Advances in Biomass Co-Combustion with Fossil Fuels in the European Context: A Review
Abstract
:1. Introduction
2. Biomass and Waste Availability, Co-Combustion Technical Potential, Biomass Supply Chain, and CO2 LCA
3. Biomass and Fossil Fuel Properties
4. Biomass Pretreatment
- -
- Low bulk energy density
- -
- Higher moisture content
- -
- Higher content of volatiles
5. Direct, Parallel, and Indirect (Gasification) Co-Combustion
- -
- Direct co-combustion
- -
- Parallel co-combustion
- -
- Indirect co-combustion
6. Basic Types of Combustors and Biomass Share
7. Slagging, Fouling, Corrosion, and Ash Properties
8. Combustion Process Modifications: Air Staging, Oxycombustion, Flue Gas Recirculation, and Reburning
9. Emissions of Greenhouse Gases and Other Pollutants
10. Challenges and Future Development
- Deeper understanding of carbon and GHG emissions lifecycles in co-combustion applications is needed. While using local sources of waste biomass and other wastes has the potential to reduce the GHG emissions significantly, on-purpose growing, harvesting, transporting, and co-combusting biomass should be studied carefully. The resulting net GHG balance can be close to zero or even negative in some cases, as demonstrated by Miedema et al. (2017) [56].
- There is no single recipe or standardized approach to specify optimal co-combustion share, plant size, and layout. Regional and local aspects must be always analyzed regarding the resources availability and variability, plant size and layout, biomass and waste pretreatment possibilities, the resulting GHG, and other emissions and ash utilization, as well as long term effect of fouling and possible corrosion—all this shapes the optimal design and operation of each particular co-combustion installation.
- Biomass processing routes to fuels and chemicals play an important role in decision making on optimal biomass and waste utilization, as they advance towards their full commercialization, possibly restraining co-combustion application to low quality or contaminated or otherwise unfavorable fuels. The development of electro mobility on the other hand might enhance the co-combustion application in low carbon power production as a result of increased electricity consumption.
- Advances in gasification and pyrolysis processes of mixed fossil and biomass/waste fuels are necessary to make those technologies fully available and competitive. Further process modifications, including new methods for biomass pretreatment, should be developed regarding NOx and other GHG emissions decrease and reduced risk of equipment corrosion.
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ad | air dry (feedstock composition analysis) |
AE | variable air/oxygen excess (Table 9) |
ar | as received (feedstock composition analysis) |
AS | air staging |
BE | boiler efficiency % |
BESP | breakeven electricity selling price |
BF | batch furnace |
BG | biomass gasifier |
B+W | biomass plus waste (feedstock type, Table 5) |
C | modeling/calculation approach, Table 5 |
CAPEX | capital expenses |
CB | coal boiler |
CC | carbon capture |
CFB | circulating fluidized bed |
CFBC | circulating fluidized bed combustor |
CFD | computational fluid dynamics |
CLC | chemical looping combustion |
D | drying (feedstock pretreatment, Table 5) |
daf | dry ash free basis (feedstock composition analysis) |
db | dry basis (feedstock composition analysis) |
DTF | drop tube furnace |
DTGA | differential thermogravimetric analysis |
Ec. | economic |
ECLIPSE | European Coal Liquefaction Process Simulation and Evaluation simulation software package |
EconP | economic performance |
EFR | entrained flow reactor |
Ene. | energy |
EneP | energy performance |
Env. | environmental |
Eq. | emissions recalculated to CO2 equivalent as a part of CO2 LCA |
EU | European Union |
F | furnace |
FB | fluidized bed |
FBB | fluidized bed boiler |
FBC | fluidized bed combustor |
Fos. | fossil (feedstock, Table 5) |
FS | full scale (system, equipment) |
G | gasification (feedstock pretreatment, Table 5) |
GHG | greenhouse gases |
GWP | global warming potential |
HHV | higher heating value MJ/kg |
IB | industrial boiler |
IFR | isothermal flow reactor |
L | laboratory (system scale, Table 5) |
LCA | life cycle assessment |
LHV | lower heating value |
M | milling (feed preparation, Table 6); more (feed types, Table 5); multiple (systems, system scales, Table 5) |
MG | moving grate (type of combustor or boiler) |
MIA | multi-instrumental analysis |
MWe | Megawatts of electric power output |
MWt | Megawatts of thermal power input |
NG | natural gas |
NGCC | natural gas fired combined cycle |
NPV | net present value |
O | original (paper type, Table 5) |
OC | oxycombustion |
OPEX | operational expenses |
Ot. | other (feedstock pretreatment, Table 5) |
P | pilot plant (system scale, Table 5), pelletizing (feed preparation, Table 6) |
PCB | pulverized coal boiler |
PE | plant efficiency % |
PFBA | pressurized fluidized bed apparatus |
PFC | pulverized fuel combustor |
PFF | pulverized fuel furnace |
PI | performance indicator |
PM | particulate matter |
PPB | power plant boiler |
PY | pyrolyzer |
R | review (paper type, Table 5) |
RDF | refuse derived fuel |
REB | reburning |
S | sieving (feed preparation, Table 6), single (feedstock type, Table 5) |
SCR | selective catalytic reduction system |
Sh. | shredding (feed preparation, Table 6) |
SPR | single particle reactor |
Subbit. | subbituminous (coal) |
T | torrefaction (feedstock pretreatment, Table 5) |
TF | tube furnace |
TGA | thermogravimetric analysis |
TIC | total investment cost |
UGB | utility grate boiler |
V | various (feedstock pretreatment techniques, Table 5) |
VOC | volatile organic compounds |
VS | variable biomass/waste share |
References
- Puigjaner, L.; Pérez-Fortes, M.; Laínez-Aguirre, J. Towards a carbon-neutral energy sector: Opportunities and challenges of coordinated bioenergy supply chains—A PSE approach. Energies 2015, 8, 5613–5660. [Google Scholar] [CrossRef] [Green Version]
- Rehfeldt, M.; Worrell, E.; Eichhammer, W.; Fleiter, T. A review of the emission reduction potential of fuel switch towards biomass and electricity in European basic materials industry until 2030. Renew. Sustain. Energy Rev. 2020, 120, 109672. [Google Scholar] [CrossRef]
- Fogassy, G.; Thegarid, N.; Toussaint, G.; van Veen, A.C.; Schuurman, Y.; Mirodatos, C. Biomass derived feedstock co-processing with vacuum gas oil for second-generation fuel production in FCC units. Appl. Catal. B Environ. 2010, 96, 476–485. [Google Scholar] [CrossRef]
- Baloch, H.A.; Nizamuddin, S.; Siddiqui, M.T.H.; Riaz, S.; Jatoi, A.S.; Dumbre, D.K.; Mubarak, N.M.; Srinivasan, M.P.; Griffin, G.J. Recent advances in production and upgrading of bio-oil from biomass: A critical overview. J. Environ. Chem. Eng. 2018, 6, 5101–5118. [Google Scholar] [CrossRef]
- Mandal, S.; Haydary, J.; Bhattacharya, T.K.; Tanna, H.R.; Husár, J.; Ház, A. Valorization of pine needles by thermal conversion to solid, liquid and gaseous fuels in a screw reactor. Waste Biomass Valorization 2019, 10, 3587–3599. [Google Scholar] [CrossRef]
- Gandidi, I.M.; Susila, M.D.; Mustofa, A.; Pambudi, N.A. Thermal-Catalytic cracking of real MSW into Bio-Crude Oil. J. Energy Inst. 2018, 91, 304–310. [Google Scholar] [CrossRef]
- Xu, J.; Huang, Q.; Lv, C.; Feng, Q.; Wang, F. Carbon emissions reductions oriented dynamic equilibrium strategy using biomass-coal co-firing. Energy Policy 2018, 123, 184–197. [Google Scholar] [CrossRef]
- Sami, M.; Annamalai, K.; Wooldridge, M. Co-firing of coal and biomass fuel blends. Prog. Energy Combust. Sci. 2001, 27, 171–214. [Google Scholar] [CrossRef]
- Hansson, J.; Berndes, G.; Johnsson, F.; Kjärstad, J. Co-firing biomass with coal for electricity generation—An assessment of the potential in EU27. Energy Policy 2009, 37, 1444–1455. [Google Scholar] [CrossRef]
- Karampinis, E.; Grammelis, P.; Agraniotis, M.; Violidakis, I.; Kakaras, E. Co-firing of biomass with coal in thermal power plants: Technology schemes, impacts, and future perspectives. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 384–399. [Google Scholar] [CrossRef]
- Tchapda, A.; Pisupati, S. A review of thermal co-conversion of coal and biomass/waste. Energies 2014, 7, 1098–1148. [Google Scholar] [CrossRef] [Green Version]
- Haydary, J.; Susa, D.; Dudáš, J. Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition. Waste Manag. 2013, 33, 1136–1141. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Sokhansanj, S.; Grace, J.R.; Bi, X.; Lim, C.J.; Melin, S. Overview and some issues related to co-firing biomass and coal. Can. J. Chem. Eng. 2008, 86, 367–386. [Google Scholar] [CrossRef]
- Sikarwar, V.S.; Zhao, M.; Fennell, P.S.; Shah, N.; Anthony, E.J. Progress in biofuel production from gasification. Prog. Energy Combust. Sci. 2017, 61, 189–248. [Google Scholar] [CrossRef]
- Sondreal, E.A.; Benson, S.A.; Hurley, J.P.; Mann, M.D.; Pavlish, J.H.; Swanson, M.L.; Weber, G.F.; Zygarlicke, C.J. Review of advances in combustion technology and biomass cofiring. Fuel Process. Technol. 2001, 71, 7–38. [Google Scholar] [CrossRef]
- Lintunen, J.; Kangas, H.-L. The case of co-firing: The market level effects of subsidizing biomass co-combustion. Energy Econ. 2010, 32, 694–701. [Google Scholar] [CrossRef]
- Hein, K.R.G.; Bemtgen, J.M. EU clean coal technology—Co-combustion of coal and biomass. Fuel Process. Technol. 1998, 54, 159–169. [Google Scholar] [CrossRef]
- Pedersen, L.S.; Nielsen, H.P.; Kiil, S.; Hansen, L.A.; Dam-Johansen, K.; Kildsig, F.; Christensen, J.; Jespersen, P. Full-scale co-firing of straw and coal. Fuel 1996, 75, 1584–1590. [Google Scholar] [CrossRef]
- Tillman, D.A. Biomass cofiring: The technology, the experience, the combustion consequences. Biomass Bioenergy 2000, 19, 365–384. [Google Scholar] [CrossRef]
- Drosatos, P.; Nikolopoulos, N.; Karampinis, E.; Grammelis, P.; Kakaras, E. Comparative investigation of a co-firing scheme in a lignite-fired boiler at very low thermal-load operation using either pre-dried lignite or biomass as supporting fuel. Fuel Process. Technol. 2018, 180, 140–154. [Google Scholar] [CrossRef]
- Sefidari, H.; Ma, C.; Fredriksson, C.; Lindblom, B.; Wiinikka, H.; Nordin, L.O.; Wu, G.; Yazhenskikh, E.; Müller, M.; Öhman, M. The effect of co-firing coal and woody biomass upon the slagging/deposition tendency in iron-ore pelletizing grate-kiln plants. Fuel Process. Technol. 2020, 199, 106254. [Google Scholar] [CrossRef]
- Chen, G.-B.; Chatelier, S.; Lin, H.-T.; Wu, F.-H.; Lin, T.-H. A study of sewage sludge co-combustion with Australian black coal and shiitake substrate. Energies 2018, 11, 3436. [Google Scholar] [CrossRef] [Green Version]
- Kazagic, A.; Hodzic, N.; Metovic, S. Co-combustion of low-rank coal with woody biomass and miscanthus: An experimental study. Energies 2018, 11, 601. [Google Scholar] [CrossRef] [Green Version]
- Sh, L.; Jeong, T.-Y.; Jeon, K.-T.; Park, K.-W.; Lee, B.-H.; Jeon, C.-H. Combustion behaviors of wood pellet fuel and its co-firing with different coals. J. Mech. Sci. Technol. 2019, 33, 4545–4553. [Google Scholar] [CrossRef]
- Liu, X.; Chen, M.; Wei, Y. Assessment on oxygen enriched air co-combustion performance of biomass/bituminous coal. Renew. Energy 2016, 92, 428–436. [Google Scholar] [CrossRef]
- Xue, J.; Chellappa, T.; Ceylan, S.; Goldfarb, J.L. Enhancing biomass + coal Co-firing scenarios via biomass torrefaction and carbonization: Case study of avocado pit biomass and Illinois No. 6 coal. Renew. Energy 2018, 122, 152–162. [Google Scholar] [CrossRef]
- Isaac, K.; Bada, S.O. The co-combustion performance and reaction kinetics of refuse derived fuels with South African high ash coal. Heliyon 2020, 6, e03309. [Google Scholar] [CrossRef]
- Fuller, A.; Maier, J.; Karampinis, E.; Kalivodova, J.; Grammelis, P.; Kakaras, E.; Scheffknecht, G. Fly ash formation and characteristics from (co-)combustion of an herbaceous biomass and a Greek lignite (low-rank coal) in a pulverized fuel pilot-scale test facility. Energies 2018, 11, 1581. [Google Scholar] [CrossRef] [Green Version]
- Xue, Z.; Zhong, Z.; Lai, X. Investigation on gaseous pollutants emissions during co-combustion of coal and wheat straw in a fluidized bed combustor. Chemosphere 2020, 240, 124853. [Google Scholar] [CrossRef]
- Battista, J.J.; Hughes, E.E.; Tillman, D.A. Biomass cofiring at Seward Station. Biomass Bioenergy 2000, 19, 419–427. [Google Scholar]
- Agbor, E.; Zhang, X.; Kumar, A. A review of biomass co-firing in North America. Renew. Sustain. Energy Rev. 2014, 40, 930–943. [Google Scholar] [CrossRef]
- Al-Mansour, F.; Zuwala, J. An evaluation of biomass co-firing in Europe. Biomass Bioenergy 2010, 34, 620–629. [Google Scholar] [CrossRef]
- Narayanan, K.V.; Natarajan, E. Experimental studies on cofiring of coal and biomass blends in India. Renew. Energy 2007, 32, 2548–2558. [Google Scholar] [CrossRef]
- Tillman, D.A. Biomass cofiring for emissions management. In Handbook of Clean Energy Systems; Wiley: Hoboken, NJ, USA, 2015; pp. 1–22. [Google Scholar]
- Baxter, L. Biomass-coal co-combustion: Opportunity for affordable renewable energy. Fuel 2005, 84, 1295–1302. [Google Scholar] [CrossRef] [Green Version]
- Leckner, B. Co-combustion: A summary of technology. Therm. Sci. 2007, 11, 5–40. [Google Scholar] [CrossRef]
- Pronobis, M. The influence of biomass co-combustion on boiler fouling and efficiency. Fuel 2006, 85, 474–480. [Google Scholar] [CrossRef]
- Priyanto, D.E.; Ueno, S.; Sato, N.; Kasai, H.; Tanoue, T.; Fukushima, H. Ash transformation by co-firing of coal with high ratios of woody biomass and effect on slagging propensity. Fuel 2016, 174, 172–179. [Google Scholar] [CrossRef]
- Opydo, M.; Dudek, A.; Kobyłecki, R. Characteristics of solids accumulation on steel samples during co-combustion of biomass and coal in a CFB boiler. Biomass Bioenergy 2019, 120, 291–300. [Google Scholar] [CrossRef]
- Yao, X.; Zheng, Y.; Zhou, H.; Xu, K.; Xu, Q.; Li, L. Effects of biomass blending, ashing temperature and potassium addition on ash sintering behaviour during co-firing of pine sawdust with a Chinese anthracite. Renew. Energy 2020, 147, 2309–2320. [Google Scholar] [CrossRef]
- Duan, L.; Duan, Y.; Zhao, C.; Anthony, E.J. NO emission during co-firing coal and biomass in an oxy-fuel circulating fluidized bed combustor. Fuel 2015, 150, 8–13. [Google Scholar] [CrossRef]
- Varol, M.; Symonds, R.; Anthony, E.J.; Lu, D.; Jia, L.; Tan, Y. Emissions from co-firing lignite and biomass in an oxy-fired CFBC. Fuel Process. Technol. 2018, 173, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zeng, Q. Numerical simulation and experimental analysis on nitrogen and sulfur oxides emissions during the co-combustion of Longyan anthracite and sawmill sludge. Fuel 2019, 254, 115611. [Google Scholar] [CrossRef]
- Skodras, G.; Grammelis, P.; Samaras, P.; Vourliotis, P.; Kakaras, E.; Sakellaropoulos, G.P. Emissions monitoring during coal waste wood co-combustion in an industrial steam boiler. Fuel 2002, 81, 547–554. [Google Scholar] [CrossRef]
- Finney, K.N.; Szuhanszki, J.; Darvell, L.I.; Dooley, B.; Milkowski, K.; Jones, J.M.; Pourkashanian, M. Entrained metal aerosol emissions from air-fired biomass and coal combustion for carbon capture applications. Materials 2018, 11, 1819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, B.; Liu, G.; Mian, M.M.; Zhou, C.; Sun, M.; Wu, D.; Liu, Y. Co-combustion of industrial coal slurry and sewage sludge: Thermochemical and emission behavior of heavy metals. Chemosphere 2019, 233, 440–451. [Google Scholar] [CrossRef]
- Zhuang, X.; Song, Y.; Zhan, H.; Yin, X.; Wu, C. Synergistic effects on the co-combustion of medicinal biowastes with coals of different ranks. Renew. Energy 2019, 140, 380–389. [Google Scholar] [CrossRef]
- Glushkov, D.; Kuznetsov, G.; Paushkina, K. Switching coal-fired thermal power plant to composite fuel for recovering industrial and municipal waste: Combustion characteristics, emissions, and economic effect. Energies 2020, 13, 259. [Google Scholar] [CrossRef] [Green Version]
- Sung, Y.; Lee, S.; Kim, C.; Jun, D.; Moon, C.; Choi, G.; Kim, D. Synergistic effect of co-firing woody biomass with coal on NOx reduction and burnout during air-staged combustion. Exp. Therm. Fluid Sci. 2016, 71, 114–125. [Google Scholar] [CrossRef]
- Namkung, H.; Lee, Y.-J.; Park, J.-H.; Song, G.-S.; Choi, J.W.; Choi, Y.-C.; Park, S.-J.; Kim, J.-G. Blending effect of sewage sludge and woody biomass into coal on combustion and ash agglomeration behavior. Fuel 2018, 225, 266–276. [Google Scholar] [CrossRef]
- Kalembkiewicz, J.; Chmielarz, U. Ashes from co-combustion of coal and biomass: New industrial wastes. Resour. Conserv. Recycl. 2012, 69, 109–121. [Google Scholar] [CrossRef]
- Verma, M.; Loha, C.; Sinha, A.N.; Chatterjee, P.K. Drying of biomass for utilising in co-firing with coal and its impact on environment—A review. Renew. Sustain. Energy Rev. 2017, 71, 732–741. [Google Scholar] [CrossRef]
- Piwowar, A.; Dzikuć, M. Outline of the economic and technical problems associated with the co-combustion of biomass in Poland. Renew. Sustain. Energy Rev. 2016, 54, 415–420. [Google Scholar] [CrossRef]
- McIlveen-Wright, D.R.; Huang, Y.; Rezvani, S.; Mondol, J.D.; Redpath, D.; Anderson, M.; Hewitt, N.J.; Williams, B.C. A Techno-economic assessment of the reduction of carbon dioxide emissions through the use of biomass co-combustion. Fuel 2011, 90, 11–18. [Google Scholar] [CrossRef]
- Agbor, E.; Oyedun, A.O.; Zhang, X.; Kumar, A. Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas. Appl. Energy 2016, 169, 433–449. [Google Scholar] [CrossRef]
- Miedema, J.H.; Benders, R.M.J.; Moll, H.C.; Pierie, F. Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant. Appl. Energy 2017, 187, 873–885. [Google Scholar] [CrossRef] [Green Version]
- Black, S.; Szuhánszki, J.; Pranzitelli, A.; Ma, L.; Stanger, P.J.; Ingham, D.B.; Pourkashanian, M. Effects of firing coal and biomass under oxy-fuel conditions in a power plant boiler using CFD modelling. Fuel 2013, 113, 780–786. [Google Scholar] [CrossRef]
- Pérez-Jeldres, R.; Cornejo, P.; Flores, M.; Gordon, A.; García, X. A modeling approach to co-firing biomass/coal blends in pulverized coal utility boilers: Synergistic effects and emissions profiles. Energy 2017, 120, 663–674. [Google Scholar] [CrossRef]
- Milićević, A.; Belošević, S.; Crnomarković, N.; Tomanović, I.; Tucaković, D. Mathematical modelling and optimisation of lignite and wheat straw co-combustion in 350 MWe boiler furnace. Appl. Energy 2020, 260, 114206. [Google Scholar] [CrossRef]
- Alakangas, E.; Junginger, M.; van Dam, J.; Hinge, J.; Keränen, J.; Olsson, O.; Porsö, C.; Martikainen, A.; Rathbauer, J.; Sulzbacher, L.; et al. EUBIONET III—Solutions to biomass trade and market barriers. Renew. Sustain. Energy Rev. 2012, 16, 4277–4290. [Google Scholar] [CrossRef]
- Mesfun, S.; Leduc, S.; Patrizio, P.; Wetterlund, E.; Mendoza-Ponce, A.; Lammens, T.; Staritsky, I.; Elbersen, B.; Lundgren, J.; Kraxner, F. Spatio-temporal assessment of integrating intermittent electricity in the EU and Western Balkans power sector under ambitious CO2 emission policies. Energy 2018, 164, 676–693. [Google Scholar] [CrossRef]
- Brosowski, A.; Thrän, D.; Mantau, U.; Mahro, B.; Erdmann, G.; Adler, P.; Stinner, W.; Reinhold, G.; Hering, T.; Blanke, C. A review of biomass potential and current utilization—Status quo for 93 biogenic wastes and residues in Germany. Biomass Bioenergy 2016, 95, 257–272. [Google Scholar] [CrossRef] [Green Version]
- López, R.; Menéndez, M.; Fernández, C.; Bernardo-Sánchez, A. The effects of scale-up and coal-biomass blending on supercritical coal oxy-combustion power plants. Energy 2018, 148, 571–584. [Google Scholar] [CrossRef]
- Hughes, E. Biomass cofiring: Economics, policy and opportunities. Biomass Bioenergy 2000, 19, 457–465. [Google Scholar] [CrossRef]
- Mann, M.; Spath, P. A life cycle assessment of biomass cofiring in a coal-fired power plant. Clean Prod. Process. 2001, 3, 81–91. [Google Scholar] [CrossRef]
- Royo, J.; Sebastián, F.; García-Galindo, D.; Gómez, M.; Díaz, M. Large-scale analysis of GHG (greenhouse gas) reduction by means of biomass co-firing at country-scale: Application to the Spanish case. Energy 2012, 48, 255–267. [Google Scholar] [CrossRef]
- Lüschen, A.; Madlener, R. Economic viability of biomass cofiring in new hard-coal power plants in Germany. Biomass Bioenergy 2013, 57, 33–47. [Google Scholar] [CrossRef]
- Gu, H.; Zhang, K.; Wang, Y.; Huang, Y.; Hewitt, N.; Roskilly, A.P. Waste biomass from production process co-firing with coal in a steam boiler to reduce fossil fuel consumption: A case study. J. Energy Chem. 2013, 22, 413–419. [Google Scholar] [CrossRef]
- Kazagic, A.; Music, M.; Smajevic, I.; Ademovic, A.; Redzic, E. Possibilities and sustainability of “biomass for power” solutions in the case of a coal-based power utility. Clean Technol. Environ. Policy 2016, 18, 1675–1683. [Google Scholar] [CrossRef]
- Mohd Idris, M.N.; Hashim, H.; Razak, N.H. Spatial optimisation of oil palm biomass co-firing for emissions reduction in coal-fired power plant. J. Clean. Prod. 2018, 172, 3428–3447. [Google Scholar] [CrossRef]
- Nyashina, G.; Strizhak, P. Impact of forest fuels on gas emissions in coal slurry fuel combustion. Energies 2018, 11, 2491. [Google Scholar] [CrossRef] [Green Version]
- Pikoń, K.; Krawczyk, P.; Badyda, K.; Bogacka, M. Predictive analysis of waste co-combustion with fossil fuels using the life cycle assessment (LCA) methodology. Energies 2019, 12, 3691. [Google Scholar] [CrossRef] [Green Version]
- Smoliński, A.; Karwot, J.; Bondaruk, J.; Bak, A. The bioconversion of sewage sludge to bio-fuel: The environmental and economic benefits. Materials 2019, 12, 2417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truong, A.H.; Patrizio, P.; Leduc, S.; Kraxner, F.; Ha-Duong, M. Reducing emissions of the fast growing Vietnamese coal sector: The chances offered by biomass co-firing. J. Clean. Prod. 2019, 215, 1301–1311. [Google Scholar] [CrossRef]
- Qin, K.; Thunman, H. Diversity of chemical composition and combustion reactivity of various biomass fuels. Fuel 2015, 147, 161–169. [Google Scholar] [CrossRef]
- Arromdee, P.; Kuprianov, V.I. Experimental study and empirical modeling of CO and NO behaviors in a fluidized-bed combustor firing pelletized biomass fuels. Biomass Convers. Biorefinery 2020. [Google Scholar] [CrossRef]
- Razmjoo, N.; Sefidari, H.; Strand, M. Measurements of temperature and gas composition within the burning bed of wet woody residues in a 4 MW moving grate boiler. Fuel Process. Technol. 2016, 152, 438–445. [Google Scholar] [CrossRef]
- Junga, R.; Knauer, W.; Niemiec, P.; Tańczuk, M. Experimental tests of co-combustion of laying hens manure with coal by using thermogravimetric analysis. Renew. Energy 2017, 111, 245–255. [Google Scholar] [CrossRef]
- Haydary, J.; Susa, D.; Gelinger, V.; Čacho, F. Pyrolysis of automobile shredder residue in a laboratory scale screw type reactor. J. Environ. Chem. Eng. 2016, 4, 965–972. [Google Scholar] [CrossRef]
- Haydary, J.; Susa, D. Kinetics of thermal decomposition of aseptic packages. Chem. Pap. 2013, 67, 1514–1520. [Google Scholar] [CrossRef]
- Murphy, J.J.; Shaddix, C.R. Combustion kinetics of coal chars in oxygen-enriched environments. Combust. Flame 2006, 144, 710–729. [Google Scholar] [CrossRef]
- Svoboda, K.; Pohořelý, M.; Hartman, M. Effects of operating conditions and dusty fuel on the NOx, N2O, and CO emissions in PFB co-combustion of coal and wood. Energy Fuels 2003, 17, 1091–1099. [Google Scholar] [CrossRef]
- Cong, K.; Han, F.; Zhang, Y.; Li, Q. The investigation of co-combustion characteristics of tobacco stalk and low rank coal using a macro-TGA. Fuel 2019, 237, 126–132. [Google Scholar] [CrossRef]
- Ohlemüller, P.; Ströhle, J.; Epple, B. Chemical looping combustion of hard coal and torrefied biomass in a 1 MW th pilot plant. Int. J. Greenh. Gas Control 2017, 65, 149–159. [Google Scholar] [CrossRef]
- Atimtay, A.T.; Kayahan, U.; Unlu, A.; Engin, B.; Varol, M.; Olgun, H.; Atakul, H. Co-firing of pine chips with Turkish lignites in 750 kWth circulating fluidized bed combustion system. Bioresour. Technol. 2017, 224, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Pawlak-Kruczek, H.; Ostrycharczyk, M.; Czerep, M.; Baranowski, M.; Zgóra, J. Examinations of the process of hard coal and biomass blend combustion in OEA (oxygen enriched atmosphere). Energy 2015, 92, 40–46. [Google Scholar] [CrossRef]
- Lawrence, A.; Kumar, R.; Nandakumar, K.; Narayanan, K. A Novel tool for assessing slagging propensity of coals in PF boilers. Fuel 2008, 87, 946–950. [Google Scholar] [CrossRef]
- Sajdak, M.; Kmieć, M.; Micek, B.; Hrabak, J. Determination of the optimal ratio of coal to biomass in the co-firing process: Feed mixture properties. Int. J. Environ. Sci. Technol. 2019, 16, 2989–3000. [Google Scholar] [CrossRef] [Green Version]
- Demirbaş, A. Sustainable cofiring of biomass with coal. Energy Convers. Manag. 2003, 44, 1465–1479. [Google Scholar] [CrossRef]
- Yao, X.; Zhou, H.; Xu, K.; Xu, Q.; Li, L. Evaluation of the fusion and agglomeration properties of ashes from combustion of biomass, coal and their mixtures and the effects of K2CO3 additives. Fuel 2019, 255, 115829. [Google Scholar] [CrossRef]
- Yanik, J.; Duman, G.; Karlstrom, O.; Brink, A. NO and SO2 emissions from combustion of raw and torrefied biomasses and their blends with lignite. J. Environ. Manag. 2018, 227, 155–161. [Google Scholar] [CrossRef]
- Xu, Z.; Zinchik, S.; Kolapkar, S.S.; Bar-Ziv, E.; Hansen, T.; Conn, D.; McDonald, A.G. Properties of torrefied U.S. waste blends. Front. Energy Res. 2018, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Mak, J.; Landry, H.; Grieger, L.; Agnew, J.; Krigstin, S.; Helmeste, C.; Wetzel, S.; Madrali, S.; Volpé, S. An assessment of ambient and heated forced air drying pre-treatments for enhancing the quality of various forest biomass feedstocks. Front. Energy Res. 2020, 8, 7. [Google Scholar] [CrossRef]
- Brammer, J.G.; Bridgwater, A.V. Drying technologies for an integrated gasification bio-energy plant. Renew. Sustain. Energy Rev. 1999, 3, 243–289. [Google Scholar] [CrossRef]
- Carapellucci, R. Power generation using dedicated woody crops: Thermodynamics and economics of integrated plants. Renew. Energy 2002, 27, 143–159. [Google Scholar] [CrossRef]
- Nyashina, G.S.; Kurgankina, M.A.; Strizhak, P.A. Environmental, economic and energetic benefits of using coal and oil processing waste instead of coal to produce the same amount of energy. Energy Convers. Manag. 2018, 174, 175–187. [Google Scholar] [CrossRef]
- Wilk, M.; Magdziarz, A.; Kalemba, I. Characterisation of renewable fuels’ torrefaction process with different instrumental techniques. Energy 2015, 87, 259–269. [Google Scholar] [CrossRef]
- Niu, Y.; Lv, Y.; Lei, Y.; Liu, S.; Liang, Y.; Wang, D.; Hui, S.E. Biomass torrefaction: Properties, applications, challenges, and economy. Renew. Sustain. Energy Rev. 2019, 115, 109395. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, B.; Yang, H.; Yang, Q.; Chen, H. Evolution of functional groups and pore structure during cotton and corn stalks torrefaction and its correlation with hydrophobicity. Fuel 2014, 137, 41–49. [Google Scholar] [CrossRef]
- Chen, W.-H.; Lu, K.-M.; Tsai, C.-M. An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction. Appl. Energy 2012, 100, 318–325. [Google Scholar] [CrossRef]
- Mamvura, T.A.; Danha, G. Biomass torrefaction as an emerging technology to aid in energy production. Heliyon 2020, 6, e03531. [Google Scholar] [CrossRef] [PubMed]
- Tumuluru, J.S. Comparison of chemical composition and energy property of torrefied switchgrass and corn stover. Front. Energy Res. 2015, 3, 46. [Google Scholar] [CrossRef]
- Madanayake, B.N.; Gan, S.; Eastwick, C.; Ng, H.K. Biomass as an energy source in coal co-firing and its feasibility enhancement via pre-treatment techniques. Fuel Process. Technol. 2017, 159, 287–305. [Google Scholar] [CrossRef]
- Harding, N.S.; Adams, B.R. Biomass as a reburning fuel: A specialized cofiring application. Biomass Bioenergy 2000, 19, 429–445. [Google Scholar] [CrossRef]
- Wieck-Hansen, K.; Overgaard, P.; Larsen, O.H. Cofiring coal and straw in a 150 MWe power boiler experiences. Biomass Bioenergy 2000, 19, 395–409. [Google Scholar] [CrossRef]
- Savolainen, K. Co-firing of biomass in coal-fired utility boilers. Appl. Energy 2003, 74, 369–381. [Google Scholar] [CrossRef]
- Backreedy, R.I.; Fletcher, L.M.; Jones, J.M.; Ma, L.; Pourkashanian, M.; Williams, A. Co-firing pulverised coal and biomass: A modeling approach. Proc. Combust. Inst. 2005, 30, 2955–2964. [Google Scholar] [CrossRef]
- Nevalainen, H.; Jegoroff, M.; Saastamoinen, J.; Tourunen, A.; Jäntti, T.; Kettunen, A.; Johnsson, F.; Niklasson, F. Firing of coal and biomass and their mixtures in 50 kW and 12 MW circulating fluidized beds—Phenomenon study and comparison of scales. Fuel 2007, 86, 2043–2051. [Google Scholar] [CrossRef]
- Arias, B.; Pevida, C.; Rubiera, F.; Pis, J.J. Effect of biomass blending on coal ignition and burnout during oxy-fuel combustion. Fuel 2008, 87, 2753–2759. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Dong, C.; Yang, Y.; Zhang, J. The effect of biomass pyrolysis gas reburning on N2O emission in a coal-fired fluidized bed boiler. Chin. Sci. Bull. 2011, 56, 1429–1433. [Google Scholar] [CrossRef] [Green Version]
- Casaca, C.; Costa, M. Detailed measurements in a laboratory furnace with reburning. Fuel 2011, 90, 1090–1100. [Google Scholar] [CrossRef]
- Werle, S. A reburning process using sewage sludge-derived syngas. Chem. Pap. 2012, 66, 99–107. [Google Scholar] [CrossRef]
- Bragato, M.; Joshi, K.; Carlson, J.B.; Tenório, J.A.S.; Levendis, Y.A. Combustion of coal, bagasse and blends thereof. Fuel 2012, 96, 43–50. [Google Scholar] [CrossRef]
- Mehmood, S.; Reddy, B.V.; Rosen, M.A. Energy analysis of a biomass co-firing based pulverized coal power generation system. Sustainability 2012, 4, 462–490. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Ramírez, M.; Sebastián, F.; Royo, J.; Rezeau, A. Combustion requirements for conversion of ash-rich novel energy crops in a 250 kWth multifuel grate fired system. Energy 2012, 46, 636–643. [Google Scholar] [CrossRef]
- Riaza, J.; Gil, M.V.; Álvarez, L.; Pevida, C.; Pis, J.J.; Rubiera, F. Oxy-fuel combustion of coal and biomass blends. Energy 2012, 41, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Moon, C.; Sung, Y.; Ahn, S.; Kim, T.; Choi, G.; Kim, D. Effect of blending ratio on combustion performance in blends of biomass and coals of different ranks. Exp. Therm. Fluid Sci. 2013, 47, 232–240. [Google Scholar] [CrossRef]
- Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S. Co-combustion of low rank coal/waste biomass blends using dry air or oxygen. Appl. Therm. Eng. 2013, 50, 251–259. [Google Scholar] [CrossRef]
- Hrycko, P.; Lasek, J.; Matuszek, K. Biomass gasification and Polish coal-fired boilers for process of reburning in small boilers. J. Cent. South Univ. 2013, 20, 1623–1630. [Google Scholar]
- Steer, J.; Marsh, R.; Griffiths, A.; Malmgren, A.; Riley, G. Biomass co-firing trials on a down-fired utility boiler. Energy Convers. Manag. 2013, 66, 285–294. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Z.; Deng, S.; Xiong, Y.; Tan, H. Effect of biomass/coal co-firing and air staging on NOx emission and combustion efficiency in a drop tube furnace. Energy Procedia 2014, 61, 2331–2334. [Google Scholar] [CrossRef] [Green Version]
- Varol, M.; Atimtay, A.T. Effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor. Bioresour. Technol. 2015, 198, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, A.A.; Naser, J. CFD modelling of co-firing of biomass with coal under oxy-fuel combustion in a large scale power plant. Fuel 2015, 159, 150–168. [Google Scholar] [CrossRef]
- Bhuiyan, A.A.; Naser, J. Computational modelling of co-firing of biomass with coal under oxy-fuel condition in a small scale furnace. Fuel 2015, 143, 455–466. [Google Scholar] [CrossRef]
- Chae, T.; Lee, J.; Yang, W.; Ryu, C. Characteristics of syngas reburning in a natural gas firing furnace—Effects of combustible gas species in the syngas. J. Mech. Sci. Technol. 2016, 30, 3861–3868. [Google Scholar] [CrossRef]
- Hodžić, N.; Kazagić, A.; Smajević, I. Influence of multiple air staging and reburning on NOx emissions during co-firing of low rank brown coal with woody biomass and natural gas. Appl. Energy 2016, 168, 38–47. [Google Scholar] [CrossRef]
- Kopczyński, M.; Lasek, J.A.; Iluk, A.; Zuwała, J. The co-combustion of hard coal with raw and torrefied biomasses (willow (Salix viminalis), olive oil residue and waste wood from furniture manufacturing). Energy 2017, 140, 1316–1325. [Google Scholar] [CrossRef]
- Stephan, A.; Wolf, C.; Fendt, S.; Spliethoff, H. Online corrosion measurements in small- and mid-scale during pulverised biomass/coal co-combustion. Energy Procedia 2017, 120, 309–316. [Google Scholar] [CrossRef]
- Fogarasi, S.; Cormos, C.-C. Assessment of coal and sawdust co-firing power generation under oxy-combustion conditions with carbon capture and storage. J. Clean. Prod. 2017, 142, 3527–3535. [Google Scholar] [CrossRef]
- Kazulis, V.; Vigants, H.; Veidenbergs, I.; Blumberga, D. Biomass and natural gas co-firing—Evaluation of GHG emissions. Energy Procedia 2018, 147, 558–565. [Google Scholar] [CrossRef]
- Panahi, A.; Tarakcioglu, M.; Schiemann, M.; Delichatsios, M.; Levendis, Y.A. On the particle sizing of torrefied biomass for co-firing with pulverized coal. Combust. Flame 2018, 194, 72–84. [Google Scholar] [CrossRef]
- Rokni, E.; Ren, X.; Panahi, A.; Levendis, Y.A. Emissions of SO2, NOx, CO2, and HCl from Co-firing of coals with raw and torrefied biomass fuels. Fuel 2018, 211, 363–374. [Google Scholar] [CrossRef]
- Ślefarski, R.; Jójka, J.; Czyżewski, P.; Grzymisławski, P. Experimental investigation on syngas reburning process in a gaseous fuel firing semi-idustrial combustion chamber. Fuel 2018, 217, 490–498. [Google Scholar] [CrossRef]
- Chen, X.; Xie, J.; Mei, S.; He, F. NOx and SO2 Emissions during co-combustion of RDF and anthracite in the environment of precalciner. Energies 2018, 11, 337. [Google Scholar] [CrossRef] [Green Version]
- Skopec, P.; Hrdlička, F.; Jitka, J. Co-firing of coal with a solid recovered fuel as a route of reduction of sulfur dioxide emissions. Waste Forum 2018, 1, 26–34. [Google Scholar]
- Choi, M.; Li, X.; Kim, K.; Sung, Y.; Choi, G. Detailed in-furnace measurements in a pulverized coal-fired furnace with combined woody biomass co-firing and air staging. J. Mech. Sci. Technol. 2018, 32, 4517–4527. [Google Scholar] [CrossRef]
- Mätzing, H.; Gehrmann, H.-J.; Seifert, H.; Stapf, D. Modelling grate combustion of biomass and low rank fuels with CFD application. Waste Manag. 2018, 78, 686–697. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Zhong, Z. Optimization of the co-combustion of coal and composite biomass pellets. J. Clean. Prod. 2018, 185, 399–407. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Z.; Wang, G.; Luo, X.; Ruan, R.; Jin, Q.; Tan, H. Influence of coal co-firing on the particulate matter formation during pulverized biomass combustion. J. Energy Inst. 2019, 92, 450–458. [Google Scholar] [CrossRef]
- Bhui, B.; Vairakannu, P. Prospects and issues of integration of co-combustion of solid fuels (coal and biomass) in chemical looping technology. J. Environ. Manag. 2019, 231, 1241–1256. [Google Scholar] [CrossRef] [PubMed]
- Buyukada, M. Investigation of thermal conversion characteristics and performance evaluation of co-combustion of pine sawdust and lignite coal using TGA, artificial neural network modeling and likelihood method. Bioresour. Technol. 2019, 287, 121461. [Google Scholar] [CrossRef]
- Liu, Q.; Shi, Y.; Zhong, W.; Yu, A. Co-firing of coal and biomass in oxy-fuel fluidized bed for CO2 capture: A review of recent advances. Chin. J. Chem. Eng. 2019, 27, 2261–2272. [Google Scholar] [CrossRef]
- Oladejo, J.; Shi, K.; Meng, Y.; Adegbite, S.; Wu, T. Biomass constituents’ interactions with coal during co-firing. Energy Procedia 2019, 158, 1640–1645. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, H. Investigation of the slagging characteristics during co-combustion of Shenhua coal and corn stalk: Effect of deposition surface. Fuel 2019, 256, 115939. [Google Scholar] [CrossRef]
- Stam, A.F.; Brem, G. Fouling in coal-fired boilers: Biomass co-firing, full conversion and use of additives—A thermodynamic approach. Fuel 2019, 239, 1274–1283. [Google Scholar] [CrossRef]
- Smith, J.D.; Suo-Antilla, A.; Sreedharan, V. Transient LES based CFD modeling of coal-biomass co-firing combustion. Fuel Process. Technol. 2019, 193, 187–196. [Google Scholar] [CrossRef]
- Jeong, T.-Y.; Sh, L.; Kim, J.-H.; Lee, B.-H.; Jeon, C.-H. Experimental investigation of ash deposit behavior during co-combustion of bituminous coal with wood pellets and empty fruit bunches. Energies 2019, 12, 2087. [Google Scholar] [CrossRef] [Green Version]
- Coimbra, R.N.; Escapa, C.; Otero, M. Comparative thermogravimetric assessment on the combustion of coal, microalgae biomass and their blend. Energies 2019, 12, 2962. [Google Scholar] [CrossRef] [Green Version]
- Alobaid, F.; Busch, J.-P.; Stroh, A.; Ströhle, J.; Epple, B. Experimental measurements for torrefied biomass Co-combustion in a 1 MWth pulverized coal-fired furnace. J. Energy Inst. 2020, 93, 833–846. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, G.; Zhang, J.; Ning, X.; Li, Y.; Liang, W.; Wang, C. Study on co-combustion characteristics of hydrochar and anthracite coal. J. Energy Inst. 2020, 93, 1125–1137. [Google Scholar] [CrossRef]
- Zhou, A.; Xu, H.; Xu, M.; Yu, W.; Li, Z.; Yang, W. Numerical investigation of biomass co-combustion with methane for NOx reduction. Energy 2020, 194, 116868. [Google Scholar] [CrossRef]
- Zhou, L.; Deshpande, K.; Zhang, X.; Agarwal, R.K. Process simulation of chemical looping combustion using ASPEN plus for a mixture of biomass and coal with various oxygen carriers. Energy 2020, 195, 116955. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Xu, X.; Mikulčić, H.; Li, Y.; Zhou, Y.; Tan, H. Numerical study of biomass Co-firing under Oxy-MILD mode. Renew. Energy 2020, 146, 2566–2576. [Google Scholar] [CrossRef]
- Atimtay, A.; Yurdakul, S. Combustion and Co-Combustion characteristics of torrefied poultry litter with lignite. Renew. Energy 2020, 148, 1292–1301. [Google Scholar] [CrossRef]
- Yelverton, T.L.B.; Brashear, A.T.; Nash, D.G.; Brown, J.E.; Singer, C.F.; Kariher, P.H.; Ryan, J.V.; Burnette, P. Characterization of emissions from a pilot-scale combustor operating on coal blended with woody biomass. Fuel 2020, 264, 116774. [Google Scholar] [CrossRef]
- Torres, M.; Portugau, P.; Castiglioni, J.; Cuña, A.; Yermán, L. Co-combustion behaviours of a low calorific Uruguayan Oil Shale with biomass wastes. Fuel 2020, 266, 117118. [Google Scholar] [CrossRef]
- Ndou, N.R.; Bada, S.O.; Falcon, R.M.S.; Weiersbye, I.M. Co-combustion of Searsia lancea and Tamarix usneoides with high ash coal. Fuel 2020, 267, 117282. [Google Scholar] [CrossRef]
- Tabakaev, R.; Ibraeva, K.; Kan, V.; Dubinin, Y.; Rudmin, M.; Yazykov, N.; Zavorin, A. The effect of co-combustion of waste from flour milling and highly mineralized peat on sintering of the ash residue. Energy 2020, 196, 117157. [Google Scholar] [CrossRef]
- Šuhaj, P.; Haydary, J.; Husár, J.; Steltenpohl, P.; Šupa, I. Catalytic gasification of refuse-derived fuel in a two-stage laboratory scale pyrolysis/gasification unit with catalyst based on clay minerals. Waste Manag. 2019, 85, 1–10. [Google Scholar] [CrossRef]
- Martínez, J.D.; Veses, A.; Mastral, A.M.; Murillo, R.; Navarro, M.V.; Puy, N.; Artigues, A.; Bartrolí, J.; García, T. Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel. Fuel Process. Technol. 2014, 119, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Kuba, M.; Hofbauer, H. Experimental parametric study on product gas and tar composition in dual fluid bed gasification of woody biomass. Biomass Bioenergy 2018, 115, 35–44. [Google Scholar] [CrossRef]
- Thunman, H.; Seemann, M.; Berdugo Vilches, T.; Maric, J.; Pallares, D.; Ström, H.; Berndes, G.; Knutsson, P.; Larsson, A.; Breitholtz, C.; et al. Advanced biofuel production via gasification—Lessons learned from 200 man-years of research activity with Chalmers’ research gasifier and the GoBiGas demonstration plant. Energy Sci. Eng. 2018, 6, 6–34. [Google Scholar] [CrossRef]
- Strezov, V.; Evans, T.J.; Hayman, C. Thermal conversion of elephant grass (Pennisetum purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresour. Technol. 2008, 99, 8394–8399. [Google Scholar] [CrossRef]
- Carmo-Calado, L.; Hermoso-Orzáez, M.J.; Mota-Panizio, R.; Guilherme-Garcia, B.; Brito, P. Co-combustion of waste tires and plastic-rubber wastes with biomass technical and environmental analysis. Sustainability 2020, 12, 1036. [Google Scholar] [CrossRef] [Green Version]
- Kočanová, S.; Lukáč, L. The impact of the composition of the wood gas to emissions after combustion of wood gas. Holist. Approach Environ. 2014, 4, 111–117. [Google Scholar]
- Motta, I.L.; Miranda, N.T.; Maciel Filho, R.; Wolf Maciel, M.R. Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects. Renew. Sustain. Energy Rev. 2018, 94, 998–1023. [Google Scholar] [CrossRef]
- Pang, S. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnol. Adv. 2019, 37, 589–597. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Roy, P.; Dias, G. Prospects for pyrolysis technologies in the bioenergy sector: A review. Renew. Sustain. Energy Rev. 2017, 77, 59–69. [Google Scholar] [CrossRef]
- Bridgwater, A.V.; Toft, A.J.; Brammer, J.G. A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renew. Sustain. Energy Rev. 2002, 6, 181–246. [Google Scholar] [CrossRef]
- Situmorang, Y.A.; Zhao, Z.; Yoshida, A.; Abudula, A.; Guan, G. Small-scale biomass gasification systems for power generation (<200 kW class): A review. Renew. Sustain. Energy Rev. 2020, 117, 109486. [Google Scholar] [CrossRef]
- Richardson, Y.; Blin, J.; Julbe, A. A short overview on purification and conditioning of syngas produced by biomass gasification: Catalytic strategies, process intensification and new concepts. Prog. Energy Combust. Sci. 2012, 38, 765–781. [Google Scholar] [CrossRef]
- Smoot, L.D.; Hill, S.C.; Xu, H. NOx control through reburning. Prog. Energy Combust. Sci. 1998, 24, 385–408. [Google Scholar] [CrossRef]
- Vainio, E.; Kinnunen, H.; Laurén, T.; Brink, A.; Yrjas, P.; DeMartini, N.; Hupa, M. Low-temperature corrosion in co-combustion of biomass and solid recovered fuels. Fuel 2016, 184, 957–965. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Baxter, D. Trace element concentrations and associations in some biomass ashes. Fuel 2014, 129, 292–313. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Vassileva, C.G. An overview of the behaviour of biomass during combustion: Part I. Phase-mineral transformations of organic and inorganic matter. Fuel 2013, 112, 391–449. [Google Scholar] [CrossRef]
- Wang, S.; Miller, A.; Llamazos, E.; Fonseca, F.; Baxter, L. Biomass fly ash in concrete: Mixture proportioning and mechanical properties. Fuel 2008, 87, 365–371. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Vassileva, C.G. An overview of the behaviour of biomass during combustion: Part II. Ash fusion and ash formation mechanisms of biomass types. Fuel 2014, 117, 152–183. [Google Scholar] [CrossRef]
- Sarabèr, A.J. Co-combustion and its impact on fly ash quality; full-scale experiments. Fuel Process. Technol. 2014, 128, 68–82. [Google Scholar] [CrossRef]
- Lazić, L.; Lukáč, L.; Lukáč, P.; Hršak, D. Influence of the external recirculation of flue gases on reduction of NOx at propane-butane combustion. J. Int. Sci. Publ. Ecol. Saf. 2011, 5, 4–16. [Google Scholar]
- Villar, A.; Arribas, J.J.; Parrondo, J. Waste-to-energy technologies in continuous process industries. Clean Technol. Environ. Policy 2012, 14, 29–39. [Google Scholar] [CrossRef]
- Haraldsson, J.; Johansson, M.T. Review of measures for improved energy efficiency in production-related processes in the aluminium industry—From electrolysis to recycling. Renew. Sustain. Energy Rev. 2018, 93, 525–548. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Bangs, C.E.; Muller, D.B. Unearthing potentials for decarbonizing the U.S. aluminum cycle. Environ. Sci. Technol. 2011, 45, 9515–9522. [Google Scholar] [CrossRef] [PubMed]
- Dzurňák, R.; Varga, A.; Kizek, J.; Jablonský, G.; Lukáč, L. Influence of burner nozzle parameters analysis on the aluminium melting process. Appl. Sci. 2019, 9, 1614. [Google Scholar] [CrossRef] [Green Version]
- Lukáč, L.; Kizek, J.; Varga, A.; Lazić, L.; Dzurňák, R. Selected parameters that influence emission formation during aluminum melting. In Coexistence of Material Science and Sustainable Technology in Economic Growth, Proceedings of the 18th International Foundrymen Conference, Sisak, Croatia, 15–17 May 2019; University of Zagreb: Zagreb, Croatia, 2019; pp. 288–294. ISBN 978-953-7082-34-5. [Google Scholar]
- Brough, D.; Jouhara, H. The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. Int. J. Thermofluids 2020, 1–2, 100007. [Google Scholar] [CrossRef]
- Royo, P.; Ferreira, V.J.; López-Sabirón, A.M.; García-Armingol, T.; Ferreira, G. Retrofitting strategies for improving the energy and environmental efficiency in industrial furnaces: A case study in the aluminium sector. Renew. Sustain. Energy Rev. 2018, 82, 1813–1822. [Google Scholar] [CrossRef] [Green Version]
- Lukáč, L.; Kizek, J.; Jablonský, G.; Karakash, Y. Defining the mathematical dependencies of NOx and CO emission generation after biomass combustion in low-power boiler. Civ. Environ. Eng. Rep. 2019, 29, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Lundin, L.; Gomez-Rico, M.F.; Forsberg, C.; Nordenskjold, C.; Jansson, S. Reduction of PCDD, PCDF and PCB during co-combustion of biomass with waste products from pulp and paper industry. Chemosphere 2013, 91, 797–801. [Google Scholar] [CrossRef]
- Křůmal, K.; Mikuška, P.; Horák, J.; Hopan, F.; Krpec, K. Comparison of emissions of gaseous and particulate pollutants from the combustion of biomass and coal in modern and old-type boilers used for residential heating in the Czech Republic, Central Europe. Chemosphere 2019, 229, 51–59. [Google Scholar] [CrossRef]
Reference | Studied Systems | Approach | Evaluated Aspects |
---|---|---|---|
Hein and Bemtgen (1998) [17] | Various fuels, co-feeding ratios, boiler types, and thermal outputs from 0.3 to 150 MWt | EU project; Experimental | Fuel conversion, Chlorine and GHG emissions, content of heavy metals in ash |
Hughes (2000) [64] | Survey on realized co-combustion application in the USA | Opinion on economic, environmental, and political aspects of co-combustion | |
Mann and Spath (2001) [65] | Coal fired power plant 360 MWe in co-combustion mode | Software analysis, LCA | Gaseous and other emissions, energy efficiency, biomass utilization sensitivity to GWP |
Sami et al. (2001) [8] | Detailed survey on realized and planned co-combustion application in the USA and in the EU | Review paper | Technical aspect: fuel properties and preparation, boiler types, emissions, carbon burnout |
Royo et al. (2012) [66] | Case of Spain, co-combustion potential in existing coal fired power plants | Available biomass LCA assessment | Nation-wide GHG emissions reduction and power from biomass production potential |
Lüschen and Madlener (2013) [67] | Case of Germany, co-combustion potential in new coal fired power plants | Techno-economic analysis by simulation. Marginal analysis. Statistical evaluation. | NPV, its sensitivity in various scenarios. |
Gu et al. (2013) [68] | Industrial FB boiler in coal-biomass co-combustion mode | Simulation software ECLIPSE | Plant efficiency, CO2 savings, project NPV |
Kazagic et al. (2016) [69] | Coal power plant in Serbia | Biomass availability assessment, economic analysis | Environmental and economic PI |
Mohd Idris et al. (2018) [70] | Power plant in Malaysia, coal + palm oil biomass | Biomass supply chain assessment, techno-economic assessment and optimization | Multicriterial optimization of biomass utilization, environmental and economic PI |
Nyashina and Strizhak (2018) [71] | Potential of composite fossil—biomass fuel use in Russia | Laboratory rotary muffle furnace + gas analyzer | Environmental PI |
Pikoń et al. (2019) [72] | Comparative analysis, waste fuel and lignite—case of Poland | Laboratory TGA, LCA based on the results | Environmental PI |
Smolinski et al. (2019) [73] | Fuel produced from sewage sludge treatment and coal—case of Poland | Pilot plant for sewage sludge treatment; profitability analysis | Economic and environmental PI |
Truong et al. (2019) [74] | Assessment of straw and rice husk cofiring in Vietnam | Spatio-temporal analysis, techno-economic evaluation, sensitivity analysis | GHG emissions reduction, fossil, and renewable electricity production costs |
Glushkov et al. (2020) [48] | Testing co-combustion of new composite fuels in a laboratory tube muffle furnace, results applied to three regions in Russia via fossil fuel saving calculations. | TIC, financial savings |
Reference | [75] | [75] | [76] | [76] | [77] | [78] | [27] | [79] | [80] |
---|---|---|---|---|---|---|---|---|---|
Sample | Straw | Wood | Eucalyptus Bark | Rice Husk | Woody Residues | Laying Hens Manure | RDF (Sample Plastics Blend) | Automobile Shredder Residue | Aseptic Milk Package (Tetrapak) |
Proximate analysis, % wt. | |||||||||
Fixed carbon | 15.44 | 17.05 | 39.9 | 18.6 | 9.3 | 3.67 db | 6.07 db | 10.00 | 8.16 |
Volatile matter | 66.40 | 74.14 | 43.1 | 54.4 | 37.4 | 67.01 db | 82.67 db | 71.10 | 76.92 |
Ash | 7.13 | 0.41 | 10.7 | 18.2 | 0.4 | 29.32 db | 11.25 db | 18.00 | 5.96 + 6.1 Al foil |
Moisture | 11.03 | 8.40 | 6.3 | 8.8 | 52.9 | 12.17 | 1.23 | 0.50 | 2.8 |
Ultimate analysis, % wt. | |||||||||
Carbon | 38.88 ar | 45.94 ar | 41.70 ar | 37.47 | 52.4 db | 38.40 db | 58.09 db | 58.88 daf | 47.33 daf |
Hydrogen | 5.44 ar | 5.50 ar | 4.60 ar | 4.64 | 5.9 db | 5.91 db | 9.38 db | 6.75 daf | 7.17 daf |
Oxygen | 36.75 ar | 39.65 ar | 36.10 ar | 30.90 | 40.6 db | 21.74 | 20.39 db | 13.55 daf | 30.26 daf |
Nitrogen | 0.70 ar | 0.08 ar | 0.54 ar | 0.59 | 0.19 db | 4.19 | 0.35 db | 1.42 daf | 0.26 daf |
Sulfur | 0.01 ar | 0.02 ar | 0.06 ar | - | 0.022 db | 0.44 | - | 0.90 daf | 0.06 daf |
LHV, MJ/kg | 14.35 ar | 17.13 ar | 14.70 ar | 14.36 ar | 9.924 ar | 12.36 ad | 31.23 db | - | - |
Reference | [81] | [81] | [15] | [82] | [83] | [46] | [84] | [85] |
---|---|---|---|---|---|---|---|---|
Sample | Highvale Coal | Eastern Bituminous | Illinois Bituminous | Czech Coal “Sokolov” | Yunnan Low Rank Coal | Industrial Coal Slurry | Taldinsky Hard Coal | B-Goynuk Lignite |
Proximate analysis, % wt. | ||||||||
Fixed carbon | 43.89 | 55.52 | 44.2 | 33.64 | 31.91 db | 36.62 ad | 46.28 | 23.65 |
Volatile matter | 37.15 | 34.91 | 37.4 | 37.19 | 21.40 ab | 57.51 ad | 32.92 | 39.63 db |
Ash | 11.39 | 8.82 | 14.7 | 22.46 | 46.70 db | 34.92 ad | 8.67 | 24.59 db |
Moisture | 7.61 | 0.75 | 3.7 | 6.71 | 7.0 | 0.95 ad | 12.13 | 33.91 |
Ultimate analysis, % wt. | ||||||||
Carbon | 60.70 db | 77.33 db | 80.2 daf | 50.20 daf | 40.44 db | 53.29 ad | 63.45 ar | 55.57 db |
Hydrogen | 4.01 db | 5.08 db | 5.7 daf | 4.01 daf | 2.99 db | 3.89 ad | 4.79 ar | 10.29 db |
Oxygen | 21.86 db | 6.29 db | 7.0 daf | 15.49 daf | 7.05 db | 9.41 ad | 8.85 ar | 4.93 db |
Nitrogen | 0.84 db | 1.45 db | 1.7 daf | 0.73 daf | 0.78 db | 0.83 ad | 1.81 ar | 1.73 db |
Sulfur | 0.28 db | 0.96 db | 5.4 daf | 0.58 daf | 2.05 db | 0.65 ad | 0.30 ar | 2.89 db |
Higher heating value, MJ/kg | 21.59 ar | 32.13 ar | 27.31 ar | 19.56 (LHV, ar) | 14.46 ad | 22.07 ad | 25.02 (LHV, ar) | 20.62 db |
Reference | [18] | [38] | [89] | [90] | [91] | [92] | [15] | [38] | [89] | [91] |
---|---|---|---|---|---|---|---|---|---|---|
Sample Compound % wt. | Wheat Straw | Sakura Wood | Red Oak Wood | Soybean Stalk | Poultry Litter | Blend of Fibrous and Plastic Waste | US Wyoming Subbit. Coal | Bituminous Coal | Coal | Turkish Lignite |
SiO2 | 58.0 | 5.6 | 49 | 33.18 | 4.73 | 33 | 48 | 64.2 | 42 | 53.71 |
Al2O3 | 3.2 | 1.4 | 9.5 | 2.55 | 1.09 | 27 | 19 | 21.4 | 20 | 24.08 |
Fe2O3 | 1.5 | 2.2 | 8.5 | 1.75 | - | 0.9 | 12 | 4.45 | 17 | - |
CaO | 6.0 | 51.7 | 17.5 | 30.95 | 39.52 | 21 | 16 | 1.02 | 5.5 | 2.48 |
MgO | 1.4 | 17.2 | 1.1 | 8.23 | 6.22 | 3.0 | 4.1 | 0.88 | 2.1 | 1.73 |
Na2O | 0.9 | 0.6 | 0.5 | 3.56 | 5.11 | 1.6 | 0.7 | 0.58 | 1.4 | 0.76 |
K2O | 14.0 | 4.4 | 9.5 | 15.72 | 26.53 | 0.6 | 1.0 | 1.52 | 5.8 | 1.41 |
P2O5 | 2.8 | 2.9 | 1.8 | 2.43 | - | - | - | 0.19 | - | - |
Slagging index [37] | 0.43 | 11.29 | 0.66 | 1.75 | 13.30 | 0.45 | 0.50 | 0.10 | 0.51 | 0.08 |
Fouling index [87] | 6.5 | 56.4 | 6.6 | 33.8 | 420.7 | 1.0 | 0.9 | 0.2 | 3.7 | 0.2 |
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Fos. | B + W | Ene. | Ec. | Env. | |||||||
[15] | R | 2001 | M | M | D, Ot. | FS | Y | Y | Y | Y | Y |
[18] | O | 1996 | S | S | N | FS (PPB) | N | N | Y | Y | Y |
[17] | O | 1998 | M | M | V | M | Y | N | Y | Y | Y |
[104] | O | 2000 | M | M | D, Ot. | L (F + REB) | N | N | Y | Y | N |
[19] | O | 2000 | M | M | D | FS | Y | N | Y | Y | Y |
[105] | O | 2000 | M | S | N | FS (PPB) | N | N | Y | Y | Y |
[64] | O | 2000 | M | M | N | FS | N | Y | Y | Y* | N |
[8] | R | 2001 | M | M | V | FS | Y | N | Y | Y | Y |
[65] | O | 2001 | S | M | N | FS (PPB), C | Y | N | Y | Y* | N |
[44] | O | 2002 | S | M | N | FS (IB) | N | N | Y | Y | Y |
[82] | O | 2003 | S | S | N | L (PFBA) | N | N | Y | Y | Y |
[106] | O | 2003 | M | S | N | FS (PCB) | N | N | Y | Y | Y |
[89] | R | 2003 | M | M | N | M | N | N | Y | Y* | N |
[107] | O | 2005 | S | S | N | P, C (PCB) | N | N | Y | N | N |
[37] | O | 2006 | S | M | N | C | Y | N | Y | Y | Y |
[108] | O | 2007 | S | S | N | P, FS (CFBB) | N | N | N | Y | N |
[36] | R | 2007 | M | M | D | FS | Y | Y | Y | Y | Y |
[33] | O | 2007 | M | M | N | FS | Y | N | Y | Y | N |
[13] | R | 2008 | M | M | N | FS, C | Y | N | Y | Y | Y |
[109] | O | 2008 | M | S | N | L (EFR) | N | N | Y | Y | Y |
[32] | R | 2010 | M | M | N | M—FS | N | N | Y | Y | Y |
[110] | O | 2011 | S | M | N | L, C (FBB + PY + REB) | N | N | Y | Y | N |
[111] | O | 2011 | M | S | N | L (F + REB) | N | N | Y | Y | Y |
[51] | R | 2012 | M | M | N | M—FS | N | N | Y | N | Y |
[112] | O | 2012 | S | M | G | C (BG + REB) | N | N | Y | Y | N |
[113] | O | 2012 | S | S | N | L (BF) | N | N | Y | Y* | N |
[114] | O | 2012 | M | M | N | FS, C | Y | N | Y | Y | Y |
[115] | O | 2012 | M | M | N | P, C | Y | N | Y | Y | N |
[116] | O | 2012 | M | S | N | L (EFR) | N | N | Y | Y | Y |
[117] | O | 2013 | M | S | N | L (TGA, DTGA) | N | N | N | Y | N |
[118] | O | 2013 | M | M | Ot. | L (TGA, DTGA) | N | N | N | Y | N |
[68] | O | 2013 | S | S | N | FS, C | Y | Y | Y | Y* | N |
[119] | O | 2013 | S | S | G | P (BG+REB) | Y | N | Y | Y | N |
[57] | O | 2013 | S | S | N | FS, C | Y | N | N | Y | Y |
[120] | O | 2013 | M | M | D | L, FS (PPB) | N | N | Y | Y | Y |
[31] | R | 2014 | M | M | T, G, Ot. | M—FS (BG + REB) | N | N | Y | Y | Y |
[121] | O | 2014 | S | M | N | L (DTF) | N | N | Y | Y | Y |
[11] | R | 2014 | M | M | T, G, Ot. | M—L | N | N | Y | N | Y |
[10] | R | 2014 | M | M | V | FS (BG + PY) | N | N | Y | Y | Y |
[86] | O | 2015 | S | M | N | L (IFR) | N | N | Y | Y | Y |
[122] | O | 2015 | M | S | N | L (CFBC) | N | N | N | Y | Y |
[123] | O | 2015 | S | S | N | FS, C (PPB + CFD) | N | N | N | Y | Y |
[124] | O | 2015 | S | S | N | L, C (F + CFD) | N | N | N | Y | Y |
[41] | O | 2015 | S | M | N | L (CFBC) | N | N | Y | Y | N |
[125] | O | 2016 | S | S | N | L (F + REB) | N | N | Y | Y | Y |
[25] | O | 2016 | S | M | N | L (TGA, DTGA) | N | N | N | Y | Y |
[38] | O | 2016 | S | M | D | L (DTF) | N | N | N | Y | Y |
[49] | O | 2016 | M | S | N | L (PFF) | N | N | Y | Y | Y |
[69] | O | 2016 | M | M | N | FS | Y | Y | Y | Y* | N |
[55] | O | 2016 | M | M | N | FS, C | Y | Y | Y | Y* | N |
[126] | O | 2016 | M | S | N | L (EFR) | N | N | Y | Y | Y |
[58] | O | 2017 | M | S | N | FS, C (CB + CFD) | N | N | Y | N | N |
[127] | O | 2017 | S | M | T | L (FBC) | N | N | Y | Y | Y |
[103] | R | 2017 | M | M | V | M—FS, L | N | N | Y | Y | Y |
[78] | O | 2017 | S | S | D | L (TGA, DTGA) | N | N | N | Y | N |
[85] | O | 2017 | M | S | N | P | Y | N | Y | Y | Y |
[84] | O | 2017 | S | S | T | P | Y | N | Y | Y | N |
[128] | O | 2017 | M | S | N | L, P (PFC) | N | N | N | Y | Y |
[129] | O | 2017 | S | S | D | FS, C | Y | N | Y | Y | Y |
[56] | O | 2017 | S | S | V | FS | Y | N | Y | Y* | N |
[52] | R | 2017 | M | M | D | M—FS | N | N | Y | Y* | N |
[42] | O | 2018 | S | S | N | L (CFBC) | N | N | Y | Y | Y |
[20] | O | 2018 | S | S | D | FS, C | Y | N | Y | N | Y |
[26] | O | 2018 | S | S | D, T | L (TGA, DTGA) | N | N | N | Y | Y |
[130] | O | 2018 | S | S | N | C | Y | N | Y | N | N |
[131] | O | 2018 | S | M | T | L (DTF) | N | N | N | N | Y |
[132] | O | 2018 | M | M | T | L | Y | N | Y | Y | Y |
[91] | O | 2018 | S | M | T | L (SPR) | N | N | Y | Y | Y |
[22] | O | 2018 | S | M | D | L (DTF + TGA) | N | N | Y | Y | Y |
[133] | O | 2018 | S | M | N | P (F) | N | N | Y | Y | Y |
[134] | O | 2018 | S | S | N | L (DTF + TGA) | N | N | Y | N | Y |
[71] | O | 2018 | M | M | D | L | Y | Y | Y | Y | N |
[45] | O | 2018 | S | S | N | P (PFC) | N | N | Y | N | Y |
[50] | O | 2018 | S | M | D | L (TGA, DTGA) | N | N | N | Y | Y |
[135] | O | 2018 | S | S | N | FS (IB—MG) | N | N | Y | Y* | N |
[63] | O | 2018 | S | S | D | FS, C | Y | Y | N | Y | N |
[136] | O | 2018 | M | S | N | L (PFF) | N | N | Y | Y | Y |
[23] | O | 2018 | M | M | N | L (DFT) | N | N | Y | Y | Y |
[28] | O | 2018 | M | S | N | P (PFC) | N | N | N | Y | Y |
[137] | O | 2018 | - | M | N | M, C | N | N | N | Y | Y |
[138] | O | 2018 | S | S | N | L (FBC + TGA, DTGA) | N | N | Y | Y | Y |
[70] | O | 2018 | S | M | T | FS, C | Y | Y | Y | Y* | N |
[139] | O | 2019 | S | S | D | L (DTF) | N | N | N | Y | Y |
[140] | R | 2019 | M | M | N | M, C (CLC) | N | N | Y | Y | Y |
[47] | O | 2019 | M | M | D | L (TGA, DTGA) | N | N | N | Y | Y |
[141] | O | 2019 | S | S | D | L, C (TGA) | N | N | N | Y | Y |
[39] | O | 2019 | M | M | N | FS (CFBB) | N | N | N | Y | Y |
[142] | R | 2019 | M | M | N | M, C | Y | Y | Y | Y | Y |
[143] | O | 2019 | S | M | Ot. | L (TGA, DTGA) | N | N | N | Y | Y |
[43] | O | 2019 | S | S | D | L, P, C (DTF + CFBB) | N | N | Y | Y | Y |
[83] | O | 2019 | S | S | N | L (TGA, DTGA) | N | N | N | Y | Y |
[144] | O | 2019 | S | S | N | P (F) | N | N | N | N | Y |
[145] | O | 2019 | S | M | N | FS, C (ash samples) | N | N | N | Y | Y |
[90] | O | 2019 | S | S | N | L (MIA—ash samples) | N | N | N | Y | Y |
[46] | O | 2019 | S | S | D | L (TGA, DTGA) | N | N | Y | Y | Y |
[146] | O | 2019 | S | S | N | M, C (CFD) | N | N | Y | N | Y |
[147] | O | 2019 | S | M | D | L (DTF) | N | N | Y | Y | Y |
[148] | O | 2019 | S | S | D | L (TGA, DTGA) | N | N | N | N | Y |
[88] | O | 2019 | M | M | N | L (MIA) | N | N | N | N | Y |
[24] | O | 2019 | M | S | N | L (DTF + TGA) | N | N | N | Y | Y |
[149] | O | 2020 | S | S | T | P (PFF) | N | N | Y | Y | Y |
[150] | O | 2020 | S | M | D | L (MIA) | N | N | N | Y | Y |
[29] | O | 2020 | S | S | N | L (FBC) | N | N | Y | Y | Y |
[59] | O | 2020 | S | S | N | FS, C (FBC + CFD) | N | N | Y | Y | Y |
[151] | O | 2020 | S | S | N | FS, C (UGB + REB) | N | N | Y | Y | Y |
[152] | O | 2020 | S | M | N | L, C (CLC + CFD) | N | N | Y | Y | Y |
[21] | O | 2020 | S | M | N | (pelletizing grate kiln) P, C | N | N | N | Y | Y |
[153] | O | 2020 | S | S | N | L, C (F + CFD) | N | N | Y | Y | Y |
[40] | O | 2020 | S | S | D | L (MIA—ash samples) | N | N | N | Y | Y |
[154] | O | 2020 | S | S | T | L (TGA, DTGA) | N | N | N | N | Y |
[27] | O | 2020 | M | M | N | L (TGA, DTGA) | N | N | N | Y | Y |
[155] | O | 2020 | S | M | T | P (PFC) | N | N | Y | Y* | N |
[48] | O | 2020 | S | M | N | L (TF) | N | N | Y | Y | Y |
[156] | O | 2020 | S | M | N | L (TGA, DTGA) | N | N | Y | Y* | Y |
[157] | O | 2020 | M | M | N | L (TGA, DTGA, TF) | N | N | Y | Y* | Y |
[158] | O | 2020 | S | S | N | L (MIA) | N | N | N | Y* | Y |
Ref. | Fossil Fuel | Biomass/Waste | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Description | 1 | 2 | 3 | 4 | Description | 1 | 2 | 3 | 4 | |
[18] | High sulfur bituminous coal | M | Y | Y | Y | Wheat straw | Sh, P | Y | Y | Y |
[104] | Coal, natural gas | M | Y | Y | Y | Hard- and softwood | Sh, S | Y | Y | Y |
[19] | Coal, oil | V | Y | Y | Y | Various biomass types + sources | V | Y | Y | Y |
[105] | Two types of coal | M | Y | Y | Y | Surplus straw from farming | Sh, M | Y | Y | Y |
[8] | Coals | V | Y | Y | Y | Multiple biomass and waste types | V | Y | Y | Y |
[65] | Coal Illinois No. 6 | N | N | N | N | Multiple biomass types | N | Y | Y | Y |
[44] | Greek lignite | N | Y | Y | Y | Multiple biomass and waste types | N | Y | Y | Y |
[82] | Czech Sokolov coal | S | Y | Y | Y | Wood chips | Sh, S | Y | Y | Y |
[106] | Polish and Russian coal | M | Y | Y | Y | Pine sawdust | N | Y | Y | Y |
[89] | Multiple coal types | N | Y | Y | Y | Multiple biomass types | N | Y | Y | Y |
[107] | Bituminous UK coal | M | Y | Y | N | Pinewood pellets | M, S | Y | Y | N |
[37] | Upper Silesian coal | N | Y | N | Y | Wood, straw, sewage sludge | N | Y | N | Y |
[108] | Coal | N | Y | Y | N | Wood chips | N | Y | Y | N |
[36] | Multiple coal types | N | Y | Y | Y | Multiple biomass and waste types | N | Y | Y | Y |
[33] | Lignite and bituminous coal | M | Y | Y | N | Multiple biomass types | M | Y | Y | N |
[13] | Multiple coal types | M | Y | Y | Y | Multiple biomass and waste types | M | Y | Y | Y |
[109] | Four coal types | M, S | Y | Y | N | Eucalyptus biomass | M, S | Y | Y | N |
[111] | NG, coal | N | Y | Y | Y | Pine sawdust | N | Y | Y | Y |
[112] | Hard coal | N | Y | Y | N | Sewage sludge, two types | N | Y | Y | N |
[113] | Coal Pittsburgh No. 8 | M, S | Y | Y | Y | Sugarcane bagasse | M, S | Y | Y | Y |
[114] | Two coal types | N | Y | Y | Y | Four biomass types | N | Y | Y | Y |
[116] | Two coal types | M, S | Y | Y | Y | Olive waste | M, S | Y | Y | Y |
[117] | Two coal types | M, S | Y | Y | Y | Wood pellets | M, S | Y | Y | Y |
[118] | Turkish lignites | M | Y | Y | Y | Two waste biomass types | M, Sh | Y | Y | Y |
[68] | Coal | N | Y | Y | Y | Tobacco waste | N | Y | Y | Y |
[119] | Polish hard coal | N | Y | Y | Y | Alder wood chips | N | Y | Y | Y |
[57] | Coal Pittsburgh No. 8 | N | Y | Y | Y | Wood | N | Y | Y | Y |
[120] | Coal and coal ash | M, S | Y | N | Y | Spruce + Miscanthus | M, S | Y | N | Y |
[31] | Multiple coal types, NG | V | Y | Y | Y | Multiple biomass types | V | Y | Y | Y |
[121] | Coal | N | Y | Y | Y | Straw, wood | N | Y | Y | Y |
[86] | Hard coal | M | Y | Y | Y | Straw, woody biomass | M | Y | Y | Y |
[122] | Two lignites | M | Y | Y | Y | Olive cake | M | Y | Y | Y |
[123] | Coal | M | Y | Y | Y | Biomass | M | Y | Y | Y |
[124] | Coal | M | Y | Y | Y | Biomass | M | Y | Y | Y |
[41] | Bituminous coal | N | Y | Y | Y | Three biomass types | N | Y | Y | Y |
[25] | Bituminous coal | M | Y | Y | Y | Corncob and hardwood | M | Y | Y | Y |
[38] | Bituminous coal | M, S | Y | Y | Y | Four woody biomasses | M, S | Y | Y | Y |
[49] | Two coals + LPG | M, S | Y | Y | Y | Woody biomass | M, S | Y | Y | Y |
[126] | Coal blends, NG | M | Y | Y | Y | Biomass | M | Y | Y | Y |
[58] | Two Coals | M | Y | Y | Y | Pine sawdust | M | Y | Y | Y |
[127] | Hard coal | N | Y | Y | Y | Various biomass types | N | Y | Y | Y |
[78] | Gas-flame coal | M | Y | Y | Y | Laying hens manure | M | Y | Y | Y |
[85] | Two lignites | N | Y | Y | Y | Red pine chips | N | Y | Y | Y |
[84] | Hard coal | S | Y | Y | Y | Torrefied biomass | P | Y | Y | Y |
[128] | Three coals | M | Y | Y | N | Straw | M | Y | Y | N |
[129] | Coal | N | Y | Y | Y | Sawdust | N | Y | Y | y |
[56] | Coal | N | N | N | Y | Poplar chips | N | N | N | Y |
[42] | Lignite | N | Y | Y | Y | Wood pellets | N | Y | Y | Y |
[20] | Lignite | M | Y | Y | Y | Biomass | M | Y | Y | Y |
[26] | Coal Illinois No. 6 | N | Y | Y | Y | Avocado pits | M, S | Y | Y | Y |
[130] | Natural gas | N | Y | Y | Y | Biomass | P | Y | Y | Y |
[131] | Coal | M, S | Y | Y | Y | Various biomass types | M, S | Y | Y | Y |
[132] | Two coals | M, S | Y | Y | Y | Two biomass types, each raw or torrefied | M, S | Y | Y | Y |
[91] | Lignite | M, P | Y | Y | Y | Two biomass types, each raw or torrefied | M, P | Y | Y | Y |
[22] | Black coal | M, S, P | Y | Y | Y | Sewage sludge and Shiitake substrate | M, S, P | Y | Y | Y |
[133] | Natural gas (methane) | N | N | N | N | Three simulated syngases | N | Y | Y | Y |
[134] | Anthracite | M, S | Y | Y | Y | RDF | M, S | Y | Y | Y |
[71] | Coal water slurry, used turbine oil | N | Y | Y | Y | Various forest biomass types | M, S | Y | Y | Y |
[45] | Coal | M | Y | Y | Y | White wood pellets | M | Y | Y | Y |
[50] | Indonesian low rank coal | M, S | Y | Y | Y | Sewage sludge, woody biomass | M, S | Y | Y | Y |
[135] | Czech brown coal | N | Y | Y | Y | Solid recovered fuel | N | Y | Y | Y |
[63] | Coal | M | Y | Y | Y | Biomass | M | Y | Y | Y |
[136] | Australian bit coal + LPG | N | Y | Y | Y | Woody biomass | N | Y | Y | Y |
[23] | Low rank Bosnian coals | M | Y | Y | Y | Sawdust and Miscanthus | M | Y | Y | Y |
[28] | Greek lignite and NG | M, S | Y | Y | Y | Biomass | M, S | Y | Y | Y |
[138] | Bituminous coal | N | Y | Y | Y | Composite biomass pellets | P | Y | Y | Y |
[70] | Coal | N | N | N | N | Palm oil production residual biomass | P | N | N | Y |
[139] | Coal | M | Y | Y | N | Biomass | M | Y | Y | N |
[47] | Three coals | M, S | Y | Y | Y | Two wastes | M, S | Y | Y | Y |
[141] | Lignite | S | Y | Y | Y | Pine sawdust | S | Y | Y | Y |
[39] | Coal, coal slurry | N | Y | Y | Y | Sunflower pellets and woodchips | N | Y | Y | Y |
[143] | Australian coal | N | Y | Y | N | Oat straw, gumwood | N | Y | Y | N |
[43] | Anthracite | M | Y | Y | Y | Sawmill sludge | M | Y | Y | Y |
[83] | Low rank coal | M, S | Y | Y | Y | Tobacco stalk | M, S | Y | Y | Y |
[144] | Coal | N | Y | Y | Y | Corn stalk | N | Y | Y | Y |
[145] | Coal blends | N | Y | Y | Y | Multiple biomass types | N | Y | Y | Y |
[90] | Bituminous coal | N | Y | Y | Y | Soybean stalk | N | Y | Y | Y |
[46] | Industrial coal slurry | M | Y | Y | Y | Municipal sewage sludge | M | Y | Y | Y |
[147] | Bituminous coal | M, S | Y | Y | Y | Empty palm fruit bunches, wood pellets | M, S | Y | Y | Y |
[148] | Bituminous coal | M, S | Y | Y | Y | Microalgae biomass | M, S | Y | Y | Y |
[88] | Two coals | M, S | Y | Y | Y | Sawmill wood waste, miscanthus | M, S | Y | Y | Y |
[24] | Two coals | M, S | Y | Y | Y | Wood pellets | M, S | Y | Y | Y |
[149] | Hard coal | M | Y | Y | Y | Pelletized sawdust | P, M | Y | Y | Y |
[150] | anthracite | S | Y | Y | N | Three hydrochars | S | Y | Y | N |
[29] | Coal | N | Y | Y | N | Wheat straw | N | Y | Y | N |
[59] | Coal | N | Y | Y | Y | Wheat straw | N | Y | Y | Y |
[151] | NG (methane) | N | N | N | N | Waste wood | N | Y | Y | Y |
[152] | Bituminous coal | N | Y | Y | Y | Three biomass types | N | Y | Y | Y |
[21] | High rank bituminous coal | N | Y | Y | Y | White and black pellets | N | Y | Y | y |
[153] | Coal | N | Y | Y | N | Olive waste | N | Y | Y | N |
[40] | Coal | M, S | Y | Y | N | Pine sawdust | M, S | Y | Y | N |
[154] | Lignite | M, S | Y | Y | Y | Poultry litter, raw and torrefied | M, S | Y | Y | Y |
[27] | Two low quality coals | N | Y | Y | Y | Two RDF types | N | Y | Y | Y |
[155] | Bituminous coal | N | Y | Y | Y | Four woody biomass types | N | Y | Y | Y |
[48] | Slurry cake—waste coal | M, S | Y | Y | Y | MSW components and used turbine oil | M, S | Y | Y | Y |
[156] | Shale coal | M | N | N | Y | Three biomass types | M | N | N | Y |
[157] | Two coals | M | Y | N | Y | Biomass from phytoremediation | M | Y | N | Y |
[158] | Peat | N | Y | Y | Y | Wheat bran | N | Y | Y | Y |
Reference | [5] | [159] | [160] | [160] | [161] | [162] | [163] | [164] | [165] |
---|---|---|---|---|---|---|---|---|---|
Process, Equipment | Laboratory Screw Pyrolyzer | Batch Fixed Bed Gasifier + Secondary Catalytic Reactor | Fixed Bed Pyrolyzer | Auger Pyrolyzer Pilot Plant | Full Scale Dual Fluid Bed Gasifier | Laboratory Pyrolyzer—TGA Apparatus | Laboratory Gasifier | Laboratory Gasifier | |
Feedstock | Pine Needles | RDF | Forestry Waste | Waste Tires | Woody Biomass | Wood Pellets | Elephant Grass | Waste Tires + Plastics + Biomass | Wood Pellets |
Gas Composition, % vol. | Component Yield, % wt. of Dry Biomass | Gas Composition, % vol. | |||||||
H2 | 5.33 | 24.0 | 2.3 | 12.0 | 39.6 | 39.9 | 0 | 4.3 | 3.57 |
N2 | 56.41 | - | - | - | - | - | - | 56.7 | 67.51 |
CO | 15.89 | 20.0 | 43.9 | 20.0 | 22.8 | 24.0 | 6.6 | 5.6 | 15.3 |
CO2 | 12.00 | 10.1 | 41.8 | 8.0 | 20.9 | 25.2 | 18.6 | 7.9 | 10.8 |
CH4 | 9.22 | 2.7 | 9.6 | 7.4 | 9.8 | 8.6 | 0.6 | 3.7 | 2.82 |
C2H4 | 1.15 | 1.7 | 0.9 | 10.7 | 3.1 | 2.0 | 0.1 | 0.1 | - |
Other | - | 41.5 | 1.5 | 41.9 | 3.8 | 0.3 | 0.2 | - | - |
Ref. | Layout | Performance Indicator | Biomass Share, % |
---|---|---|---|
[37] | 140 t/h steam boiler | BE | ≤20 thermal |
[33] | 18.7 MWe plant | specific fuel consumption | ≤60 by mass |
[13] | Multiple systems | BE | ≤100 |
[114] | Simulated co-firing power plant | BE, PE | ≤30 by mass |
[115] | Spanish coal fired power plants | BE, PE | ≤17 by mass |
[119] | Biomass gasifier + gas reburning in flue gas of coal combustion | BE | ≤46 thermal |
[57] | 500 MWe coal boiler, CFD simulation | data from boiler simulation | ≤100 |
[85] | 0.75 MWt CFB combustor | BE | ≤23 by mass |
[84] | 1 MWt CFB system with chemical looping for CO2 capture | Carbon capture efficiency | ≤50 by mass |
[129] | 1000 MWe supercritical oxyfuel power plant with CC modeled in ChemCAD | net electric efficiency | ≤100 |
[20] | Pulverized coal boiler, CFD calculations + Aspen Plus | BE | ≤100 |
[130] | Model calculation of energy consumption and CO2 LCA for biomass co-firing | energy consumption for supply chain, biomass pretreat | Not provided |
[132] | Laboratory drop tube furnace | combustion efficiency | ≤50 by mass |
Ref. | VS | Combustion | Process Aspects | Ash | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OC | AS | REB | AE | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Other | 8 | 9 | ||
[18] | Y | N | N | N | N | N | N | N | Y | N | N | N | Y | Y | Y |
[17] | Y | N | Y | N | N | Y | Y | Y | Y | N | N | N | N | N | N |
[104] | Y | N | Y | Y | Y | N | N | N | N | N | N | N | Y | N | N |
[19] | Y | N | N | N | N | Y | N | N | N | N | N | N | Y | Y | Y |
[105] | Y | N | Y | N | N | Y | Y | Y | Y | N | N | N | Y | Y | Y |
[8] | Y | N | N | N | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
[44] | Y | N | Y | N | N | Y | N | N | Y | N | N | N | N | Y | N |
[82] | Y | N | N | N | Y | N | N | N | Y | N | N | Y | Y | Y | N |
[106] | Y | N | Y | N | N | Y | Y | N | Y | N | N | N | Y | Y | Y |
[35] | N | N | N | N | N | Y | N | Y | N | N | N | Y | Y | N | Y |
[107] | N | N | N | N | N | N | N | N | Y | N | Y | Y | N | N | N |
[37] | Y | N | N | N | N | Y | N | N | N | N | N | N | N | Y | N |
[108] | Y | N | N | N | N | N | N | N | Y | N | N | Y | Y | N | N |
[36] | Y | N | N | N | N | Y | N | N | N | N | N | N | Y | Y | N |
[33] | Y | N | Y | N | N | N | N | N | N | N | N | N | N | N | N |
[13] | Y | N | N | N | N | Y | Y | Y | Y | N | N | N | Y | Y | Y |
[109] | Y | Y | N | N | N | N | N | N | Y | Y | N | N | Y | N | N |
[32] | Y | N | N | N | N | Y | Y | N | N | N | N | N | N | N | N |
[110] | Y | N | N | Y | Y | N | N | N | N | N | N | N | Y | N | N |
[111] | Y | N | N | Y | N | N | N | N | Y | N | N | N | Y | N | N |
[51] | Y | N | N | N | N | Y | Y | Y | Y | N | N | N | N | Y | Y |
[112] | Y | N | N | Y | Y | N | N | N | N | N | N | N | Y | N | N |
[114] | Y | N | N | N | N | N | N | N | N | N | N | N | N | Y | N |
[115] | Y | N | N | N | Y | N | N | N | N | N | N | Y | N | Y | N |
[116] | Y | Y | N | N | N | N | N | N | Y | Y | N | N | Y | N | N |
[117] | Y | N | N | N | N | N | N | N | N | Y | N | Y | N | N | N |
[118] | Y | Y | N | N | N | N | N | N | Y | Y | N | N | N | N | N |
[119] | N | N | N | Y | Y | N | N | N | N | N | N | N | N | N | N |
[57] | N | Y | N | N | N | N | N | N | N | N | N | Y | Y | N | Y |
[120] | Y | N | Y | N | N | Y | Y | N | Y | N | N | Y | Y | Y | Y |
[31] | Y | N | Y | Y | N | Y | Y | N | N | N | N | N | N | N | N |
[121] | Y | N | Y | N | N | N | N | N | Y | N | N | N | N | N | N |
[11] | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y |
[10] | Y | N | N | N | N | Y | Y | Y | N | N | N | N | Y | N | Y |
[86] | Y | Y | N | N | Y | Y | Y | N | Y | N | N | N | Y | Y | N |
[122] | N | N | N | N | Y | N | N | N | N | N | N | N | Y | Y | Y |
[123] | Y | Y | Y | N | N | N | N | N | Y | N | N | Y | Y | N | N |
[124] | Y | Y | N | N | N | N | N | N | N | N | N | Y | Y | N | N |
[41] | Y | Y | N | N | N | N | N | N | N | N | N | N | Y | N | N |
[125] | Y | N | N | N | Y | N | N | N | N | N | N | Y | Y | N | N |
[25] | Y | Y | N | N | N | N | N | N | N | Y | N | N | Y | N | Y |
[38] | Y | N | N | N | N | N | Y | N | N | N | N | N | Y | Y | Y |
[49] | Y | N | Y | N | N | N | N | N | Y | N | N | Y | N | N | N |
[126] | Y | N | Y | Y | Y | N | N | N | N | N | N | N | Y | Y | N |
[58] | N | N | N | N | N | N | N | N | N | N | Y | Y | Y | N | N |
[127] | N | N | N | N | N | Y | Y | N | N | N | N | Y | N | Y | Y |
[103] | N | N | N | N | N | Y | Y | N | N | N | N | N | N | N | N |
[78] | Y | N | N | N | N | N | N | N | N | Y | Y | N | N | N | N |
[85] | N | N | N | N | Y | N | N | N | Y | N | N | Y | Y | Y | N |
[84] | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | N |
[128] | Y | N | N | N | Y | N | N | Y | N | N | N | N | N | Y | N |
[129] | Y | Y | Y | N | Y | N | N | N | N | N | N | N | Y | N | N |
[42] | Y | Y | N | N | Y | N | N | N | N | N | N | N | Y | Y | Y |
[20] | N | N | Y | N | N | N | N | N | Y | N | N | Y | Y | N | N |
[26] | Y | N | N | N | N | N | N | N | N | Y | Y | N | Y | N | N |
[131] | N | N | N | N | N | N | N | N | N | N | N | Y | Y | N | N |
[132] | Y | N | N | N | N | N | N | N | N | N | N | N | N | Y | N |
[91] | Y | N | N | N | N | N | N | N | N | N | N | N | Y | Y | Y |
[22] | Y | N | N | N | N | N | N | N | N | Y | Y | N | Y | N | N |
[133] | Y | N | Y | Y | Y | N | N | N | N | N | N | Y | N | N | N |
[134] | N | N | N | N | N | N | N | N | N | Y | N | N | Y | Y | N |
[71] | Y | N | N | N | N | N | N | N | N | N | N | N | Y | Y | N |
[45] | N | N | N | N | N | N | N | N | N | N | N | Y | N | Y | N |
[50] | Y | N | N | N | N | N | N | N | N | Y | N | N | Y | Y | Y |
[63] | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | N |
[136] | Y | N | Y | N | N | N | N | N | Y | N | N | Y | Y | N | N |
[23] | Y | N | Y | N | N | Y | Y | N | Y | N | N | N | Y | Y | Y |
[28] | Y | N | N | N | N | N | N | N | N | N | N | N | Y | Y | Y |
[137] | Y | N | Y | N | N | N | N | N | N | N | Y | Y | Y | N | N |
[138] | Y | N | N | N | N | N | N | N | N | Y | Y | N | Y | N | N |
[139] | Y | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y |
[140] | Y | N | N | N | N | N | N | N | Y | N | N | N | N | N | N |
[47] | Y | N | N | N | N | N | N | N | N | Y | Y | N | N | Y | N |
[141] | Y | N | N | N | N | N | N | N | N | N | N | N | Y | Y | N |
[39] | Y | N | N | N | N | Y | N | N | N | N | N | N | Y | Y | Y |
[142] | Y | Y | Y | N | N | N | N | N | N | N | N | Y | Y | N | N |
[143] | Y | N | N | N | N | N | N | N | N | Y | Y | N | N | Y | N |
[43] | Y | N | N | N | N | N | N | N | N | N | N | Y | Y | N | N |
[83] | Y | N | N | N | N | N | N | N | N | Y | Y | N | N | N | N |
[144] | N | N | N | N | N | Y | Y | N | N | N | N | N | Y | Y | Y |
[145] | Y | N | N | N | N | Y | Y | N | N | N | N | Y | Y | Y | Y |
[90] | Y | N | N | N | N | N | N | N | N | N | N | N | Y | Y | Y |
[46] | Y | N | N | N | N | N | N | N | N | Y | Y | N | Y | Y | Y |
[146] | N | N | N | N | N | Y | Y | N | N | N | N | Y | Y | N | N |
[147] | Y | N | N | N | N | Y | Y | N | N | N | N | N | Y | Y | Y |
[148] | N | N | N | N | N | N | N | N | N | Y | Y | N | Y | N | N |
[88] | Y | N | N | N | Y | Y | Y | N | N | N | N | N | Y | Y | Y |
[24] | Y | N | N | N | N | N | N | N | Y | Y | Y | N | Y | N | N |
[149] | Y | N | Y | N | N | N | N | N | Y | N | N | N | Y | N | N |
[150] | Y | N | N | N | N | N | N | N | N | Y | Y | N | N | Y | Y |
[29] | N | N | Y | N | N | N | N | N | N | N | N | N | Y | Y | N |
[59] | N | N | Y | N | N | N | N | N | Y | N | N | Y | Y | N | N |
[151] | Y | N | Y | Y | Y | N | N | N | N | N | N | Y | Y | N | N |
[152] | Y | N | N | N | N | N | N | N | N | N | N | N | Y | N | N |
[21] | Y | N | N | N | N | Y | Y | N | Y | N | N | Y | Y | Y | N |
[153] | Y | Y | Y | N | N | N | N | N | N | N | N | Y | Y | N | N |
[40] | Y | N | N | N | N | Y | Y | N | N | N | N | N | Y | Y | Y |
[154] | Y | N | N | N | N | N | N | N | N | Y | Y | N | N | N | N |
[27] | Y | N | N | N | N | N | N | N | N | Y | Y | N | N | N | N |
[48] | Y | N | N | N | N | N | N | N | N | Y | N | N | Y | N | N |
[156] | Y | N | N | N | N | N | N | N | N | Y | N | N | Y | N | N |
[157] | Y | N | N | N | N | N | N | N | Y | Y | N | N | N | N | N |
[158] | Y | N | N | N | N | N | N | N | N | Y | N | N | Y | Y | Y |
Ref. | GHG Emissions | Other Emissions | |||||
---|---|---|---|---|---|---|---|
NOx | SOx | CO | Other | Metals | Chlorides | Other | |
[18] | Y | Y | N | N | N | N | N |
[17] | Y | Y | Y | Y | Y | Y | Y |
[104] | Y | N | N | N | N | N | N |
[19] | Y | N | N | N | N | N | N |
[105] | Y | Y | N | Y | Y | Y | Y |
[64] | Y | Y | N | Y | Y | N | N |
[8] | Y | Y | Y | N | N | Y | N |
[65] | Y eq | Y eq | Y eq | Y eq | Y | N | Y |
[44] | Y | Y | Y | Y | Y | N | Y |
[82] | Y | N | Y | N | N | N | N |
[106] | Y | Y | N | N | N | N | Y |
[89] | Y | N | N | N | N | N | N |
[35] | Y | Y | N | N | N | N | N |
[107] | Y | N | N | N | N | N | N |
[36] | Y | Y | Y | Y | Y | Y | Y |
[33] | Y | Y | N | N | N | N | N |
[13] | Y | Y | Y | Y | Y | Y | Y |
[32] | Y | Y | N | Y | Y | N | N |
[110] | Y | N | N | N | N | N | N |
[111] | Y | N | Y | N | N | N | N |
[51] | N | N | N | N | Y | Y | Y |
[112] | Y | N | N | N | N | N | N |
[113] | N | N | Y | Y | N | N | N |
[114] | Y eq | Y eq | Y eq | Y eq | N | N | N |
[68] | Y | Y | Y | Y | N | N | N |
[119] | Y | N | Y | N | N | N | N |
[120] | Y | Y | Y | Y | N | N | N |
[31] | Y | Y | N | N | N | N | N |
[121] | Y | N | Y | N | N | N | N |
[11] | Y | Y | N | N | N | N | N |
[10] | Y | Y | Y | Y | N | N | N |
[86] | Y | Y | N | N | N | N | N |
[41] | Y | N | N | N | N | N | N |
[125] | Y | N | Y | N | N | N | N |
[49] | Y | N | N | N | N | N | N |
[69] | Y | Y | N | N | N | N | N |
[126] | Y | N | Y | N | N | N | N |
[58] | N | Y | Y | N | N | N | N |
[127] | Y | Y | Y | Y | N | N | N |
[85] | Y | Y | Y | Y | N | N | N |
[84] | Y | Y | N | N | N | N | N |
[56] | Part of CO2 LCA, recalculated to CO2 equivalent | ||||||
[52] | Y | Y | Y | Y | N | N | N |
[42] | Y | Y | Y | Y | N | N | N |
[20] | Y | Y | Y | N | N | N | N |
[132] | Y | Y | Y | Y | N | N | N |
[91] | Y | Y | N | N | N | N | N |
[22] | Y | Y | Y | N | N | N | N |
[133] | Y | N | N | N | N | N | N |
[134] | Y | Y | Y | N | N | N | N |
[71] | Y | Y | Y | N | N | N | N |
[45] | N | N | N | N | Y | N | Y |
[135] | Y | Y | Y | Y | N | N | Y |
[136] | Y | N | Y | N | N | N | N |
[23] | Y | Y | Y | N | N | N | N |
[137] | N | N | Y | Y | N | N | N |
[138] | N | N | N | Y | Y | N | N |
[70] | Part of CO2 LCA recalculated to CO2 GWP equivalent | ||||||
[140] | Y | Y | N | N | N | N | N |
[142] | Y | Y | Y | Y | N | N | N |
[43] | Y | Y | Y | N | N | N | N |
[46] | N | N | N | N | Y | N | N |
[146] | Y | Y | N | Y | N | N | N |
[149] | N | Y | Y | N | N | N | N |
[29] | Y | Y | Y | N | Y | N | N |
[59] | Y | N | N | N | N | N | N |
[151] | Y | N | N | Y | N | N | N |
[152] | N | N | Y | Y | N | N | N |
[153] | Y | N | Y | N | N | N | N |
[155] | Y | Y | Y | Y | N | N | Y |
[48] | Y | Y | Y | N | N | N | Y |
[156] | N | Y | Y | N | N | N | N |
[157] | Y | Y | N | N | N | N | N |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Variny, M.; Varga, A.; Rimár, M.; Janošovský, J.; Kizek, J.; Lukáč, L.; Jablonský, G.; Mierka, O. Advances in Biomass Co-Combustion with Fossil Fuels in the European Context: A Review. Processes 2021, 9, 100. https://doi.org/10.3390/pr9010100
Variny M, Varga A, Rimár M, Janošovský J, Kizek J, Lukáč L, Jablonský G, Mierka O. Advances in Biomass Co-Combustion with Fossil Fuels in the European Context: A Review. Processes. 2021; 9(1):100. https://doi.org/10.3390/pr9010100
Chicago/Turabian StyleVariny, Miroslav, Augustín Varga, Miroslav Rimár, Ján Janošovský, Ján Kizek, Ladislav Lukáč, Gustáv Jablonský, and Otto Mierka. 2021. "Advances in Biomass Co-Combustion with Fossil Fuels in the European Context: A Review" Processes 9, no. 1: 100. https://doi.org/10.3390/pr9010100
APA StyleVariny, M., Varga, A., Rimár, M., Janošovský, J., Kizek, J., Lukáč, L., Jablonský, G., & Mierka, O. (2021). Advances in Biomass Co-Combustion with Fossil Fuels in the European Context: A Review. Processes, 9(1), 100. https://doi.org/10.3390/pr9010100