Life Cycle Assessment of Renewable Reductants in the Ferromanganese Alloy Production: A Review
Abstract
:1. Introduction
2. Ferromanganese Alloy Production
2.1. Mining
2.2. Reductants
2.3. Fossil Fuel Reductants
2.3.1. Coal
2.3.2. Metallurgical Coke
2.4. Biomass Growth
2.5. Biomass Pretreatment
2.6. Classical Charcoal Production
2.7. Sustainable Charcoal Production
2.8. Transport
3. Environmental Impact
4. Socioeconomic Effects
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BM | Biomass |
capex | capital expenditures |
CC | Charcoal |
CCS | carbon capture and storage |
CCU | carbon capture and utilization |
EBC | European Biochar Certificate |
FeMn | ferromanganese |
FSC | Forest Stewardship Council |
GHG | greenhouse gas |
LCA | life cycle assessment |
ORC | organic Rankine Cycle |
PAHs | polycyclic aromatic hydrocarbons |
PEFC | Programme for the Endorsement of Forest Certification |
SAF | submerged arc furnace |
SiMn | silicomanganese |
tonne | metric ton |
References
- Vadenbo, C.O.; Boesch, M.E.; Hellweg, S. Life Cycle Assessment Model for the Use of Alternative Resources in Ironmaking. J. Ind. Ecol. 2013, 17, 363–374. [Google Scholar] [CrossRef]
- World Steel Association. Steel’s Contribution to a Low Carbon Future and Climate Resilient Societies-Worldsteel Position Paper; World Steel Association: Brussels, Belgium, 2017. [Google Scholar]
- Office of Air Quality Planning and Standards. Background Report-AP-42 Section 12.4 Ferroalloy Production; Report Number: OAQPS/TSD/EIB; Research Triangle Park, NC 27711; U.S. Environmental Protection Agency: Washington, DC, USA, 1992; p. 40.
- Schei, A.; Tuset, J.K.; Tveit, H. Production of High Silicon Ferroalloys; Tapir Forlag: Trondheim, Norway, 1998. [Google Scholar]
- Tangstad, M. Ferrosilicon and Silicon Technology. In Handbook of Ferroalloys; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Holappa, L. Basics of Ferroalloys. In Handbook of Ferroalloys-Theory and Technology; Butterworth-Heinemann: Oxford, UK, 2013; pp. 9–28. [Google Scholar]
- Haque, N.; Norgate, T. Estimation of greenhouse gas emissions from ferroalloy production using life cycle assessment with particular reference to Australia. J. Clean. Prod. 2013, 39, 220–230. [Google Scholar] [CrossRef]
- Westfall, L.A.; Davourie, J.; Ali, M.; McGough, D. Cradle-to-gate life cycle assessment of global manganese alloy production. Int. J. Life Cycle Assess. 2016, 21, 1573–1579. [Google Scholar] [CrossRef] [Green Version]
- Industri, N. The Norwegian Process Industries’ Roadmap-Combining growth and zero emissions by 2050. 2016. Available online: https://www.norskindustri.no/siteassets/dokumenter/rapporter-og-brosjyrer/the-norwegian-process-industries-roadmap-summary.pdf (accessed on 15 August 2020).
- Dalaker, H.; Ringdalen, E.; Kolbeinsen, L.; Mårdalen, J. Road-Map for Gas in the Norwegian Metallurgical Industry: Greater Value Creation and Reduced Emissions. 2017. Available online: http://hdl.handle.net/11250/2488736 (accessed on 15 August 2020).
- Matuštík, J.; Hnátková, T.; Kočí, V. Life cycle assessment of biochar-to-soil systems: A review. J. Clean. Prod. 2020, 259, 120998. [Google Scholar] [CrossRef]
- Nuss, P.; Eckelmann, M.J. Life Cycle Assessment of Metals: A Scientific Synthesis. PLoS ONE 2014, 9, e101298. [Google Scholar] [CrossRef]
- San Miguel, G.; Méndez, A.M.; Gasecó, G.; Quero, A. LCA of alternative biochar production technologies. In Proceedings of the 15th International Conference on Environmental Science and Technology, Rhodes, Greece, 31 August–2 September 2017. [Google Scholar]
- Norgate, T.; Haque, N.; Somerville, M.; Jahanshahi, S. Biomass as a Source of Renewable Carbon for Iron and Steelmaking. ISIJ Int. 2012, 52, 1472–1481. [Google Scholar] [CrossRef] [Green Version]
- Surup, G.R.; Trubetskaya, A.; Tangstad, M. Charcoal as an Alternative Reductant in Ferroalloy Production: A Review. Processes 2020, 8, 1432. [Google Scholar] [CrossRef]
- Trubetskaya, A.; Beckmann, G.; Poyraz, Y.; Weber, R. Secondary comminution of wood pellets in power plant and laboratory-scale mills. Fuel 2017, 160, 675–683. [Google Scholar] [CrossRef] [Green Version]
- Suopajärvi, H.; Pongrácz, E.; Fabritius, T. The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability. Renew. Sustain. Energy Rev. 2013, 25, 511–528. [Google Scholar] [CrossRef]
- Eidem, P.A. Electrical Resistivity of Coke Beds. Ph.D. Thesis, Norges Teknisk-Naturvitenskaplige Universitet (NTNU), Trondheim, Norway, 2008; p. 279. [Google Scholar]
- Surup, G.R.; Heidelmann, M.; Kofoed Nielsen, H.; Trubetskaya, A. Characterization and reactivity of charcoal from high temperature pyrolysis (800–1600 °C). Fuel 2019, 235, 1544–1554. [Google Scholar] [CrossRef]
- Schulte, R.F.; Tuck, C.A. Ferroalloys. In U.S. Geological Survey Minerals Yearbook; US Geological Survey: Reston, VA, USA, 2016; pp. 25.1–25.14. [Google Scholar]
- Ferroalloys Market Size, Share & Trends Analysis Report by Product (FeCr, FeSiMn), by Application (Carbon & Low Alloy Steel, Cast Iron) by Region, (Asia Pacific, Europe, North America), and Segment Forecasts, 2020–2027. Available online: https://www.grandviewresearch.com/industry-analysis/ferroalloys-market (accessed on 16 November 2020).
- Olsen, S.E.; Tangstad, M.; Lindstad, T. Production of Manganese Ferroalloys; Tapir Akademisk Forlag: Trondheim, Norway, 2007; p. 247. [Google Scholar]
- Rozhikhina, I.D.; Nokhrina, O.I.; Yolkin, K.S.; Golodova, M.A. Ferroalloy production: State and development trends in the world and Russia. IOP Conf. Ser. Mater. Sci. Eng. 2019, 866, 012004. [Google Scholar] [CrossRef]
- Díez, M.A.; Alvarez, R.; Barriocanal, C. Coal for metallurgical coke production: Predictions of coke quality and future requirements for cokemaking. Int. J. Coal Geol. 2002, 50, 389–412. [Google Scholar] [CrossRef]
- Emrich, W. Handbook of Charcoal Making: The Traditional and Industrial Methods; Solar Energy R&D in the Ec Series E; Springer: Berlin, Gremany, 1985. [Google Scholar]
- Kajina, W.; Junpen, A.; Garivait, S.; Kamnoet, O.; Keeratiisariyakul, P.; Rousset, P. Charcoal production processes: An overview. JSEE 2019, 10, 19–25. [Google Scholar]
- Antal, M.J.; Allen, S.G.; Dai, X.; Shimizu, B.; Tam, M.S.; Grønli, M. Attainment of the Theoretical Yield of Carbon from Biomass. Ind. Eng. Chem. Res. 2000, 39, 4024–4031. [Google Scholar] [CrossRef]
- Hussein, A.; Larachi, F.; Ziegler, D.; Alamdari, H. Effects of heat treatment and acid washing on properties and reactivity of charcoal. Biomass Bioenergy 2016, 90, 101–113. [Google Scholar] [CrossRef]
- Surup, G.R.; Vehus, T.; Eidem, P.A.; Trubetskaya, A.; Nielsen, H.K. Characterization of renewable reductants and charcoal-based pellets for the use in ferroalloy industries. Energy 2019, 167, 337–345. [Google Scholar] [CrossRef]
- Surup, G.R.; Foppe, M.; Schubert, D.; Deike, R.; Heidelmann, M.; Timko, M.T.; Trubetskaya, A. The effect of feedstock origin and temperature on the structure and reactivity of char from pyrolysis at 1300–2800 °C. Fuel 2019, 235, 306–316. [Google Scholar] [CrossRef]
- Surup, G.R.; Leahy, J.J.; Timko, M.T.; Trubetskaya, A. Hydrothermal carbonization of olive wastes to produce renewable, binder-free pellets for use as metallurgical reducing agents. Renew. Energy 2020, 155, 347–357. [Google Scholar] [CrossRef]
- Babich, A.; Senk, D.; Fernandez, M. Charcoal behaviour by its injection into the modern blast furnace. ISIJ Int. 2010, 50, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Surup, G.R.; Nielsen, H.K.; Großarth, M.; Deike, R.; Van den Bulcke, J.; Kibleur, P.; Müller, M.; Ziegner, M.; Yazhenskikh, E.; Beloshapkin, S.; et al. Effect of operating conditions and feedstock composition on the properties of manganese oxide or quartz charcoal pellets for the use in ferroalloy industries. Energy 2020, 193, 116736. [Google Scholar] [CrossRef]
- Norgate, T.; Haque, N.; Somerville, M.; Jahanshahi, S. The Greenhouse gas footprint of charcoal production and of some applications in steelmaking. In Proceedings of the 7th Australian Life Cycle Assessment Conference, Melbourne, Australia, 9–10 March 2011. [Google Scholar]
- Davourie, J.; Westfall, L.; Ali, M.; McGough, D. Evaluation of particulate matter emissions from manganese alloy production using life-cycle assessment. Neurotoxicology 2017, 58, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Ravary, B.; Grådahl, S. Improving environment in the tapping area of a ferromanganese furnace. In Proceedings of the INFACON XII, Helsinki, Finland, 6–9 June 2010; pp. 99–107. [Google Scholar]
- Olsen, S.E.; Monsen, B.E.; Lindstad, T. CO2 Emissions from the Production of Manganese and Chromium Alloys in Norway. In Proceedings of the 56th Electric Furnace Conference, New Orleans, LA, USA, 15–18 November 1998; pp. 363–369. [Google Scholar]
- Fthenakis, V.; Kim, H.C. Land use and electricity generation: A life-cycle analysis. Renew. Sustain. Energy Rev. 2009, 13, 1465–1474. [Google Scholar] [CrossRef] [Green Version]
- D’Amato, D.; Gaio, M.; Semenzin, E. A review of LCA assessments of forest-based bioeconomy products and processes under an ecosystem services perspective. Sci. Total Environ. 2020, 706, 135859. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Miranda Santos, S.D.F.; Piekarski, C.M.; Ugaya, C.M.L.; Donato, D.B.; Júnior, A.B.; De Francisco, A.C.; Carvalho, A.M.M.L. Life Cycle Analysis of Charcoal Production in Masonry Kilns with and without Carbonization Process Generated Gas Combustion. Sustainablity 2017, 9, 1558. [Google Scholar] [CrossRef] [Green Version]
- Adam, J.C. Improved and more environmentally friendly charcoal production system using a low-cost retort-kiln (Eco-charcoal). Renew Energy 2009, 34, 1923–1925. [Google Scholar] [CrossRef]
- Gu, H.; Bergman, R.; Anderson, N.; Alanya-Rosenbaum, S. Life cycle assessment of activated carbon from woody biomass. Wood Fiber Sci. 2017, 50, 229–243. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, J.; Feng, Y. Life cycle assessment of opencast coal mine production: A case study in Yimin mining area in China. Environ. Sci. Pollut. Res. 2018, 25, 8475–8486. [Google Scholar] [CrossRef]
- Burchart-Korol, D.; Fugiel, A.; Czaplicka-Kolarz, K.; Turek, M. Model of environmental life cycle assessment for coal mining operations. Sci. Total Environ. 2016, 562, 61–72. [Google Scholar] [CrossRef]
- Burchart-Korol, D. Evaluation of environmental impacts in iron-making based on life cycle assessment. In Proceedings of the 20th Anniversary International Conference on Metallurgy and Materials, Brno, Czech Republic, 18–20 May 2011; pp. 1–6. [Google Scholar]
- Liu, X.; Yuan, Z. Life cycle environmental performance of by-product coke production in China. J. Clean. Prod. 2016, 112, 1292–1301. [Google Scholar] [CrossRef]
- Walsh, C.; Thornley, P. The environmental impact and economic feasibility of introducing an Organic Rankine Cycle to recover low grade heat during the production of metallurgical coke. J. Clean. Prod. 2012, 34, 29–37. [Google Scholar] [CrossRef]
- Iosif, A.M.; Hanrot, F.; Birat, J.P.; Ablitzer, D. Physicochemical modelling of the classical steelmaking route for life cycle inventory analysis. Int. J. Life Cycle Assess. 2010, 15, 304–310. [Google Scholar] [CrossRef]
- Olmez, G.M.; Dilek, F.B.; Karanfil, T.; Yetis, U. The environmental impacts of iron and steel industry: A life cycle assessment study. J. Clean. Prod. 2016, 130, 195–201. [Google Scholar] [CrossRef]
- Milder, A.I.; Fernández-Santos, B.; Martínez-Ruiz, C. Colonization patterns of woody species on lands mined for coal in Spain: Preliminary insights for forest expansion. Land Degrad. Dev. 2013, 24, 39–46. [Google Scholar] [CrossRef]
- Bridge, G. Contested Terrain: Mining and the Environment. Annu. Rev. Environ. Resour. 2004, 29, 205–259. [Google Scholar] [CrossRef]
- Fearnside, P.M.; Figueiredo, A.M.R.; Bonjour, S.C.M. Amazonian forest loss and the long reach of China’s influence. Environ. Dev. Sustain. 2013, 15, 325–338. [Google Scholar] [CrossRef]
- Tiwary, R.K. Environmental Impact of Coal Mining on Water Regime and Its Management. Water Air Soil Pollut. 2001, 132, 185–199. [Google Scholar] [CrossRef]
- Awuah-Offei, K.; Adekpedjou, A. Application of life cycle assessment in the mining industry. Int. J. Life Cycle Assess. 2011, 16, 82–89. [Google Scholar] [CrossRef]
- Surup, G.R. Renewable Reducing Agents for the Use in Ferroalloy Industries. Ph.D. Thesis, University of Agder, Grimstad, Norway, 2019; p. 350. [Google Scholar]
- Sithole, N.A.; Bam, W.G.; Steenkamp, J.D. Comparing Electrical and Carbon Combustion Based Energy Technologies for the Production of High Carbon Ferromanganese: A Literature Review. In Proceedings of the INFACON XV, Cape Town, South Africa, 25–28 February 2018. [Google Scholar]
- Zhang, R.; Ma, X.; Shen, X.; Zhai, Y.; Zhang, T.; Ji, C.; Hong, J. Life cycle assessment of electrolytic manganese metal production. J. Clean. Prod. 2020, 253, 119951. [Google Scholar] [CrossRef]
- Suopajärvi, H.; Fabritius, T. Effects of biomass use in integrated steel plant—Gate-to-gate life cycle inventory method. ISIJ Int. 2012, 52, 779–787. [Google Scholar]
- Pistorius, P.C. Reductant selection in ferro-alloy production: The case for the importance of dissolution in the metal. J. S. Afr. Inst. Min. Met. 2002, 1, 33–36. [Google Scholar]
- Monsen, B.; Tangstad, M.; Solheim, I.; Syvertsen, M.; Ishak, R.; Midtgaard, H. Charcoal for manganese alloy production. In Proceedings of the INFACON XI, New Delhi, India, 18–21 February 2007; pp. 297–310. [Google Scholar]
- Monsen, B.; Tangstad, M.; Midtgaard, H. Use of charcoal in silicomanganese production. In Proceedings of the INFACON X, Cape Town, South Africa, 1–4 February 2004; Volume 68, pp. 155–164. [Google Scholar]
- Oladeji, S.O.; Ologunwa, O.P.; Tonkollie, B.T. Socio-economic Impact of Traditional Technology of Charcoal Production in Kpaai District-Bong County Liberia. Environ. Manag. Sustain. Dev. 2018, 7, 86–107. [Google Scholar] [CrossRef] [Green Version]
- Wood, T.S.; Baldwin, S. Fuelwood and charcoal use in developing countries. Ann. Rev. Energy 1985, 10, 407–429. [Google Scholar] [CrossRef]
- Lohri, C.R.; Rajabub, H.M.; Sweeney, D.J.; Zurbrügg, C. Char fuel production in developing countries—A review of urban biowaste carbonization. Renew. Sust. Energ. Rev. 2016, 59, 1514–1530. [Google Scholar] [CrossRef] [Green Version]
- Harindintwari, J.; Gaspard, N. Socio-economic and environmental impact of charcoal production in Rangiro, Cyato and Bushekeri sectors, Nyamasheke District. GSJ 2019, 7, 1206–1223. [Google Scholar]
- Li, Y.; Wang, G.; Li, Z.; Yuan, J.; Gao, D.; Zhang, H. A Life Cycle Analysis of Deploying Coking Technology to Utilize Low-Rank Coal in China. Sustainability 2020, 12, 4884. [Google Scholar] [CrossRef]
- Gao, D.; Qiu, X.; Zhang, Y.; Liu, P. Life cycle analysis of coal based methanol-to-olefins processes in China. Comput. Chem. Eng. 2018, 109, 112–118. [Google Scholar] [CrossRef]
- García-Álvarez, A.; Pérez-Martínez, P.; González-Franco, I. Energy Consumption and Carbon Dioxide Emissions in Rail and Road Freight Transport in Spain: A Case Study of Car Carriers and Bulk Petrochemicals. J. Intell. Transp. Syst. 2013, 17, 233–244. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agencys. Railway Handbook 2012-Energy Consumption and CO2 Emissions; International Energy Agency: Paris, France, 2012. [Google Scholar]
- Yang, J.X.; Xu, C.; Wang, R.S. Methodology and Application of Life Cycle Assessment; China Meteorological Press: Beijing, China, 2002. [Google Scholar]
- McKenna, R.C.; Norman, J.B. Spatial modelling of industrial heat loads and recovery potentials in the UK. Energy Policy 2010, 38, 5878–5891. [Google Scholar] [CrossRef]
- MacPhee, J.A.; Gransden, J.F.; Giroux, L.; Price, J.T. Possible CO2 mitigation via addition of charcoal to coking coal blends. Fuel Process. Technol. 2009, 90, 16–20. [Google Scholar] [CrossRef]
- Ng, K.W.; MacPhee, J.A.; Giroux, L.; Todoschuk, T. Reactivity of bio-coke with CO2. Fuel Process. Technol. 2011, 92, 801–804. [Google Scholar] [CrossRef]
- Khanna, R.; Li, K.; Wang, Z.; Sun, M.; Zhang, J.; Mukherjee, P.S. Biochars in iron and steel industries. In Char and Carbon Materials Derived from Biomass: Production, Characterization and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 429–446. [Google Scholar]
- Fick, G.; Mirgaux, O.; Neau, P.; Patisson, F. Using biomass for pig iron production: A technical, environmental and economical assessment. Waste Biomass Valoriz. 2014, 5, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Liu, W.; Tao, S. Emission of Polycyclic Aromatic Hydrocarbons in China. Environ. Sci. Technol. 2006, 40, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Parodi, S.; Stagnaro, E.; Casella, C.; Puppo, A.; Daminelli, E.; Fontana, V.; Valerio, F.; Vercelli, M. Lung cancer in an urban area in Northern Italy near a coke oven plant. Lung Cancer 2005, 47, 155–164. [Google Scholar] [CrossRef]
- Wang, L.C.; Wang, Y.F.; Hsi, H.C.; Chang-Chien, G.P. Characterizing the Emissions of Polybrominated Diphenyl Ethers (PBDEs) and Polybrominated Dibenzo-p-dioxins and Dibenzofurans (PBDD/Fs) from Metallurgical Processes. Environ. Sci. Technol. 2010, 44, 1240–1246. [Google Scholar] [CrossRef] [PubMed]
- Neuberger, I. Policy Solutions for Sustainable Charcoal in Sub-Saharan Africa; The World Future Council: Hamburg, Germany, 2015. [Google Scholar]
- Muylaert, M.S.; Sala, J.; de Freitas, M.A.V. The charcoal’s production in Brazil—Process efficiency and environmental effects. Renew. Energy 1999, 16, 1037–1040. [Google Scholar] [CrossRef]
- Coomes, O.T.; Burt, G.J. Peasant charcoal production in the Peruvian Amazon: Rainforest use and economic reliance. Forest Ecol. Manag. 2001, 140, 39–50. [Google Scholar] [CrossRef]
- Msuya, N.; Masanja, E.; Temu, A.K. Environmental Burden of Charcoal Production and Use in Dar es Salaam, Tanzania. J. Environ. Prot. 2011, 2, 1364–1369. [Google Scholar] [CrossRef] [Green Version]
- Njenga, M.; Karanja, N.; Munster, C.; Iiyama, M.; Neufeldt, H.; Kithinji, J.; Jamnadass, R. Charcoal production and strategies to enhance its sustainability in Kenya. Dev. Pract. 2013, 23, 359–371. [Google Scholar] [CrossRef]
- Da Silva, F.A.; Simioni, F.J.; Hoff, D.N. Diagnosis of circular economy in the forest sector in southern Brazil. Sci. Total Environ. 2020, 706, 135973. [Google Scholar] [CrossRef]
- African Forestry and Wildlife Commission. Sustainable Charcoal Production for Food Security and Forest Landscape Restoration; Report Number FO:AFWC/2020/4.2; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; pp. 1–6. [Google Scholar]
- Pennise, D.M.; Smith, K.R.; Kithinji, J.P.; Rezende, M.E.; Raad, T.J.; Zhang, J.; Fan, C. Emissions of greenhouse gases and other airborne pollutants from charcoal making in Kenya and Brazil. J. Geophys. Res. 2001, 106, 24143–24155. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. Hum. Policy Dimens. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Capareda, S. Introduction to Biomass Energy Conversions; Taylor & Francis: New York, NY, USA, 2013. [Google Scholar]
- Rockström, J.; Steffen, W.; Noone, K.; Person, A.; Chapin, S.F., III; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar]
- Lindner, M.; Suominen, T.; Palosuo, T.; Garcia-Gonzalo, J.; Verweij, P.; Zudin, S.; Päivinen, R. ToSIA—A tool for sustainability impact assessment of forest-wood-chains. Ecol. Model. 2010, 221, 2197–2205. [Google Scholar] [CrossRef]
- Miao, Z.; Grift, T.E.; Hansen, A.C.; Ting, K.C. Energy requirement for comminution of biomass in relation to particle physical properties. Ind. Crop. Prod. 2011, 33, 504–513. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Charcoal. In AP 42, Fifth Edition, Volume I Chapter 10: Wood Products Industry; United States Environmental Protection Agency: Washington, DC, USA, 1995. [Google Scholar]
- Oanh, N.T.K.; Nghiem, L.H.; Phyu, Y.L. Emission of Polycyclic Aromatic Hydrocarbons, Toxicity, and Mutagenicity from Domestic Cooking Using Sawdust Briquettes, Wood, and Kerosene. Environ. Sci. Technol. 2002, 36, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Andersson, J.T.; Achten, C. Time to Say Goodbye to the 16 EPA PAHs? Toward an Up-to-Date Use of PACs for Environmental Purposes. Polycyl. Aromat. Comp. 2015, 35, 330–354. [Google Scholar] [CrossRef] [Green Version]
- Van Dam, J. The Charcoal Transition: Greening the Charcoal Value Chain to Mitigate Climate Change and Improve Local Livelihoods; FAO: Rome, Italy, 2017. [Google Scholar]
- De Wit, M.; Junginger, M.; Faaij, A. Learning in dedicated wood production systems: Past trends, future outlook and implications for bioenergy. Renew. Sustain. Energy Rev. 2013, 19, 417–432. [Google Scholar] [CrossRef]
- Reumerman, P.J.; Frederiks, B. Charcoal production with reduced emissions. In Proceedings of the 12th European Conference on Biomass for Energy, Industry and Climate Protection, Amsterdam, The Netherlands, 17–21 June 2002; pp. 1–4. [Google Scholar]
- Balat, M. Mechanisms of Thermochemical Biomass Conversion Processes. Part 1: Reactions of Pyrolysis. Energ Source Part A 2008, 30, 620–635. [Google Scholar] [CrossRef]
- Funke, A.; Niebel, A.; Richter, D.; Abbas, M.M.; Müller, A.K.; Radloff, S.; Paneru, M.; Maier, J.; Dahmen, N.; Sauer, J. Fast pyrolysis char—Assessment of alternative uses within the bioliq® concept. Bioresource Technol. 2016, 200, 905–913. [Google Scholar] [CrossRef]
- Mostafazadeh, A.K.; Solomatnikova, O.; Drogui, P.; Tyagi, R.D. A review of recent research and developments in fast pyrolysis and bio-oil upgrading. Biomass Convers. Biorefin. 2018, 8, 739–773. [Google Scholar] [CrossRef]
- Oyedun, A.O.; Lam, K.L.; Hui, C.W. Charcoal Production via Multistage Pyrolysis. Chin. J. Chem. Eng. 2012, 20, 455–460. [Google Scholar] [CrossRef]
- Surup, G.R.; Attard, T.M.; Trubetskaya, A.; Hunt, A.J.; Budarin, V.L.; Arshadi, M.; Abdelsayed, V.; Shekhawat, D.; Trubetskaya, A. The effect of wood composition and supercritical CO2 extraction on charcoal production in ferroalloy industries. Energy 2019, 193, 116696. [Google Scholar] [CrossRef]
- Gupta, R.C. Woodchar as a sustainable reductant for ironmaking in the 21st century. Miner. Process. Extr. Metall. Rev. 2003, 24, 203–231. [Google Scholar] [CrossRef]
- Suurs, R. Long Distance Bioenergy Logistics—An Assessment of Costs and Energy Consumption for Various Biomass Energy Transport Chains; Copernicus Institute Report NWS-E-2002-01; Universiteit Utrecht: Utrecht, The Netherlands, 2002; p. 79. [Google Scholar]
- Trubetskaya, A.; Beckmann, G.; Poyraz, Y.; Weber, R.; Velaga, S.; Wadenbäck, J.; Holm, J.K.; Velaga, S.P.; Weber, R. One way of representing the size and shape of biomass particles in combustion modeling. Fuel 2017, 206, 675–683. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Johnson, D.M.; Wang, J. Life-Cycle Energy and GHG Emissions of Forest Biomass Harvest and Transport for Biofuel Production in Michigan. Energies 2015, 8, 3258–3271. [Google Scholar] [CrossRef] [Green Version]
- Tsalidis, G.A.; Discha, F.E.; Korevaar, G.; Haije, W.; de Jong, W.; Kiel, J. An LCA-based evaluation of biomass to transportation fuel production and utilization pathways in a large port’s context. Int. J. Energy Environ. Eng. 2017, 8, 175–187. [Google Scholar] [CrossRef]
- Lindstad, T.; Olsen, S.E.; Tranell, G.; Færden, T.; Lubetsky, J. Greenhouse gas emissions from ferroalloy production. In Proceedings of the INFACON XI, New Delhi, India, 18–21 February 2007; pp. 457–466. [Google Scholar]
- Kero, I.T.; Eidem, P.A.; Ma, Y.; Indresand, H.; Aarhaug, T.A.; Grådahl, S. Airborne Emissions from Mn Ferroalloy Production. JOM 2019, 71, 349–365. [Google Scholar] [CrossRef] [Green Version]
- Sonter, L.J.; Moran, C.J.; Barrett, D.J.; Soares-Filho, B.S. Processes of land use change in mining regions. J. Clean. Prod. 2014, 84, 494–501. [Google Scholar] [CrossRef] [Green Version]
- Chidumayo, E.N. Is charcoal production in Brachystegia-Julbernardia woodlands of Zambia sustainable? Biomass Bioenergy 2019, 125, 1–7. [Google Scholar] [CrossRef]
- Garcia-Nunez, J.A.; Pelaez-Samaniego, M.R.; Garcia-Perez, M.E.; Fonts, I.; Abrego, J.; Westerhof, R.J.M.; Garcia-Perez, M. Historical Developments of Pyrolysis Reactors: A Review. Energy Fuels 2017, 31, 5751–5775. [Google Scholar] [CrossRef]
- Myrhaug, E.H. Non-Fossil Reduction Materials in the Silicon Process-Properties and Behaviour. Ph.D. Thesis, Norges Teknisk-Naturvitenskapelige Universitet (NTNU), Trondheim, Norway, 1 July 2003. [Google Scholar]
- Andersson, F.; Brække, F.H.; Hallbäcken, L.; Nordic Council of Ministers. Nutrition and Growth of Norway Spruce Forests in a Nordic Climatic and Deposition Gradient; Tema Nord Series; Nordic Council of Ministers: Copenhagen, Denmark, 1998. [Google Scholar]
- Bassam, N.E. Handbook of Bioenergy Crops; Earthscan Ltd.: London, UK, 2010. [Google Scholar]
- Volk, T.A.; Verwijst, T.; Tharakan, P.J.; Abrahamson, L.P.; White, E.H. Growing fuel: A sustainability assessment of willow biomass crops. Front. Ecol. Environ. 2004, 2, 411–418. [Google Scholar] [CrossRef]
- Quicker, P.; Weber, K. Biokohle-Herstellung, Eigenschaften und Verwendung von Biomassekarbonisaten; Springer Vieweg: Wiesbaden, Germany, 2016. [Google Scholar]
Process Stage | Region | Economics | Human Health | Environment | Other Factors | Source |
---|---|---|---|---|---|---|
BM, coal mining | US | land occupation and regeneration time | [38] | |||
BM | North America, Europe | toxicity | GHG | land occupation, acidification | [39] | |
BM | considered | considered | considered | policy and societal impacts | [17] | |
BM, CC | South America | gas, water | [40] | |||
BM, CC | IN, East Africa | considered | gas | [41] | ||
BM (harvest, pyro) | US | TRACI | TRACI | activation of charcoal | [42] | |
Mining | CN | air, water | land occupation | [43] | ||
Coal mining | PL | IPCC | human health, ecosystems and resources | [44] | ||
Coke (Ferro) | considered | considered | [45] | |||
BM, coke | FR | feedstock, CO tax | GHG | transport (regional < 100 km) | ||
Coke production | CN | considered | considered | air and water emissions | [46] | |
Coke production | UK (steel), AU (coal) | considered | considered | GHG, gas, water | [47] | |
Coke production | [48] | |||||
Coke production | TR | considered | considered | by-product utilization | [49] | |
Mn-alloy production | AU, CN, FR, IN, ZA, US | GHG, SOe, CHe | LCIA, energy demand | [8] | ||
Mn-alloy production | AU | GHG | [7] | |||
LCIA:= Life cycle impact assessment |
Process Stage | Current Situation and Main Impacts | Changes by Classical Charcoal Production | Changes by Sustainable Charcoal Production |
---|---|---|---|
Ore mining | Dust emissions, water pollution (acidification), land transformation, and destruction of local ecological environment. | No changes expected by renewable reductants. | |
Coal mining | Dust, CH and CO emissions, water pollution (acidification), fossil fuel depletion, land transformation, and destruction of local ecological environment | Reduced coal demand to a fully replacement of coal by charcoal as a renewable reductant results in a decreased fossil fuel depletion, reduced air and water pollution and avoids land transformation. | |
Biomass production | Partly deforestation and soil degradation | Additional land occupation, deforestation and reduced biodiversity. | Reduced demand of additional biomass by an efficient and sustainable charcoal production, as well as consideration of socioeconomic factors. |
Transport (local) | Mainly conveyor belt and railroad transport for coal, respectively truck transport for biomass and charcoal. | Increased diesel consumption by truck transport for biomass and charcoal transport expected. | |
Coke production | Local emissions, resulting in air and water pollution. | Charcoal can replace up to 20% in bio-coke production, resulting in a reduced volatile matter. | Bio-cokes and tailor made charcoal may fully replace metallurgical coke in long-term. |
Charcoal production | Incomplete combustion and release of volatile matter, resulting in air and water pollution, photochemical oxidant formation and human toxicity. | Increased biomass demand can result in an increased non-sustainable production and additional local emissions. | Improved conversion technologies result in an increased conversion efficiency, by-product utilization and improved charcoal quality. The greater conversion efficiency can compensate the increased land demand for sustainable biomass production. |
Transport (international) | Emissions by ship and railroad transport (<5% of total emissions) | Emissions may increase due to the lower bulk density of charcoal and the volume limited transport (emissions may increase by a factor up to 2) | By-products may be utilized as fuel for transport, making long-distance transport more sustainable |
Smelting (SAF) | CO, CO and dust emissions | CO emissions from charcoal are considered CO neutral, additional gas cleaning required for high volatile matter content |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surup, G.R.; Trubetskaya, A.; Tangstad, M. Life Cycle Assessment of Renewable Reductants in the Ferromanganese Alloy Production: A Review. Processes 2021, 9, 185. https://doi.org/10.3390/pr9010185
Surup GR, Trubetskaya A, Tangstad M. Life Cycle Assessment of Renewable Reductants in the Ferromanganese Alloy Production: A Review. Processes. 2021; 9(1):185. https://doi.org/10.3390/pr9010185
Chicago/Turabian StyleSurup, Gerrit Ralf, Anna Trubetskaya, and Merete Tangstad. 2021. "Life Cycle Assessment of Renewable Reductants in the Ferromanganese Alloy Production: A Review" Processes 9, no. 1: 185. https://doi.org/10.3390/pr9010185
APA StyleSurup, G. R., Trubetskaya, A., & Tangstad, M. (2021). Life Cycle Assessment of Renewable Reductants in the Ferromanganese Alloy Production: A Review. Processes, 9(1), 185. https://doi.org/10.3390/pr9010185