
1 | 185 | 75 | 250 | 1 a | 155.1 ± 10.6 | 83.2 ± 5.9 | 0.838 ± 0.06 | 8.86 ±0.61 | 1 |
2 | 185 | 40 | 250 | 1 a | 59.2 ± 4.5 | 76.2 ± 5.8 | 0.320 ± 0.02 | 3.38 ± 0.26 | 1 |
3 | 185 | 20 | 70 | 2 b | 26.3 ± 3.8 | 80.2 ± 11.6 | 0.142 ± 0.02 | 1.50 ± 0.21 | 1 |
4 | 185 | 75 | 250 | 3 c | 318.3 ± 19.7 | 90.1 ± 5.6 | 1.72 ± 0.1 | 18.19 ± 1.1 | 1 |
5 | 185 | 40 | 250 | 3 c | 126.5 ± 10.4 | 83.9 ± 6.9 | 0.684 ± 0.06 | 7.23 ± 0.6 | 1 |
6 | 185 | 75 | 125 | 3 c | 279.8 ± 15.8 | 74.1 ± 4.2 | 1.51 ± 0.08 | 15.98 ± 0.9 | 1 |
7 | 50 | 75 | 250 | 3 c | 148.5 ± 9.3 | 69.0 ± 4.3 | 2.97 ± 0.18 | 31.4 ± 1.9 | 1 |
8 | 185 | 75 | 250 | 3 c | 673.8 ± 25.8 | 87.3 ± 3.3 | 3.64 ± 0.12 | 38.5 ± 1.4 | 2 |
9 | 185 | 75 | 250 | 3 c | 906.5 ±30.6 | 91.6 ± 3.1 | 6.04 ± 0.2 | 51.8 ± 1.8 | 3 |
10 | 185 | 75 | 250 | 3 c | 1104.3 ± 40.1 | 93.4 ± 3.3 | 5.97 ± 0.2 | 63.1 ± 2.3 | 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menzio, J.; Binello, A.; Barge, A.; Cravotto, G. Highly-Efficient Caffeine Recovery from Green Coffee Beans under Ultrasound-Assisted SC–CO2 Extraction. Processes 2020, 8, 1062. https://doi.org/10.3390/pr8091062
Menzio J, Binello A, Barge A, Cravotto G. Highly-Efficient Caffeine Recovery from Green Coffee Beans under Ultrasound-Assisted SC–CO2 Extraction. Processes. 2020; 8(9):1062. https://doi.org/10.3390/pr8091062
Chicago/Turabian StyleMenzio, Janet, Arianna Binello, Alessandro Barge, and Giancarlo Cravotto. 2020. "Highly-Efficient Caffeine Recovery from Green Coffee Beans under Ultrasound-Assisted SC–CO2 Extraction" Processes 8, no. 9: 1062. https://doi.org/10.3390/pr8091062
APA StyleMenzio, J., Binello, A., Barge, A., & Cravotto, G. (2020). Highly-Efficient Caffeine Recovery from Green Coffee Beans under Ultrasound-Assisted SC–CO2 Extraction. Processes, 8(9), 1062. https://doi.org/10.3390/pr8091062