Integration of Artificial Intelligence into Biogas Plant Operation
Abstract
:1. Introduction
2. Anaerobic Digestion Process
2.1. Overview of the Process
2.2. Stages of the AD Process
2.3. Operational Parameters of the Biogas Plant
3. Process Monitoring and Control
3.1. Overview of the Biogas Plant Monitoring and Control
- ▪
- Structural components
- ▪
- Piping system
- ▪
- Biogas utilization equipment
- ▪
- Digestate disposal system
- ▪
- AD process and biogas production
- ▪
- Knowledge related problems
- ▪
3.2. Currently Available Monitoring and Control Technologies
- ▪
- On-off is a simple control strategy and suitable for valve and pump control. Nevertheless, it cannot supply fine control and it does not have direct effect process stability.
- ▪
- PI (Proportional Integral)/PID (Proportional Integral Derivative) is a simple, robust and fine control strategy that does not require a model. The demerits of this strategy are its applicability with only linear systems and the strategy can be implemented for single input/ output systems.
- ▪
- Adaptive control can be used for controlling non-linear/dynamic systems, that provide parameter estimation and anticipation of future disturbance. However, detailed information and complex mathematical calculations are required for the model, which can include uncertainties.
- ▪
- Fuzzy logic can be implemented in multiple input/output and nonlinear systems, but highly relies on the expertise of the operator.
- ▪
- Artificial neural network does not require a model or expertise. Training time and large information are required [95].
3.3. Future Prospective in Biogas Plant Monitoring
4. Biogas Plant Modelling
5. Process Optimization through Implementation of Artificial Intelligence (Predictive Analytics)
6. Discussion
- ▪
- Integration of sensors/actuators
- ▪
- Communication/Connectivity
- ▪
- Functionalities for data storage and information exchange
- ▪
- Monitoring
- ▪
- Product related IT services
- ▪
- Business models around the product [143].
- Physical device; fermenter, substrate storage, biogas storage
- Sensor/ Actuator; temperature, pressure, pH, CO2, CH4, NIR sensor
- Data/ Connection; data warehousing, data formatting, online monitoring
- Analytics; data preprocessing, data analytics, machine learning, predictive analytics
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Our World in Data. Available online: https://ourworldindata.org/energy (accessed on 17 June 2020).
- International Energy Agency. Germany 2020 Energy Policy Review; IEA: Paris, France, 2020. [Google Scholar]
- International Renewable Energy Agency. Trends in Renewable Energy. Available online: http://resourceirena.irena.org (accessed on 12 September 2020).
- Scopus. Analyzed Research Results. Available online: https://www.scopus.com (accessed on 17 June 2020).
- European Commission. New Study Focuses on Potential of Biogas as Source of Clean Production. Available online: https://ec.europa.eu/energy/news/new-study-focuses-potential-biogas-source-clean-energy (accessed on 17 June 2020).
- Banja, M.; Jégard, M.; Motola, V.; Sikkema, R. Support for biogas in the EU electricity sector–A comparative analysis. Biomass Bioenergy 2019, 128, 105313. [Google Scholar] [CrossRef]
- European Commission. Renewable Energy—Recast to 2030 (RED II); European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Rutz, D.; Janssen, R.; Mergner, R. Sustainable Heat Use of Biogas Plants: A Handbook; WIP Renewable Energies: Munich, Germany, 2015; ISBN 3936338353. [Google Scholar]
- Nsair, A.; Onen Cinar, S.; Alassali, A.; Abu Qdais, H.; Kuchta, K. Operational Parameters of Biogas Plants: A Review and Evaluation Study. Energies 2020, 13, 3761. [Google Scholar] [CrossRef]
- Salehi, H.; Burgueno, R. Emerging artificial intelligence methods in structural engineering. Eng. Struct. 2018, 171, 170–189. [Google Scholar] [CrossRef]
- Venkatasubramanian, V. The promise of artificial intelligence in chemical engineering: Is it here, finally? AIChE J. 2019, 65, 466–478. [Google Scholar] [CrossRef]
- Nasiri, S.; Khosravani, M.R.; Weinberg, K. Fracture mechanics and mechanical fault detection by artificial intelligence methods: A review. Eng. Fail. Anal. 2017, 81, 270–293. [Google Scholar] [CrossRef]
- Kana, E.G.; Oloke, J.K.; Lateef, A.; Adesiyan, M.O. Modeling and optimization of biogas production on saw dust and other co-substrates using artificial neural network and genetic algorithm. Renew. Energy 2012, 46, 276–281. [Google Scholar] [CrossRef]
- Olabi, A.; Nassef, A.M.; Rodriguez, C.; Abdelkareem, M.A.; Rezk, H. Application of artificial intelligence to maximize methane production from waste paper. Int. J. Energy Res. 2020, 44, 9598–9608. [Google Scholar] [CrossRef]
- Lauer, M.; Leprich, U.; Thrän, D. Economic assessment of flexible power generation from biogas plants in Germany’s future electricity system. Renew. Energy 2020, 146, 1471–1485. [Google Scholar] [CrossRef]
- Balussou, D.; McKenna, R.; Möst, D.; Fichtner, W. A model-based analysis of the future capacity expansion for German biogas plants under different legal frameworks. Renew. Sust. Energ. Rev. 2018, 96, 119–131. [Google Scholar] [CrossRef]
- Daniel-Gromke, J.; Kornatz, P.; Dotzauer, M.; Stur, M.; Denysenko, V.; Stelzer, M.; Hahn, H.; Krautkremer, B.; von Bredow, H.; Antonow, K. Guide to Making Electricity Provision More Flexible in Biogas Plants (LF Flex); DBFZ Deutsches Biomasse Forschungszentrum: Leipzig, Germany, 2019. [Google Scholar]
- Yan, J.; Meng, Y.; Lu, L.; Li, L. Industrial big data in an industry 4.0 environment: Challenges, schemes, and applications for predictive maintenance. IEEE Access 2017, 5, 23484–23491. [Google Scholar] [CrossRef]
- Mauky, E.; Weinrich, S.; Jacobi, H.-F.; Nägele, H.-J.; Liebetrau, J.; Nelles, M. Demand-driven biogas production by flexible feeding in full-scale–Process stability and flexibility potentials. Anaerobe 2017, 46, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Lauer, M.; Thrän, D. Flexible biogas in future energy systems—Sleeping beauty for a cheaper power generation. Energies 2018, 11, 761. [Google Scholar] [CrossRef] [Green Version]
- FNR. Guide to Biogas—From Production to Use; Deutsche Gesellschaft für Internationale Zusammenarbeit: Eschborn, Germany, 2010. [Google Scholar]
- Achinas, S.; Martherus, D.; Krooneman, J.; Euverink, G.J.W. Preliminary Assessment of a Biogas-based Power Plant from Organic Waste in the North Netherlands. Energies 2019, 12, 4034. [Google Scholar] [CrossRef] [Green Version]
- Samer, M. Biogas Plant Constructions; Biogas, S.K., Ed.; Intech Open: London, UK, 2012; pp. 343–368. [Google Scholar]
- Rohstoffe, F.N. Guide Biogas: From extraction to use. In Bioenergy; Deutsche Gesellschaft für Internationale Zusammenarbeit: Eschborn, Germany, 2016; pp. 21–113. [Google Scholar]
- Scarlat, N.; Dallemand, J.-F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Wang, P.; Wang, H.; Qiu, Y.; Ren, L.; Jiang, B. Microbial characteristics in anaerobic digestion process of food waste for methane production-A review. Bioresour. Technol. 2018, 248, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Adekunle, K.F.; Okolie, J.A. A Review of Biochemical Process of Anaerobic Digestion. ABB 2015, 6, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Schnürer, A.; Jarvis, Å. Microbiological handbook for biogas plants. Swedish Waste Management U2009:03 Swedish Gas Centre Report 207; Avfall Sverige and Svenskt Gastekniskt Center AB: Malmö, Sweden, 2009; pp. 1–74. [Google Scholar]
- Caballero-Arzápalo, N. Investigations on the anaerobic degradation process of selected waste substrates with the help of special microorganisms and enzymes. Energies 2015, 13, 3761. [Google Scholar]
- HHU. Influencing Factors: Enzymatic Activity and Temperature. Available online: https://www3.hhu.de (accessed on 24 June 2020).
- Mir, M.A.; Hussain, A.; Verma, C. Design considerations and operational performance of anaerobic digester: A review. Cogent Eng. 2016, 3. [Google Scholar] [CrossRef]
- Gerardi, M.H. The Microbiology of Anaerobic Digesters; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Hanum, F.; Yuan, L.C.; Kamahara, H.; Aziz, H.A.; Atsuta, Y.; Yamada, T.; Daimon, H. Treatment of sewage sludge using anaerobic digestion in Malaysia: Current state and challenges. Front. Energy Res. 2019, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Song, Z.; Li, D.; Yuan, Y.; Liu, X.; Zheng, T. The effects of initial substrate concentration, C/N ratio, and temperature on solid-state anaerobic digestion from composting rice straw. Bioresour. Technol. 2015, 177, 266–273. [Google Scholar] [CrossRef]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, E.S.N. Design and engineering of biogas plants. In The Biogas Handbook; Elsevier: Amsterdam, The Netherlands, 2013; pp. 191–211. [Google Scholar]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Azman, S.; Khadem, A.F.; Plugge, C.M.; Stams, A.J.M.; Bec, S.; Zeeman, G. Effect of humic acid on anaerobic digestion of cellulose and xylan in completely stirred tank reactors: Inhibitory effect, mitigation of the inhibition and the dynamics of the microbial communities. Appl. Microbiol. Biotechnol. 2017, 101, 889–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azman, S.; Khadem, A.F.; van Lier, J.B.; Zeeman, G.; Plugge, C.M. Presence and role of anaerobic hydrolytic microbes in conversion of lignocellulosic biomass for biogas production. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2523–2564. [Google Scholar] [CrossRef]
- Cazier, E.A.; Trably, E.; Steyer, J.-P.; Escudié, R. Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion. Bioresour. Technol. 2015, 190, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Amha, Y.M.; Anwar, M.Z.; Brower, A.; Jacobsen, C.S.; Stadler, L.B.; Webster, T.M.; Smith, A.L. Inhibition of anaerobic digestion processes: Applications of molecular tools. Bioresour. Technol. 2018, 247, 999–1014. [Google Scholar] [CrossRef]
- Sun, C.; Cao, W.; Banks, C.J.; Heaven, S.; Liu, R. Biogas production from undiluted chicken manure and maize silage: A study of ammonia inhibition in high solids anaerobic digestion. Bioresour. Technol. 2016, 218, 1215–1223. [Google Scholar] [CrossRef] [Green Version]
- Dasa, K.T.; Westman, S.Y.; Millati, R.; Cahyanto, M.N.; Taherzadeh, M.J.; Niklasson, C. Inhibitory effect of long-chain fatty acids on biogas production and the protective effect of membrane bioreactor. BioMed Res. Int. 2016, 2016, 1–9. [Google Scholar]
- Palatsi, J.; Laureni, M.; Andrés, M.V.; Flotats, X.; Nielsen, H.B.; Angelidaki, I. Strategies for recovering inhibition caused by long chain fatty acids on anaerobic thermophilic biogas reactors. Bioresour. Technol. 2009, 100, 4588–4596. [Google Scholar] [CrossRef]
- Kougias, P.G.; Angelidaki, I. Biogas and its opportunities—A review. Front. Environ. Sci. Eng. 2018, 12, 14. [Google Scholar] [CrossRef]
- Yenigün, O.; Demirel, B. Ammonia inhibition in anaerobic digestion: A review. Process Biochem. 2013, 48, 901–911. [Google Scholar] [CrossRef]
- Lauterböck, B.; Ortner, M.; Haider, R.; Fuchs, W. Counteracting ammonia inhibition in anaerobic digestion by removal with a hollow fiber membrane contactor. Water Res. 2012, 46, 4861–4869. [Google Scholar] [CrossRef] [PubMed]
- Procházka, J.; Dolejš, P.; Máca, J.; Dohányos, M. Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Appl. Microbiol. Biotechnol. 2012, 93, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Sawayama, S.; Tada, C.; Tsukahara, K.; Yagishita, T. Effect of ammonium addition on methanogenic community in a fluidized bed anaerobic digestion. J. Biosci. Bioeng. 2004, 97, 65–70. [Google Scholar] [CrossRef]
- Hilton, B.L.; Oleszkiewicz, J.A. Sulfide-induced inhibition of anaerobic digestion. J. Environ. Eng. 1988, 114, 1377–1391. [Google Scholar] [CrossRef]
- Zhang, C.; Su, H.; Tan, T. Batch and semi-continuous anaerobic digestion of food waste in a dual solid–liquid system. Bioresour. Technol. 2013, 145, 10–16. [Google Scholar] [CrossRef]
- Mudhoo, A.; Kumar, S. Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. Int. J. Environ. Sci. Technol. 2013, 10, 1383–1398. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Miglani, P.; Gupta, R.K.; Bhattacharya, T.K. Impact of Ni (II), Zn (II) and Cd (II) on biogassification of potato waste. J. Environ. Biol. 2006, 27, 61–66. [Google Scholar]
- Luning, L.; van Zundert, E.H.M.; Brinkmann, A.J.F. Comparison of dry and wet digestion for solid waste. Water Sci. Technol. 2003, 48, 15–20. [Google Scholar] [CrossRef]
- Chiumenti, A.; Chiumenti, R.; da Borso, F.; Limina, S. Comparison between Dry and Wet Fermentation of Biomasses as Result of the Monitoring of Full Scale Plants. In Proceedings of the ASABE Annual International Meeting, Dallas, TX, USA, 29 July–1 August 2012. [Google Scholar]
- Morken, J.; Gjetmundsen, M.; Fjørtoft, K. Determination of kinetic constants from the co-digestion of dairy cow slurry and municipal food waste at increasing organic loading rates. Renew. Energy 2018, 117, 46–51. [Google Scholar] [CrossRef]
- Christou, M.L.; Vasileiadis, S.; Kalamaras, S.D.; Karpouzas, D.G.; Angelidaki, I.; Kotsopoulos, T.A. Ammonia-induced inhibition of manure-based continuous biomethanation process under different organic loading rates and associated microbial community dynamics. Bioresour. Technol. 2020, 320, 124323. [Google Scholar] [CrossRef] [PubMed]
- Mahdy, A.; Bi, S.; Song, Y.; Qiao, W.; Dong, R. Overcome inhibition of anaerobic digestion of chicken manure under ammonia-stressed condition by lowering the organic loading rate. Bioresour. Technol. Rep. 2020, 9, 100359. [Google Scholar] [CrossRef]
- Ziganshin, A.M.; Schmidt, T.; Lv, Z.; Liebetrau, J.; Richnow, H.H.; Kleinsteuber, S.; Nikolausz, M. Reduction of the hydraulic retention time at constant high organic loading rate to reach the microbial limits of anaerobic digestion in various reactor systems. Bioresour. Technol. 2016, 217, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Wijekoon, K.C.; Visvanathan, C.; Abeynayaka, A. Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresour. Technol. 2011, 102, 5353–5360. [Google Scholar] [CrossRef] [PubMed]
- Nsair, A.; Cinar, S.Ö.; Qdais, H.A.; Kuchta, K. Optimizing the performance of a large scale biogas plant by controlling stirring process: A case study. Energy Convers. Manag. 2019, 198, 111931. [Google Scholar] [CrossRef]
- Romsaiyud, A.; Songkasiri, W.; Nopharatana, A.; Chaiprasert, P. Combination effect of pH and acetate on enzymatic cellulose hydrolysis. J. Environ. Sci. 2009, 21, 965–970. [Google Scholar] [CrossRef]
- Siegert, I.; Banks, C. The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochem. 2005, 40, 3412–3418. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ahring, B.K. Thermophilic anaerobic digestion of livestock waste: The effect of ammonia. Appl. Microbiol. Biotechnol. 1993, 38, 560–564. [Google Scholar] [CrossRef]
- Lin, Q.; de Vrieze, J.; Li, C.; Li, J.; Li, J.; Yao, M.; Hedenec, P.; Li, H.; Li, T.; Rui, J.; et al. Temperature regulates deterministic processes and the succession of microbial interactions in anaerobic digestion process. Water Res. 2017, 123, 134–143. [Google Scholar] [CrossRef]
- Önen, S.; Nsair, A.; Kuchta, K. Innovative operational strategies for biogas plant including temperature and stirring management. Waste Manag. Res. 2019, 37, 237–246. [Google Scholar] [CrossRef]
- Cinar, S.Ö.; Kuchta, K. Evaluation of Temperature Changes in Anaerobic Digestion Process. Detritus 2020, 10, 11–18. [Google Scholar] [CrossRef]
- Hans, B. Enzyme Kinetics Principles and Methods; Wiley Vch Valag: Wheinheim, Germany, 2008. [Google Scholar]
- Al Seadi, T.; Rutz, D.; Prassl, H.; Köttner, M.; Finsterwalder, T.; Volk, S.; Janssen, R. Biogas Handbook; University of Southern Denmark Esbjerg: Esbjerg, Denmark, 2008. [Google Scholar]
- Sarker, S.; Lamb, J.J.; Hjelme, D.R.; Lien, K.M. A Review of the Role of Critical Parameters in the Design and Operation of Biogas Production Plants. Appl. Sci. 2019, 9, 1915. [Google Scholar] [CrossRef] [Green Version]
- Drogs, B. Biogas Process Monitoring—Techniques and Recommendations. Available online: http://task37.ieabioenergy.com/files/daten-redaktion/download/publications/Workshops/2013_Switzerland/4_Biogas%20process%20monitoring_techniques%20and%20recommendations_Drosg.pdf (accessed on 1 July 2020).
- Drosg, B. Process Monitoring in Biogas Plants; IEA Bioenergy: Paris, France, 2013; ISBN 1910154024. [Google Scholar]
- Deng, L.; Liu, Y.; Wang, W. Biogas Technology; Springer: Singapore, 2020; pp. 109–156. ISBN 978-981-15-49-40-3. [Google Scholar]
- Anukam, A.; Mohammadi, A.; Naqvi, M.; Granström, K. A review of the chemistry of anaerobic digestion: Methods of accelerating and optimizing process efficiency. Processes 2019, 7, 504. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Frear, C.; Wang, Z.-w.; Yu, L.; Zhao, Q.; Li, X.; Chen, S. A simple methodology for rate-limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio. Bioresour. Technol. 2013, 134, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.K.; Verma, S.K.; Ojha, S.K.; Panda, P.K.; Srichandan, H.; Jha, E.; Mishra, S. Intrinsic molecular insights to enhancement of biogas production from kitchen refuse using alkaline-microwave pretreatment. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas Reina, C.J. Simulation and Modeling of the Anaerobic Process of Biogas Production with Different Substrates; Hamburg University of Technology: Hamburg, Germany, 2014. [Google Scholar]
- Satyam, S.; Himanshu, S.; Tushar, S.; Shubham, B.; Prasad, K. Anaerobic Digestion of Water Hyacinth; International Journal of Innovative Research in Science and Engineering: Balewadi Pune, India, 2017. [Google Scholar]
- Angelidaki, I.; Ellegaard, L.; Ahring, B.K. A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: Focusing on ammonia inhibition. Biotechnol. Bioeng. 1993, 42, 159–166. [Google Scholar] [CrossRef]
- Singhal, S.; Sharma, R.; Sharma, M.; Agarwal, S.; Singhal, N. Application of Remote Sensing in the Monitoring of Biogas Production; Springer: Singapore, 2017. [Google Scholar]
- Biogas World. Troubleshooting: Biogas Plants Problems: What Factors can Cause Biogas Plant Problems? Available online: https://www.biogasworld.com/biogas-plant-troubleshooting/ (accessed on 8 October 2020).
- Svensson, K.; Paruch, L.; Gaby, J.C.; Linjordet, R. Feeding frequency influences process performance and microbial community composition in anaerobic digesters treating steam exploded food waste. Bioresour. Technol. 2018, 269, 276–284. [Google Scholar] [CrossRef]
- De Francisci, D.; Kougias, P.G.; Treu, L.; Campanaro, S.; Angelidaki, I. Microbial diversity and dynamicity of biogas reactors due to radical changes of feedstock composition. Bioresour. Technol. 2015, 176, 56–64. [Google Scholar] [CrossRef]
- Rohstoffe eV, F.-F.N. Leitfaden Biogas–Von der Gewinnung zur Nutzung. Fachagentur Nachwachsende Rohstoffe eV(Ed). Available online: https://biogas.fnr.de/projekte/projektuebersicht (accessed on 15 August 2020).
- Jabłoński, S.; Rodowicz, P.; Łukaszewicz, M. Methanogenic archaea database containing physiological and biochemical characteristics. Int. J. Syst. Evol. Microbiol. 2015, 65, 1360–1368. [Google Scholar] [CrossRef]
- Gerber, M. Integrated Material and Energetic Modeling of the Biogas Formation Process; Ruhr University Bochum: Bochum, Germany, 2009. [Google Scholar]
- Besgen, S. Energy and Material Conversion in Biogas Plants—Results of Technical Measurements on Agricultural Biogas Plants in the Rhineland; Universitäts-und Landesbibliothek Bonn: Bonn, Germany, 2005. [Google Scholar]
- Für Umwelt, B.L. Biogashandbuch Bayern–Materialienband. Kap 2007, 1, 20. [Google Scholar]
- Roubík, H.; Mazancová, J.; Banout, J.; Verner, V. Addressing problems at small-scale biogas plants: A case study from central Vietnam. J. Clean. Prod. 2016, 112, 2784–2792. [Google Scholar] [CrossRef]
- Trávníček, P.; Kotek, L.; Junga, P.; Vítěz, T.; Drápela, K.; Chovanec, J. Quantitative analyses of biogas plant accidents in Europe. Renew. Energy 2018, 122, 89–97. [Google Scholar]
- Wiese, J.; König, R. Application Report, Laboratory Analysis & Process Analysis Biogas Plant Monitoring, Monitoring of digesters in biogas plants; HACH LANGE GmbH: Düsseldorf, Germany, 2007. [Google Scholar]
- Ghanavati, H. Biogas Production Systems: Operation, Process Control, and Troubleshooting; Springer: Berlin/Heidelberg, Germany, 2018; pp. 199–219. [Google Scholar]
- Lindorfer, H.; Demmig, C. Foam formation in biogas plants–a survey on causes and control strategies. Chem. Eng. Technol. 2016, 39, 620–626. [Google Scholar] [CrossRef]
- Gaida, D.; Wolf, C.; Bongards, M. Feed control of anaerobic digestion processes for renewable energy production: A review. Renew. Sustain. Energy Rev. 2017, 68, 869–875. [Google Scholar] [CrossRef]
- Nguyen, D.; Gadhamshetty, V.; Nitayavardhana, S.; Khanal, S.K. Automatic process control in anaerobic digestion technology: A critical review. Bioresour. Technol. 2015, 193, 513–522. [Google Scholar] [CrossRef]
- Bochmann, G. Monitoring and Process Control of Biogas Plants. Available online: https://s3-ap-southeast-2.amazonaws.com/piano.revolutionise.com.au/cups/bioenergy/files/2whnulfvy6ubaoid.pdf (accessed on 6 July 2020).
- Lamb, J.J.; Bernard, O.; Sarker, S.; Lien, K.M.; Hjelme, D.R. Perspectives of optical colourimetric sensors for anaerobic digestion. Renew. Sust. Energ. Rev. 2019, 111, 87–96. [Google Scholar] [CrossRef]
- Wu, D.; Li, L.; Zhao, X.; Peng, Y.; Yang, P.; Peng, X. Anaerobic digestion: A review on process monitoring. Renew. Sust. Energ. Rev. 2019, 103, 1–12. [Google Scholar] [CrossRef]
- Boe, K. Online Monitoring and Control of the Biogas Process; Technical University of Denmark: Kongens Lyngby, Denmark, 2006; pp. 25–28. [Google Scholar]
- Wolf, C.; Gaida, D.; Bongards, M. Online-Measurement Systems for Agricultural and Industrial AD Plants–A Review and Practice Test; Köln University of Applied Science: Köln, Germany, 2014. [Google Scholar]
- Alessandro, C.; da Borso, F.; Guercini, S.; Pezzuolo, A.; Zanotto, M.; Sgorlon, S.; Delle Vedove, G.; Miceli, F.; Stefanon, B. The Impact of the Dairy Cow Diet on Anaerobic Digestion of Manure; American Society of Agricultural and Biological Engineers Annual International Meeting: Boston, MA, USA, 2019. [Google Scholar]
- Aceves-Lara, C.-A.; Latrille, E.; Conte, T.; Steyer, J.-P. Online estimation of VFA, alkalinity and bicarbonate concentrations by electrical conductivity measurement during anaerobic fermentation. Water Sci. Technol. 2012, 65, 1281–1289. [Google Scholar] [CrossRef]
- Pfeiffer, W.; van Nguyen, T.; Neumann, J.; Awe, D.; Tränckner, J. Operation and Control of a Full-Scale Biogas Plant Treating Wastewater from the Cleaning of Car Tanks. Chem. Eng. Technol. 2020, 43, 84–94. [Google Scholar] [CrossRef]
- Steyer, J.-P.; Bouvier, J.C.; Conte, T.; Gras, P.; Harmand, J.; Delgenès, J.-P. On-line measurements of COD, TOC, VFA, total and partial alkalinity in anaerobic digestion processes using infra-red spectrometry. Water Sci. Technol. 2002, 45, 133–138. [Google Scholar] [CrossRef]
- Ward, A.J.; Bruni, E.; Lykkegaard, M.K.; Feilberg, A.; Adamsen, A.P.S.; Jensen, A.P.; Poulsen, A.K. Real time monitoring of a biogas digester with gas chromatography, near-infrared spectroscopy, and membrane-inlet mass spectrometry. Bioresour. Technol. 2011, 102, 4098–4103. [Google Scholar] [CrossRef] [PubMed]
- Stockl, A.; Lichti, F. Near-infrared spectroscopy (NIRS) for a real time monitoring of the biogas process. Bioresour. Technol. 2018, 247, 1249–1252. [Google Scholar] [CrossRef] [PubMed]
- Mortreuil, P.; Baggio, S.; Lagnet, C.; Schraauwers, B.; Monlau, F. Fast prediction of organic wastes methane potential by near infrared reflectance spectroscopy: A successful tool for farm-scale biogas plant monitoring. Waste Manag. Res. 2018, 36, 800–809. [Google Scholar] [CrossRef] [PubMed]
- IoT (Internet of Things) based efficiency monitoring system for bio-gas plants. In Proceedings of the 2017 2nd International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS), Bangalore, India, 21–23 December 2017.
- Arzate Salgado, J.A. Modeling and Simulation of Biogas Production Based on Anaerobic Digestion of Energy Crops and Manure; Berlin University of Technology: Berlin, Germany, 2019. [Google Scholar]
- Ramachandran, A.; Rustum, R.; Adeloye, A.J. Review of Anaerobic Digestion Modeling and Optimization Using Nature-Inspired Techniques. Processes 2019, 7, 953. [Google Scholar] [CrossRef] [Green Version]
- Hill, D.T.; Barth, C.L. A dynamic model for simulation of animal waste digestion. J. Water Pollut. Control Fed. 1977, 49, 2129–2143. [Google Scholar]
- Heyes, R.H.; Hall, R.J. Anaerobic digestion modelling? The role of H2. Biotechnol. Lett. 1981, 3, 431–436. [Google Scholar] [CrossRef]
- Hill, D.T. Design parameters and operating characteristics of animal waste anaerobic digestion systems—Swine and poultry. Agric. Wastes 1983, 5, 157–178. [Google Scholar] [CrossRef]
- Costello, D.J.; Greenfield, P.F.; Lee, P.L. Dynamic modelling of a single-stage high-rate anaerobic reactor—I. Model derivation. Water Res. 1991, 25, 847–858. [Google Scholar] [CrossRef]
- Vavilin, V.A.; Rytov, S.V.; Lokshina, L.Y. A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Bioresour. Technol. 1996, 56, 229–237. [Google Scholar] [CrossRef]
- Bernard, O.; Hadj-Sadok, Z.; Dochain, D.; Genovesi, A.; Steyer, J.P. Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol. Bioeng. 2001, 75, 424–438. [Google Scholar] [CrossRef]
- Siegrist, H.; Vogt, D.; Garcia-Heras, J.L.; Gujer, W. Mathematical model for meso- and thermophilic anaerobic sewage sludge digestion. Environ. Sci. Technol. 2002, 36, 1113–1123. [Google Scholar] [CrossRef] [PubMed]
- Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.M.; Siegrist, H.A.; Vavilin, V.A. The IWA anaerobic digestion model no 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Zaher, U.; Pandey, P.; Chen, S. A simple elemental continuity based model application to study the anaerobic microbial activity for the treatment of dairy manure. Appl. Math. Model 2009, 33, 3553–3564. [Google Scholar] [CrossRef]
- Rajendran, K.; Kankanala, H.R.; Lundin, M.; Taherzadeh, M.J. A novel process simulation model (PSM) for anaerobic digestion using Aspen Plus. Bioresour. Technol. 2014, 168, 7–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arzate, J.A.; Ertem, F.C.; Cruz Bournazou, M.N.; Neubauer, P.; Junne, S. Life Cycle Assesment and Modeling Approaches for Biogas Production. In Proceedings of the International Scientific Conference, Novi Sad, Serbia, 19–20 June 2015. [Google Scholar]
- Barampouti, E.; Mai, S.; Vlyssides, A. Dynamic modeling of biogas production in an UASB reactor for potato processing wastewater treatment. Chem. Eng. J. 2005, 106, 53–58. [Google Scholar] [CrossRef]
- Nopharatana, A.; Pullammanappallil, P.C.; Clarke, W.P. Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor. Waste Manag. 2007, 27, 595–603. [Google Scholar] [CrossRef]
- Yusuf, M.O.L.; Ify, N.L. The effect of waste paper on the kinetics of biogas yield from the co-digestion of cow dung and water hyacinth. Biomass Bioenerg. 2011, 35, 1345–1351. [Google Scholar] [CrossRef]
- Syaichurrozi, I.; Sumardiono, S. Biogas production kinetic from vinasse waste in batch mode anaerobic digestion. World Appl. Sci. J. 2013, 26, 1464–1472. [Google Scholar]
- Brulé, M.; Oechsner, H.; Jungbluth, T. Exponential model describing methane production kinetics in batch anaerobic digestion: A tool for evaluation of biochemical methane potential assays. Bioproc. Biosyst. Eng. 2014, 37, 1759–1770. [Google Scholar] [CrossRef]
- Kara, S.; Mueller, J.J.; Liese, A. Online analysis methods for monitoring of bioprocesses. Chem. Today 2011, 29, n-2. [Google Scholar]
- Lee, C.K.M.; Cao, Y.; Ng, K.H. Big Data Analytics for Predictive Maintenance Strategies. Supply Chain Management in the Big Data Era; IGI Global Business Science Reference; Hershey: Derry Township, PA, USA, 2017; pp. 50–74. [Google Scholar]
- Wahmkow, C.; Knape, M.; Konnerth, E. Biogas Intelligence—Operate Biogas Plants Using Neural Network and Fuzzy Logic. In Proceedings of the Computer Science, Joint IFSA World Congress and NAFIPS Annual Meeting, Alberta, Canada, 24–28 June 2013. [Google Scholar] [CrossRef]
- Bhuiyan, M.H.; Kundu, P.S. A Model to Produce Combined Clean Energy at Any Scale Maintained by Hi-Tech Artificial Intelligence (AI) and Internet of Things (IOT); International Journal of Scientific & Engineering Research: Sylhet, Bangladesh, 2019; Volume 10, p. 6. [Google Scholar]
- Böhm, R.; Schaidhauf, R.M.; Spanheimer, R.; Erdmann, D.M.; Franke, J. Flexibilization of Biogas Plants through Intelligent Automation Generates Earning Opportunities; Trans Tech Publications Ltd.: Bäch, Switzerland, 2016; pp. 74–80. [Google Scholar]
- Wolf, C.; McLoone, S.; Bongards, M. Biogas plant control and optimization using computational intelligence methods. Automatisierungstechnik 2009, 57, 638–649. [Google Scholar] [CrossRef]
- Tumer, A.E.; Edebali, S. An artificial neural network model for wastewater treatment plant of Konya. Int. J. Intell. Syst. 2015, 3, 131–135. [Google Scholar] [CrossRef]
- Levstek, T.; Lakota, M. The use of artificial neural networks for compounds prediction in biogas from anaerobic digestion—A review. Agricultura 2010, 7, 15–22. [Google Scholar]
- Manu, D.S.; Thalla, A.K. Artificial intelligence models for predicting the performance of biological wastewater treatment plant in the removal of Kjeldahl Nitrogen from wastewater. Appl. Water Sci. 2017, 7, 3783–3791. [Google Scholar] [CrossRef] [Green Version]
- Vanti, C.V.M.; Leite, L.C.; Batista, E.A. Monitoring and control of the processes involved in the capture and filtering of biogas using FPGA embedded fuzzy logic. IEEE Latin Am. Trans. 2015, 13, 2232–2238. [Google Scholar] [CrossRef]
- Wang, L.; Long, F.; Liao, W.; Liu, H. Prediction of anaerobic digestion performance and identification of critical operational parameters using machine learning algorithms. Bioresour. Technol. 2020, 298, 122495. [Google Scholar] [CrossRef]
- De Clercq, D.; Jalota, D.; Shang, R.; Ni, K.; Zhang, Z.; Khan, A.; Wen, Z.; Caicedo, L.; Yuan, K. Machine learning powered software for accurate prediction of biogas production: A case study on industrial-scale Chinese production data. J. Clean. Prod. 2019, 218, 390–399. [Google Scholar] [CrossRef]
- Takami, G.; Tokuoka, M.; Goto, H.; Nozaka, Y. Machine Learning Applied to Sensor Data Analysis. Yokogawa Techn. Rep. 2016, 59, 27–30. [Google Scholar]
- Huber, W. Industry 4.0 Compact—How Technologies are Changing Our Economy and Our Industry 4.0 Compact—How Technologies Are Changing Our Economy and Our Companies; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Derguech, W.; Burke, E.; Curry, E. An autonomic approach to real-time predictive analytics using open data and internet of things. In Proceedings of the 2014 IEEE 11th Intel Conf on Ubiquitous Intelligence and Computing and 2014 IEEE 11th Intel Conf on Autonomic and Trusted Computing and 2014 IEEE 14th Intel Conf on Scalable Computing and Communications and Its Associated Workshops, Bali, Indonesia, 9–12 December 2014. [Google Scholar]
- Jones, M.T. Data Science and Open Source. Learn about Open Source Tools for Converting Data into Useful Information. 2020. Available online: https://www.ibm.com/developerworks/library/os-datascience/os-datascience-pdf.pdf (accessed on 20 September 2020).
- Industry 4.0 Guideline: Orientation aid for Introduction to Medium-Sized Companies; VDMA Forum Industrie: Frankfurt, Germany, 2015.
- Fend, L.; Hofmann, J. Digitalisierung in Industrie-, Handels-und Dienstleistungsunternehmen; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Reinheimer, S. Industry 4.0; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- García, M.; Ruiz, J.P.; Basualdo, M. An Approach to Deal with Non-Convex Models in Real-Time Optimization with Modifier Adaptation. In 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering; Gernaey, K.V., Huusom, J.K., Gani, R., Eds.; Elsevier: Amsterdam, The Netherlans, 2015; pp. 899–904. ISBN 9780444634290. [Google Scholar]
- Marchetti, A.G.; François, G.; Faulwasser, T.; Bonvin, D. Modifier adaptation for real-time optimization—methods and applications. Processes 2016, 4, 55. [Google Scholar] [CrossRef] [Green Version]
- Barchmann, T.; Mauky, E.; Dotzauer, M.; Stur, M.; Weinrich, S.; Jacobi, H.F.; Liebetrau, J.; Nelles, M. Expanding the flexibility of biogas plants–substrate management, schedule synthesis and economic assessment. Landtechnik 2016, 71, 233–251. [Google Scholar]
- Teleszewski, T.J.; Żukowski, M. Analysis of heat loss of a biogas anaerobic digester in weather conditions in Poland. Ecol. Eng. 2018, 19, 242–250. [Google Scholar] [CrossRef]
- Theuerl, S.; Herrmann, C.; Heiermann, M.; Grundmann, P.; Landwehr, N.; Kreidenweis, U.; Prochnow, A. The future agricultural biogas plant in Germany: A vision. Energies 2019, 12, 396. [Google Scholar] [CrossRef] [Green Version]
- Fachagentur Nachwachsende Rohstoffe e.V. Flexibility of Biogas Plants. Available online: https://fnr.de/fileadmin/allgemein/pdf/broschueren/Broschuere_Flexibilisierung_Biogas_Web.pdf (accessed on 21 October 2020).
- Daniel-Gromke, J.; Rensberg, N.; Denysenko, V.; Stinner, W.; Schmalfuß, T.; Scheftelowitz, M.; Nelles, M.; Liebetrau, J. Current developments in production and utilization of biogas and biomethane in Germany. Chem. Ing. Tech. 2018, 90, 17–35. [Google Scholar] [CrossRef]
- Simanjuntak, L.E.; Soesilo, T.E.B.; Herdiansyah, H. Analysis of Near Infra Red (NIR) Impact as the Control Process of a Palm Oil Mill and Refinery Plant for Environmental Sustainability. Pol. J. Environ. Stud. 2020, 29, 3013–3021. [Google Scholar] [CrossRef]
- Kot, W.; Adamski, M.; Czechlowski, M.; Brylewski, T.; Durczak, K.; Szulc, R. Application of VIS-NIR spectrophotometry to assess organic loading rate of a biogas plant digester. Intercathedra 2016, 32, 82–89. [Google Scholar]
- Wiegand, B. Der Weg aus der Digitalisierungsfalle; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
Principle | Physical | Chemical | Biological | Combined Processes |
---|---|---|---|---|
Technique | Mechanical | Alkali | Microbiological | Steam explosion |
Thermal | Acid | Enzymatic | Extrusion | |
Ultrasound | Oxidative | Thermochemical | ||
Electrochemical |
Model | Description | |
---|---|---|
1st Generation | Andrews, (1969) | This model shows that modelling of rate-limiting step gives information about whole process. Bacterial inhibition can be explained with acid accumulation [109]. |
Andrews and Graef, (1970) | The dynamic simulation of enzymatic hydrolysis process is performed for complex organic compounds [109]. | |
Hill & Barth, (1977) | This model was created to present stability in the AD process of the animal waste. With including mass balances between volatile matter, volatile acids, soluble organics, two groups of bacteria, cations, nitrogen, and carbon dioxide, pH value was calculated [111]. | |
Heyes & Hall, (1981) | A dynamic model was developed to present hydrogen inhibition of acetogenesis and pH inhibition of methanogenesis with using glucose as substrate [112]. | |
Hill, (1983) | The model was developed the simulate steady state methane productivity (qualitative and quantitively) in the AD process of animal waste [113]. | |
Mosey, (1983) | Four bacterial groups were defined in the model for producing biogas through AD of the glucose. In the model, acetogenesis is defined as limiting step [109]. | |
2nd Generation | Costello et al. (1991) | Reactor process, physicochemical system and biological make-up were used in the system to create a mathematical model. In addition lactic acid accumulation, product and pH inhibition are included in the model [114]. |
Angelidaki et al. (1993) | The model was developed to simulate anaerobic degradation of complex organic materials with covering an enzymatic hydrolytic step, four bacterial steps and 12 chemical compounds [79]. | |
Vavilin et al. (1996) | A model was developed to simulate hydrolysis (rate-limiting) stage of AD. The model includes surface colonization of particles by hydrolytic bacteria and surface degradation [115]. | |
Husain, (1998) | VFA-based Monod functions were used to define the death rates of acidogens and methanogens [109]. | |
3rd Generation | Bernard et al. (2001) | Mass balance model was developed to identify parameters in the acidogenesis and methanogenesis stages of the AD process. Electrochemical equilibria is used to include alkalinity in the model [116]. |
Siegrist et al. (2002) | Hydrolysis rate, acetotrophic methanogenesis and propionate degradation were specific focus of the mathematical model created, which simulated dynamic behavior of both mesophilic and thermophilic AD [117]. | |
Bastone et al. (2002) | ADM1 includes both biochemical and physicochemical processes. 26 dynamic state concentration variables, 8 implicit algebraic variables and 32 concentration state variables are performed in this generalized AD model [118]. | |
Zaher et al. (2009) | The model was created to understand microbial activity based on the availability of the macronutrients (C, H, N, O, P, and S) and thermodynamics of acidogenesis and methanogenesis [119]. | |
Rajendran et al. (2014) | 46 reactions (for inhibition, rate-kinetics, pH, ammonia, volume, loading rate, and retention time) are performed in the model to predict biogas production from any substrate and at any operation condition with using Aspen Plus [120]. | |
Arzate et al. (2015) | This model represents combination of Life Cycle Assessment (LCA) characterization and mathematical model of the process performance, which can supply decrease in the environmental impact of AD processes. To perform LCA and mathematical model, Simapro and ASPEN were used respectively [121]. | |
Statistical Models | Barampouti et al. (2005) | The model was created to predict biogas production of UASB (Up flow Anaerobic Sludge Blanket) with examining 17 parameters from the two-year operation data of the potato wastewater treatment plant [122]. |
Nopharatana et al. (2007) | The model was created to simulate biological reactions in AD from Municipal Solid Waste (MSW) with considering it in two fractions; soluble and insoluble. Contois, Monod and Gompertz equations were implemented in the model [123]. | |
Yusuf and Ify, (2011) | The model was created to predict maximum and ultimate bigas yield and ultimate methane yield in co-digestion of cow dung and water hyacinth based on the first order kinetic model [124]. | |
Syaichurrozi and Sumardino, (2013) | Kinetic model for determining biogas production was developed with modifying equation of Gompertz. Effect of the COD/N ratio on the kinetic model was studied [125]. | |
Brule et al. (2014) | The model was created to optimize BMP assays. It supplies quality control of the BMP assays, interpretation of reaction kinetics and estimation of methane yield [126]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cinar, S.; Cinar, S.O.; Wieczorek, N.; Sohoo, I.; Kuchta, K. Integration of Artificial Intelligence into Biogas Plant Operation. Processes 2021, 9, 85. https://doi.org/10.3390/pr9010085
Cinar S, Cinar SO, Wieczorek N, Sohoo I, Kuchta K. Integration of Artificial Intelligence into Biogas Plant Operation. Processes. 2021; 9(1):85. https://doi.org/10.3390/pr9010085
Chicago/Turabian StyleCinar, Samet, Senem Onen Cinar, Nils Wieczorek, Ihsanullah Sohoo, and Kerstin Kuchta. 2021. "Integration of Artificial Intelligence into Biogas Plant Operation" Processes 9, no. 1: 85. https://doi.org/10.3390/pr9010085
APA StyleCinar, S., Cinar, S. O., Wieczorek, N., Sohoo, I., & Kuchta, K. (2021). Integration of Artificial Intelligence into Biogas Plant Operation. Processes, 9(1), 85. https://doi.org/10.3390/pr9010085