Design and Characterization of a Fluidic Device for the Evaluation of SIS-Based Vascular Grafts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Design and Manufacture
- Homogeneous cell culture throughout the vascular graft and the ability to promote in vivo hemodynamic conditions.
- Cost-effectiveness and ease to assemble and operate.
- Sterilizable.
2.2. Experimental Pressure Gradient Measurement
2.3. Macroscopic Approach
2.4. Computational Fluid Dynamics Approach
2.4.1. Computational Domain
2.4.2. Governing Equations and Boundary Conditions
2.4.3. Mesh Convergence
2.4.4. Model Validation
2.5. Cell Culture Conditions
2.6. Cytotoxicity Evaluation
2.7. Proof of Concept: Human Umbilical Vein Endothelial Cells Culture
3. Results
3.1. Experimental Pressure Gradient Measurements
3.2. Macroscopic Approach
3.3. Computational Fluid Dynamics Approach
3.3.1. Mesh Convergence Analysis
3.3.2. Reconstructed Discrete Fourier Transform Signals for Inlet and Outlet Pressures
3.3.3. Pressure, Velocity and Wall Shear Stress Distribution
3.3.4. Local Velocity Profiles at Tissue-Engineered Vascular Graft Region
3.3.5. Model Validation
3.4. Cytotoxicity Evaluation
3.5. Proof of Concept: Human Umbilical Vein Endothelial Cell Culture
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Criqui, M.H.; Aboyans, V. Epidemiology of peripheral artery disease. Circ. Res. 2015, 116, 1509–1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tara, S.; Dean, E.W.; Rocco, K.A.; Udelsman, B.V.; Kurobe, H.; Shinoka, T.; Breuer, C.K. Vessel regeneration and bioengineering. In Regenerative Medicine Applications in Organ Transplantation; Elsevier: Amsterdam, The Netherlands, 2014; pp. 811–827. [Google Scholar]
- Ravi, S.; Chaikof, E.L. Biomaterials for vascular tissue engineering. Regen. Med. 2010, 5, 107–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldman, S.; Zadina, K.; Moritz, T.; Ovitt, T.; Sethi, G.; Copeland, J.G.; Thottapurathu, L.; Krasnicka, B.; Ellis, N.; Anderson, R.J.; et al. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery. J. Am. Coll. Cardiol. 2004, 44, 2149–2156. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, D.; Spoor, M.; Hijman, R.; Nathoe, H.M.; Borst, C.; Jansen, E.W.L.; Grobbee, D.E.; de Jaegere, P.P.T.; Kalkman, C.J.; Octopus Study Group. Cognitive and cardiac outcomes 5 years after off-pump vs on-pump coronary artery bypass graft surgery. JAMA 2007, 297, 701. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.R.; Belott, T.P.; Dickason, T.; Kaiser, W.J.; Modrall, J.G.; Valentine, R.J.; Clagett, G.P. The consequences of a failed femoropopliteal bypass grafting: Comparison of saphenous vein and PTFE grafts. J. Vasc. Surg. 2000, 32, 498–505. [Google Scholar] [CrossRef] [Green Version]
- Van Det, R.J.; Vriens, B.H.R.; der Palen, J.; Geelkerken, R.H. Dacron or ePTFE for femoro-popliteal above-knee bypass grafting: Short-and long-term results of a multicentre randomised trial. Eur. J. Vasc. Endovasc. Surg. 2009, 37, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Zilla, P.; Bezuidenhout, D.; Human, P. Prosthetic vascular grafts: Wrong models, wrong questions and no healing. Biomaterials 2007, 28, 5009–5027. [Google Scholar] [CrossRef]
- Badylak, S.F. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: Factors that influence the host response. Ann. Biomed. Eng. 2014, 42, 1517–1527. [Google Scholar] [CrossRef]
- Sánchez-Palencia, D.M.; González-Mancera, A.; Wagner, W.R.; Briceño, J.C.; D’Amore, A. Effects of fabrication on the mechanics, microstructure and micromechanical environment of small intestinal submucosa scaffolds for vascular tissue engineering. J. Biomech. 2014, 47, 2766–2773. [Google Scholar] [CrossRef]
- Sánchez-Palencia, D.M.; Navarro, J.; Araque, J.C.; Umaña, J.B.; Guerrero, A.F.; Quijano, L.M.; López, R.D.P.; Sandoval, N.F.; Briceno, J.C. Effects of fabrication on early patency and regeneration of small intestinal submucosa vascular grafts. Asaio J. 2015, 61, 596–604. [Google Scholar] [CrossRef]
- Valencia Rivero, K.T.; Jaramillo Escobar, J.; Galvis Forero, S.D.; Miranda Saldaña, M.C.; López Panqueva, R.d.P.; Sandoval Reyes, N.F.; Briceño Triana, J.C. New regenerative vascular grafts for hemodialysis access: Evaluation of a preclinical animal model. J. Investig. Surg. 2018, 31, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Badylak, S.; Liang, A.; Record, R.; Tullius, R.; Hodde, J. Endothelial cell adherence to small intestinal submucosa: An acellular bioscaffold. Biomaterials 1999, 20, 2257–2263. [Google Scholar] [CrossRef]
- Badylak, S.F.; Lantz, G.C.; Coffey, A.; Geddes, L.A. Small intestinal submucosa as a large diameter vascular graft in the dog. J. Surg. Res. 1989, 47, 74–80. [Google Scholar] [CrossRef]
- Koobatian, M.T.; Row, S.; Smith, R.J., Jr.; Koenigsknecht, C.; Andreadis, S.T.; Swartz, D.D. Successful endothelialization and remodeling of a cell-free small-diameter arterial graft in a large animal model. Biomaterials 2016, 76, 344–358. [Google Scholar] [CrossRef] [Green Version]
- Barron, V.; Lyons, E.; Stenson-Cox, C.; McHugh, P.E.; Pandit, A. Bioreactors for cardiovascular cell and tissue growth: A review. Ann. Biomed. Eng. 2003, 31, 1017–1030. [Google Scholar] [CrossRef]
- Holt, G.E.; Halpern, J.L.; Dovan, T.T.; Hamming, D.; Schwartz, H.S. Evolution of an in vivo bioreactor. J. Orthop. Res. 2005, 23, 916–923. [Google Scholar] [CrossRef]
- Bancroft, G.N.; Sikavitsas, V.I.; Mikos, A.G. Technical Note: Design of a Flow Perfusion Bioreactor System for Bone Tissue-Engineering Applications. Tissue Eng. 2003, 9, 549–554. [Google Scholar] [CrossRef] [Green Version]
- Mironov, V.; Kasyanov, V.; McAllister, K.; Oliver, S.; Sistino, J.; Markwald, R. Perfusion bioreactor for vascular tissue engineering with capacities for longitudinal stretch. J. Craniofac. Surg. 2003, 14, 340–347. [Google Scholar] [CrossRef]
- Salehi-Nik, N.; Amoabediny, G.; Pouran, B.; Tabesh, H.; Shokrgozar, M.A.; Haghighipour, N.; Khatibi, N.; Anisi, F.; Mottaghy, K.; Zandieh-Doulabi, B. Engineering parameters in bioreactor’s design: A critical aspect in tissue engineering. Biomed. Res. Int. 2013, 2013. [Google Scholar] [CrossRef]
- Stegemann, J.P.; Nerem, R.M. Phenotype modulation in vascular tissue engineering using biochemical and mechanical stimulation. Ann. Biomed. Eng. 2003, 31, 391–402. [Google Scholar] [CrossRef]
- White, S.S.; Zarins, C.K.; Giddens, D.P.; Bassiouny, H.; Loth, F.; Jones, S.A.; Glagov, S. Hemodynamic patterns in two models of end-to-side vascular graft anastomoses: Effects of pulsatility, flow division, Reynolds number, and hood length. J. Biomech. Eng. 1993, 115, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; White, J.B.; Walker, N.; Kuo, C.-H.; Cha, W.; Meyerhoff, M.E.; Takayama, S. Responses of endothelial cells to extremely slow flows. Biomicrofluidics 2011, 5, 22211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, P.F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 1995, 75, 519–560. [Google Scholar] [CrossRef] [PubMed]
- Bilodeau, K.; Couet, F.; Boccafoschi, F.; Mantovani, D. Design of a perfusion bioreactor specific to the regeneration of vascular tissues under mechanical stresses. Artif. Organs 2005, 29, 906–912. [Google Scholar] [CrossRef]
- Wang, C.; Lu, H.; Schwartz, M.A. A novel in vitro flow system for changing flow direction on endothelial cells. J. Biomech. 2012, 45, 1212–1218. [Google Scholar] [CrossRef] [Green Version]
- Anisi, F.; Salehi-Nik, N.; Amoabediny, G.; Pouran, B.; Haghighipour, N.; Zandieh-Doulabi, B. Applying shear stress to endothelial cells in a new perfusion chamber: Hydrodynamic analysis. J. Artif. Organs 2014, 17, 329–336. [Google Scholar] [CrossRef]
- Zeng, L.; Xiao, Q.; Margariti, A.; Zhang, Z.; Zampetaki, A.; Patel, S.; Capogrossi, M.C.; Hu, Y.; Xu, Q. HDAC3 is crucial in shear-and VEGF-induced stem cell differentiation toward endothelial cells. J. Cell Biol. 2006, 174, 1059–1069. [Google Scholar] [CrossRef] [Green Version]
- Lyons, E.; Pandit, A. Design of bioreactors for cardiovascular applications. Top. Tissue Eng. 2005, 2, 3. [Google Scholar]
- Williams, C.; Wick, T.M. Perfusion bioreactor for small diameter tissue-engineered arteries. Tissue Eng. 2004, 10, 930–941. [Google Scholar] [CrossRef]
- Xu, X.Y.; Collins, M.W. Haemodynamics of Arterial Organs: Comparison of Computational Predictions with In Vitro and In Vivo Data; Computational Mechanics: Southampton, UK, 1999; Volume 1. [Google Scholar]
- Giridharan, G.A.; Lederer, C.; Berthe, A.; Goubergrits, L.; Hutzenlaub, J.; Slaughter, M.S.; Dowling, R.D.; Spence, P.A.; Koenig, S.C. Flow dynamics of a novel counterpulsation device characterized by CFD and PIV modeling. Med. Eng. Phys. 2011, 33, 1193–1202. [Google Scholar] [CrossRef]
- Wissing, T.B.; Bonito, V.; Van Haaften, E.E.; Van Doeselaar, M.; Brugmans, M.M.C.P.; Janssen, H.M.; Bouten, C.V.C.; Smits, A.I.P.M. Macrophage-driven biomaterial degradation depends on scaffold microarchitecture. Front. Bioeng. Biotechnol. 2019, 7, 87. [Google Scholar] [CrossRef] [PubMed]
- Pozrikidis, C. Computational Hydrodynamics of Capsules and Biological Cells; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Hsiai, T.K.; Blackman, B.; Jo, H. Hemodynamics and Mechanobiology of Endothelium; World Scientific: Singapore, 2010. [Google Scholar]
- Wissing, T.B.; van Haaften, E.E.; Koch, S.E.; Ippel, B.D.; Kurniawan, N.A.; Bouten, C.V.C.; Smits, A.I.P.M. Hemodynamic loads distinctively impact the secretory profile of biomaterial-activated macrophages--implications for in situ vascular tissue engineering. Biomater. Sci. 2020, 8, 132–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, F.; Hua, L.; Gao, L. Effects of wall condition on flow distributions in arterial modeling: Comparison of rigid, dynamic, and compliant walls. J. Mech. Sci. Technol. 2016, 30, 1471–1475. [Google Scholar] [CrossRef]
- Pouran, B.; Amoabediny, G.; Saghafinia, M.S.; Abbas, M.P.H. Characterization of interfacial hydrodynamics in a single cell of shaken microtiter plate bioreactors applying computational fluid dynamics technique. Procedia Eng. 2012, 42, 924–930. [Google Scholar] [CrossRef] [Green Version]
- Dur, O.; Coskun, S.T.; Coskun, K.O.; Frakes, D.; Kara, L.B.; Pekkan, K. Computer-aided patient-specific coronary artery graft design improvements using CFD coupled shape optimizer. Cardiovasc. Eng. Technol. 2011, 2, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Soler, A.; Kabinejadian, F.; Slevin, M.A.; Bartolo, P.J.; Keshmiri, A. Optimisation of a novel spiral-inducing bypass graft using computational fluid dynamics. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sigovan, M.; Rayz, V.; Gasper, W.; Alley, H.F.; Owens, C.D.; Saloner, D. Vascular remodeling in autogenous arterio-venous fistulas by MRI and CFD. Ann. Biomed. Eng. 2013, 41, 657–668. [Google Scholar] [CrossRef] [Green Version]
- White, F.M. Fluid Mechanics, 5th ed.; McGraw-Hill Book Company: Boston, MA, USA, 2003. [Google Scholar]
- Beckwith, T.G.; Marangoni, R.D.; Lienhard, J.H.V. Mechanical Measurements; Pearson: New York City, NY, USA, 2009. [Google Scholar]
- Varley, M.C.; Markaki, A.E.; Brooks, R.A. Effect of Rotation on Scaffold Motion and Cell Growth in Rotating Bioreactors. Tissue Eng. Part A 2017, 23, 522–534. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Guertin, P.; Jia, G.; Lv, Z.; Yang, H.; Ju, D. Large-scale microcarrier culture of HEK293T cells and Vero cells in single-use bioreactors. AMB Express 2019, 9, 70. [Google Scholar] [CrossRef] [Green Version]
- Inamori, M.; Mizumoto, H.; Kajiwara, T. An approach for formation of vascularized liver tissue by endothelial cell–covered hepatocyte spheroid integration. Tissue Eng. Part A 2009, 15, 2029–2037. [Google Scholar] [CrossRef]
- Rochier, A.; Nixon, A.; Yamashita, N.; Abe, R.; Abe, R.; Madri, J.A.; Sumpio, B.E. Laminar shear, but not orbital shear, has a synergistic effect with thrombin stimulation on tissue factor expression in human umbilical vein endothelial cells. J. Vasc. Surg. 2011, 54, 480–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- König, F.; Hollweck, T.; Pfeifer, S.; Reichart, B.; Wintermantel, E.; Hagl, C.; Akra, B. A pulsatile bioreactor for conditioning of tissue-engineered cardiovascular constructs under endoscopic visualization. J. Funct. Biomater. 2012, 3, 480–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sierad, L.N.; Simionescu, A.; Albers, C.; Chen, J.; Maivelett, J.; Tedder, M.E.; Liao, J.; Simionescu, D.T. Design and testing of a pulsatile conditioning system for dynamic endothelialization of polyphenol-stabilized tissue engineered heart valves. Cardiovasc. Eng. Technol. 2010, 1, 138–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, A.S.; Juarez, T.M.; Helmke, C.D.; Gustin, M.C.; Mikos, A.G. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 2001, 22, 1279–1288. [Google Scholar] [CrossRef]
- Papaioannou, T.G.; Stefanadis, C. Vascular wall shear stress: Basic principles and methods. Hell. J Cardiol. 2005, 46, 9–15. [Google Scholar]
- Ortale, J.R.; Meciano Filho, J.; Paccola, A.M.; Leal, J.G.; Scaranari, C. Anatomy of the lateral, diagonal and anterosuperior arterial branches of the left ventricle of the human heart. Braz. J. Cardiovasc. Surg. 2005, 20, 149–158. [Google Scholar] [CrossRef]
- Sánchez, P.F.; Brey, E.M.; Briceño, J.C. Endothelialization mechanisms in vascular grafts. J. Tissue Eng. Regen. Med. 2018, 12, 2164–2178. [Google Scholar] [CrossRef]
- Lipowsky, H.H.; Usami, S.; Chien, S. In vivo measurements of “apparent viscosity” and microvessel hematocrit in the mesentery of the cat. Microvasc. Res. 1980, 19, 297–319. [Google Scholar] [CrossRef]
- Dinnar, U. Cardiovascular Fluid Dynamics; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Armstrong, M.L.; Heistad, D.D.; Marcus, M.L.; Megan, M.B.; Piegors, D.J. Structural and hemodynamic response of peripheral arteries of macaque monkeys to atherogenic diet. Arterioscler. An Off. J. Am. Heart Assoc. Inc. 1985, 5, 336–346. [Google Scholar] [CrossRef] [Green Version]
- Lyman, D.J.; Stewart, S.F.C.; Murray-Wijelath, J.; Wijelath, E. Role of fluid dynamics on the healing of an in vivo tissue engineered vascular graft. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 77, 389–400. [Google Scholar] [CrossRef]
- Cikirikcioglu, M.; Pektok, E.; Cikirikcioglu, Y.B.; Osorio-da Cruz, S.; Tille, J.-C.; Kalangos, A.; Walpoth, B.H. Matching the diameter of ePTFE bypass prosthesis with a native artery improves neoendothelialization. Eur. Surg. Res. 2008, 40, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.A.; Colon-Hernandez, P.; Pomerantseva, I.; MacNeil, B.D.; Nasseri, B.; Vacanti, J.P.; Oesterle, S.N. A novel pulsatile, laminar flow bioreactor for the development of tissue-engineered vascular structures. Tissue Eng. 2002, 8, 1083–1088. [Google Scholar] [CrossRef] [PubMed]
- Aizawa, P.; Karlsson, G.; Benemar, C.; Segl, V.; Martinelle, K.; Lindner, E. Effect of different materials used in bioreactor equipments on cell growth of human embryonic kidney (HEK293) Cells cultivated in a protein-free medium. In Cell Technology for Cell Products; Springer: New York, NY, USA, 2007; pp. 459–462. [Google Scholar]
- Ertel, S.I.; Ratner, B.D.; Kaul, A.; Schway, M.B.; Horbett, T.A. In vitro study of the intrinsic toxicity of synthetic surfaces to cells. J. Biomed. Mater. Res. 1994, 28, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Latour, R.A. Biomaterials: Protein-surface interactions. Encycl. Biomater. Biomed. Eng. 2005, 1, 270–284. [Google Scholar]
- Melchiorri, A.J.; Bracaglia, L.G.; Kimerer, L.K.; Hibino, N.; Fisher, J.P. In vitro endothelialization of biodegradable vascular grafts via endothelial progenitor cell seeding and maturation in a tubular perfusion system bioreactor. Tissue Eng. Part C Methods 2016, 22, 663–670. [Google Scholar] [CrossRef] [Green Version]
- DeLisser, H.M. Modulators of endothelial cell filopodia: PECAM-1 joins the club. Cell Adhes. Migr. 2011, 5, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Coakley, D.N.; Shaikh, F.M.; O’Sullivan, K.; Kavanagh, E.G.; Grace, P.A.; Walsh, S.R.; McGloughlin, T.M. Comparing the endothelialisation of extracellular matrix bioscaffolds with coated synthetic vascular graft materials. Int. J. Surg. 2016, 25, 31–37. [Google Scholar] [CrossRef]
Parameter | Definition | Value | Units |
---|---|---|---|
Culture Medium Density | 1 × 103 | kg/m3 | |
D1, D11, D5, D7 | Internal diameter of sections 1, 1s, 5 and 5s (Medical tubing) | 2.8 | mm |
D2, D4, D8, D10 | Internal diameter of sections 2, 2s, 4 and 4s (Inserts) | 1.8 | mm |
D3 | Internal diameter of sections 6 and 6s (SIS-based Vascular Graft) | 3 | mm |
D3, D9 | Internal diameter of sections 3 and 3s (O’rings) | 3.2 | |
Q | Pump Experimental Flow Rate | 3.33 × 10−7 | m3/s |
L1, L1s, L5, L5s | Length of sections 1, 1s, 5 and 5s (Medical tubing) | 48 (1, 1s) 22 (5, 5s) | mm |
L2, L2s, L4, L4s | Length of sections 2, 2s, 4 and 4s (Inserts) | 24 (2, 2s) 22 (4, 4s) | mm |
L6, 6sg | Length of sections 6 and 6s (SIS-based Vascular Graft) | 30 | mm |
L3, L9 | Length of sections 3 and 3s (O’rings) | 7 | mm |
M | Culture Medium Viscosity | 1 × 10−3 | Pa∗s |
Mesh 1 | Mesh 2 | Mesh 3 | Mesh 4 | Mesh 5 | Mesh 6 | |
---|---|---|---|---|---|---|
Element size | 1.50 × 10−4 | 1.00 × 10−4 | 7.00 × 10−5 | 5.00 × 10−5 | 4.20 × 10−5 | 3.60 × 10−5 |
Number of elements | 35,398 | 78,312 | 159,900 | 313,420 | 448,076 | 602,802 |
Section | Diameter [m] | Area [m2] | Length [m] | Re | ∆P [Pa] | f | ∆P [Pa] | |
---|---|---|---|---|---|---|---|---|
S1 | Medical tubing | 2.80 × 10−3 | 6.17 × 10−6 | 4.80 × 10−2 | 151.56 | 10.61 | 0.42 | 10.60 |
S2 | Insert 1 | 1.80 × 10−3 | 2.54 × 10−6 | 2.40 × 10−2 | 235.76 | 31.05 | 0.27 | 31.05 |
S3 | Internal O’rings | 3.20 × 10−3 | 8.04 × 10−6 | 7.00 × 10−3 | 132.62 | 0.91 | 0.48 | 0.91 |
S4 | Insert 2 | 1.80 × 10−3 | 2.54 × 10−6 | 2.20 × 10−2 | 235.76 | 28.46 | 0.27 | 28.46 |
S5 | Medical tubing | 2.80 × 10−3 | 6.17 x10−6 | 2.10 x10−2 | 151.56 | 4.64 | 0.42 | 4.64 |
S6 | Vascular graft | 3.00 × 10−3 | 7.07 × 10−6 | 3.00 × 10−2 | 141.46 | 5.03 | 0.45 | 5.03 |
S7 | Medical tubing | 2.80 × 10−3 | 6.17 × 10−6 | 2.10 × 10−2 | 151.56 | 4.64 | 0.42 | 4.64 |
S8 | Insert 3 | 1.80 × 10−3 | 2.54 × 10−6 | 2.20 × 10−2 | 235.76 | 28.46 | 0.27 | 28.46 |
S9 | Internal O’rings | 3.20 × 10−3 | 8.04 × 10−6 | 7.00 × 10−2 | 132.62 | 0.91 | 0.48 | 0.91 |
S10 | Insert 4 | 1.80 × 10−3 | 2.54 × 10−6 | 2.40 × 10−2 | 235.76 | 31.05 | 0.27 | 31.05 |
S11 | Medical tubing | 2.80 × 10−3 | 6.17 × 10−6 | 4.80 × 10−2 | 151.56 | 10.61 | 0.42 | 10.61 |
Total Length | 0.27 | Total Major Δ Pressure | 156.34 | Total Major Δ Pressure | 156.34 |
Sections | Minor Loss | Β | K | ∆P [Pa] |
---|---|---|---|---|
S1–S2 | Gradual contraction | 0.64 | 4.46 | 6.53 |
S2–S3 | Gradual expansion | 0.56 | 4.67 | 40.04 |
S3–S4 | Gradual contraction | 0.56 | 10.32 | 8.87 |
S4–S5 | Gradual expansion | 0.64 | 2.02 | 17.29 |
S5–S6 | Gradual expansion | 0.93 | 0.02 | 0.03 |
S6–S7 | Gradual contraction | 0.93 | 0.05 | 0.05 |
S7–S8 | Gradual contraction | 0.64 | 4.46 | 6.53 |
S8–S9 | Gradual expansion | 0.56 | 4.67 | 40.04 |
S9–S10 | Gradual contraction | 0.56 | 10.33 | 8.87 |
S10–S11 | Gradual expansion | 0.64 | 2.02 | 17.29 |
Total minor Δ Pressure | 145.54 |
Mesh | Number of Elements | Absolute Relative Error (%) |
---|---|---|
1 | 35,398 | - |
2 | 78,312 | 2.44 |
3 | 159,900 | 1.05 |
4 | 313,420 | 0.39 |
5 | 448,076 | 0.098 |
6 | 602,802 | 0.033 |
Reported Flow Rate (mL/h) | Experimentally Measured Flow Rate (mL/h) * | Relative Error (%) |
---|---|---|
1200 | 1190 ± 17.32 | 0.83 |
500 | 484 ± 6.93 | 3.20 |
100 | 96.2 ± 1.44 | 0.83 |
Phase | Average Computational Inlet Flow Rate (m3/s) * | Number of Instantaneous Flow Rate Values | Relative Error (%) |
---|---|---|---|
1 and 2 | 5.25 × 10−7 ± 2.88 × 10−7 | 30 | 36.52 |
1 | 7.30 × 10−7 ± 4.28 × 10−7 | 10 | 54.32 |
2 | 4.23 × 10−7 ± 8.10 × 10−8 | 20 | 21.17 |
Wall Shear Stress [Pa] | Vessel Type or Scaffold | Endothelial Cell Line | Diameter [mm] | Type of Analysis | Ref. |
---|---|---|---|---|---|
6 (Average) 8 (Max.) | Silicon scaffolds coated by collagen type I. | HUVECs | N/A | CFD | [27] |
60 (Max.) | Silicon scaffolds coated by collagen type I. | HUVECs | N/A | In vitro | [27] |
3–10 | Near arterial branches | N/A | 1–30 | Clinical | [27,51,52,53] |
1–7 0.1–0.6 | Arteries Veins | N/A | 3–25 5–30 | Clinical | [51,54,55] |
1 (Max.) | Near to arterial branches. Human carotid bifurcation. | Mammalian cells | 5.9 | In vitro and clinical | [22,38,55,56] |
1–2 | Arteries under normal flow conditions | N/A | 4–25 | Clinical | [22,47] |
1.5 | Femoral arteries of cynomolgus monkeys and dog carotid arteries | N/A | 4 3–4.5 | In vivo | [22,51,53,55] |
0.1–5 | Majority of blood vessels. | N/A | 0.006–30 | Clinical | [8] |
2–4 | Large arteries of uniform geometry and away from branches | N/A | 4–25 | Clinical | [53,55] |
0–10 1.2 | Unidirectional laminar flow | Bovine aortic | N/A | In vitro | [24] |
0.01 | Microcirculation | N/A | 0.006–0.02 | Clinical | [23,55] |
10−5–10−3 | PDMS microchannels chip | HUVECs | 200 µm height | In vitro and CFD | [23] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riveros, A.; Cuellar, M.; Sánchez, P.F.; Muñoz-Camargo, C.; Cruz, J.C.; Sandoval, N.; Lopez Mejia, O.D.; Briceño, J.C. Design and Characterization of a Fluidic Device for the Evaluation of SIS-Based Vascular Grafts. Processes 2020, 8, 1198. https://doi.org/10.3390/pr8091198
Riveros A, Cuellar M, Sánchez PF, Muñoz-Camargo C, Cruz JC, Sandoval N, Lopez Mejia OD, Briceño JC. Design and Characterization of a Fluidic Device for the Evaluation of SIS-Based Vascular Grafts. Processes. 2020; 8(9):1198. https://doi.org/10.3390/pr8091198
Chicago/Turabian StyleRiveros, Alejandra, Monica Cuellar, Paolo F. Sánchez, Carolina Muñoz-Camargo, Juan C. Cruz, Néstor Sandoval, Omar D. Lopez Mejia, and Juan C. Briceño. 2020. "Design and Characterization of a Fluidic Device for the Evaluation of SIS-Based Vascular Grafts" Processes 8, no. 9: 1198. https://doi.org/10.3390/pr8091198
APA StyleRiveros, A., Cuellar, M., Sánchez, P. F., Muñoz-Camargo, C., Cruz, J. C., Sandoval, N., Lopez Mejia, O. D., & Briceño, J. C. (2020). Design and Characterization of a Fluidic Device for the Evaluation of SIS-Based Vascular Grafts. Processes, 8(9), 1198. https://doi.org/10.3390/pr8091198