Improvement of Water Solubility of Mercaptoundecahydrododecaborate (BSH)-Peptides by Conjugating with Ethylene Glycol Linker and Interaction with Cyclodextrin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. BSH Peptides
2.3. Synthesis of BSH Peptides
2.4. Evaluation of the Water Solubility of BSH Peptides by RP-HPLC
3. Results and Discussion
3.1. Solubility of BSH-3R with or without CD
3.2. Plots of Water Solubility of BSH-3R against CD
3.3. Solubility of BSH-nR with or without γ-CD
3.4. Solubility of BSH-nEg-3R with or without γ-CD
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barth, R.F.; Vicente, M.G.H.; Harling, O.K.; Kiger III, W.S.; Riley, K.J.; Binns, P.J.; Franz, M.; Wagner, F.M.; Suzuki, M.; Aihara, T.; et al. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat. Oncol. 2012, 7, 146–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, I.; Ono, K.; Sakurai, Y.; Ohmae, M.; Maruhashi, A.; Imahori, Y.; Kirihata, M.; Nakazawa, M.; Yura, Y. Effectiveness of BNCT for recurrent head and neck malignancies. Appl. Radiat. Isot. 2004, 61, 1069–1073. [Google Scholar] [CrossRef]
- Hu, K.; Yang, Z.; Zhang, L.; Xie, L.; Wang, L.; Xu, H.; Josephson, L.; Liang, S.H.; Zhang, M.-R. Boron agents for neutron capture therapy. Coord. Chem. Rev. 2020, 405, 213139–213158. [Google Scholar] [CrossRef]
- Barth, R.F.; Mi, P.; Yang, W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun. 2018, 38, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michiue, H.; Sakurai, Y.; Kondo, N.; Kitamatsu, M.; Bin, F.; Nakajima, K.; Hirota, Y.; Kawabata, S.; Nishiki, T.; Ohmori, I.; et al. The acceleration of boron neutron capture therapy using multi-linked mercaptoundecahydrododecaborate (BSH) fused cell-penetrating peptide. Biomaterials 2014, 35, 3396–3405. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Kusaka, S.; Mukumoto, M.; Uehara, K.; Asano, T.; Suzuki, M.; Masunaga, S.; Ono, K.; Tanimori, S.; Kirihata, M. Biological evaluation of dodecaborate-containing L-amino acids for boron neutron capture therapy. J. Med. Chem. 2012, 55, 6980–6984. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, Y.; Michiue, H.; Kitamatsu, M.; Hayashi, Y.; Takenaka, F.; Nishiki, T.; Matsui, H. Tumor-specific delivery of BSH-3R for boron neutron capture therapy and positron emission tomography imaging in a mouse brain tumor model. Biomaterials 2015, 56, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, S.; Miyatake, S.; Kuroiwa, T.; Yokoyama, K.; Doi, A.; Iida, K.; Miyata, S.; Nonoguchi, N.; Michiue, H.; Takahashi, M.; et al. Boron neutron capture therapy for newly diagnosed glioblastoma. J. Radiat. Res. 2009, 50, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, Y.; Pooh, K.; Kobayashi, T.; Kageji, T.; Uyama, S.; Matsumura, A.; Kumada, H. Clinical review of the Japanese experience with boron neutron capture therapy and a proposed strategy using epithermal neutron beams. J. Neuro-Oncol. 2003, 62, 87–99. [Google Scholar] [CrossRef]
- Assaf, K.I.; Suckova, O.; Danaf, N.A.; Glasenapp, V.; Gabel, D.; Nau, W.M. Dodecaborate-functionalized anchor dyes for cyclodextrin-based indicator displacement applications. Org. Lett. 2016, 18, 932–935. [Google Scholar] [CrossRef] [PubMed]
- Assaf, K.I.; Ural, M.S.; Pan, F.; Georgiev, T.; Simova, S.; Rissanen, K.; Gabel, D.; Nau, W.M. Water structure recovery in chaotropic anion recognition: High-affinity binding of dodecaborate clusters to γ-cyclodextrin. Angew. Chem. Int. Ed. 2015, 54, 6852–6856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohta, K.; Konno, S.; Endo, Y. Complexation of β-cyclodextrin with carborane derivatives in aqueous solution. Tetrahedron Lett. 2008, 49, 6525–6528. [Google Scholar] [CrossRef]
- Ohta, K.; Konno, S.; Endo, Y. Complexation of α-cyclodextrin with carborane derivatives in aqueous solution. Chem. Pharm. Bull. 2009, 57, 307–310. [Google Scholar] [CrossRef] [Green Version]
- Assaf, K.I.; Begaj, B.; Frank, A.; Nilam, M.; Mougharbel, A.S.; Kortz, U.; Nekvinda, J.; Grüner, B.; Gabel, D.; Nau, W.M. High-affinity binding of metallacarborane cobalt bis(dicarbollide) anions to cyclodextrins and application to membrane translocation. J. Org. Chem. 2019, 84, 11790–11798. [Google Scholar] [CrossRef] [PubMed]
- Neirynck, P.; Schimer, J.; Jonkheijm, P.; Milroy, L.-G.; Cigler, P.; Brunsveld, L. Carborane–β-cyclodextrin complexes as a supramolecular connector for bioactive surfaces. J. Mater. Chem. B 2015, 3, 539–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, H.; Zhou, D.; Zheng, X.; Qi, Y.; Wang, Y.; Jing, X.; Huang, Y. Stable amphiphilic supramolecular self-assembly based on cyclodextrin and carborane for the efficient photodynamic therapy. Chem. Commun. 2017, 53, 3422–3425. [Google Scholar] [CrossRef] [PubMed]
- Nekvinda, J.; Grüner, B.; Gabel, D.; Nau, W.M.; Assaf, K.I. Host–guest chemistry of carboranes: Synthesis of carboxylate derivatives and their binding to cyclodextrins. Chem. Eur. J. 2018, 24, 12970–12975. [Google Scholar] [CrossRef]
- Assaf, K.I.; Hennig, A.; Peng, S.; Guo, D.-S.; Gabel, D.; Nau, W.M. Hierarchical host–guest assemblies formed on dodecaborate-coated gold nanoparticles. Chem. Commun. 2017, 53, 4616–4619. [Google Scholar] [CrossRef]
- Futaki, S. Membrane-permeable arginine-rich peptides and the translocation mechanisms. Adv. Drug Deliv. Rev. 2005, 57, 547–558. [Google Scholar] [CrossRef]
- Kosuge, M.; Takeuchi, T.; Nakase, I.; Jones, A.T.; Futaki, S. Cellular internalization and distribution of arginine-rich peptides as a function of extracellular peptide concentration, serum, and plasma membrane associated proteoglycans. Bioconjugate Chem. 2008, 19, 656–664. [Google Scholar] [CrossRef]
- Hitsuda, T.; Michiue, H.; Kitamatsu, M.; Fujimura, A.; Wang, F.; Yamamoto, T.; Han, X.-J.; Tazawa, H.; Uneda, A.; Ohmori, I.; et al. A protein transduction method using oligo-arginine (3R) for the delivery of transcription factors into cell nuclei. Biomaterials 2012, 33, 4665–4672. [Google Scholar] [CrossRef]
- Irie, T.; Otagiri, M.; Sunada, M.; Uekama, K.; Ohtani, Y.; Yamada, Y.; Sugiyama, Y. Cyclodextrin induced hemolysis and shape changes of human erythrocytes in vitro. J. Pharm. Dyn. 1982, 5, 741–744. [Google Scholar] [CrossRef] [Green Version]
- Nakase, I.; Katayama, M.; Hattori, Y.; Ishimura, M.; Inaura, S.; Fujiwara, D.; Takatani-Nakase, T.; Fujii, I.; Futaki, S.; Kirihata, M. Intracellular target delivery of cell-penetrating peptide-conjugated dodecaborate for boron neutron capture therapy (BNCT). Chem. Commun. 2019, 55, 13955–13958. [Google Scholar] [CrossRef]
- Sharon, P.; Afri, M.; Mitlin, S.; Gottlieb, L.; Schmerling, B.; Grinstein, D.; Welner, S.; Frimer, A.A. Preparation and characterization of bis(guanidinium) and bis(aminotetrazolium)dodecahydroborate salts: Green high energy nitrogen and boron rich compounds. Polyhedron 2019, 157, 71–89. [Google Scholar] [CrossRef]
- Linde, G.A.; Junior, A.L.; de Faria, E.V.; Colauto, N.B.; de Moraes, F.F.; Zanin, G.M. The use of 2D NMR to study β-cyclodextrin complexation and debittering of amino acids and peptides. Food Res. Int. 2010, 43, 187–192. [Google Scholar] [CrossRef]
- Huh, K.M.; Ooya, T.; Sasaki, S.; Yui, N. Polymer inclusion complex consisting of poly(ε-lysine) and α-cyclodextrin. Macromolecules 2001, 34, 2402–2404. [Google Scholar] [CrossRef]
- Zhao, R.; Sandström, C.; Zhang, H.; Tan, T. NMR study on the inclusion complexes of β-cyclodextrin with isoflavones. Molecules 2016, 21, 372. [Google Scholar] [CrossRef] [Green Version]
- Kost, B.; Brzeziński, M.; Zimnicka, M.; Socka, M.; Wielgus, E.; Słowianek, M.; Biela, T. PLA stereocomplexed microspheres modified with methyl-b-cyclodextrin an an atropine delivery system. Synthesis and characterization. Mater. Today Commun. 2020, 25, 101605–101615. [Google Scholar] [CrossRef]
- Crupi, V.; Ficarra, R.; Guardo, M.; Majolino, D.; Stancanelli, R.; Venuti, V. UV-vis and FTIR-ATR spectroscopic technique to study the inclusion complexes of genistein with β-cyclodextrins. J. Pharm. Biomed. Anal. 2007, 44, 110–117. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitamatsu, M.; Nakamura-Tachibana, A.; Ishikawa, Y.; Michiue, H. Improvement of Water Solubility of Mercaptoundecahydrododecaborate (BSH)-Peptides by Conjugating with Ethylene Glycol Linker and Interaction with Cyclodextrin. Processes 2021, 9, 167. https://doi.org/10.3390/pr9010167
Kitamatsu M, Nakamura-Tachibana A, Ishikawa Y, Michiue H. Improvement of Water Solubility of Mercaptoundecahydrododecaborate (BSH)-Peptides by Conjugating with Ethylene Glycol Linker and Interaction with Cyclodextrin. Processes. 2021; 9(1):167. https://doi.org/10.3390/pr9010167
Chicago/Turabian StyleKitamatsu, Mizuki, Ayaka Nakamura-Tachibana, Yoshimichi Ishikawa, and Hiroyuki Michiue. 2021. "Improvement of Water Solubility of Mercaptoundecahydrododecaborate (BSH)-Peptides by Conjugating with Ethylene Glycol Linker and Interaction with Cyclodextrin" Processes 9, no. 1: 167. https://doi.org/10.3390/pr9010167
APA StyleKitamatsu, M., Nakamura-Tachibana, A., Ishikawa, Y., & Michiue, H. (2021). Improvement of Water Solubility of Mercaptoundecahydrododecaborate (BSH)-Peptides by Conjugating with Ethylene Glycol Linker and Interaction with Cyclodextrin. Processes, 9(1), 167. https://doi.org/10.3390/pr9010167