Deep Ensemble of Slime Mold Algorithm and Arithmetic Optimization Algorithm for Global Optimization
Abstract
:1. Introduction
- Applying the random contraction strategy (RCS), which is inspired from SMA to help the SMAOA jump out from local optimum.
- Applying the subtraction and addition strategy (SAS), which is extracted from AOA to enhance the exploitation ability of SMAOA.
- When the RCS and SAS were applied on SMAOA, the DESMAOA was finally obtained. By comparing seven well-known optimization algorithms, we identified the proposed DESMAOA to be powerful according to the experimental results.
2. Preliminaries
2.1. Slime Mold Algorithm (SMA)
Algorithm 1. Pseudo-code of SMA |
Initialize the parameters popsize (N) and maximum iterations (T) Initialize the positions of all slime mold Xi (i = 1, 2, …, N) While (t ≤ T) Calculate the fitness of all slime mold Update bestFitness, Xb Calculate the weight W by Equation (3) and (4) For each search agent If r2 < z Update position by Equation (6) Else Update p, vb, and vc Update position by Equation (1) End if End for t = t + 1 End While Return bestFitness, Xb |
2.2. Arithmetic Optimization Algorithm (AOA)
Algorithm 2. Pseudo-code of AOA |
Initialize the parameters popsize (N) and maximum iterations (T) Initialize the positions of all search agents Xi (i = 1, 2, …, N) Set the parameters α, μ, Min, and Max While (t ≤ T) Calculate the fitness of all search agents Update bestFitness, Xb Calculate the MOP by Equation (8) Calculate the MOA by Equation (10) For each search agent If rand > MOA Update position by Equation (7) Else Update position by Equation (9) End if End for t = t + 1 End While Return bestFitness, Xb |
3. The Proposed Hybridized Algorithm (DESMAOA)
3.1. The Hybridization of SMA and AOA
3.2. Random Contraction Strategy (RCS)
3.3. Subtraction and Addition Strategy (SAS)
3.4. The Deep Ensemble of SMA and AOA
Algorithm 3. Pseudo-code of DESMAOA |
Initialize the parameters popsize (N) and maximum iterations (T) Initialize the positions of all search agents Xi (i = 1, 2, …, N) Set the parameters α, μ, Min, and Max While (t ≤ T) Calculate the fitness of all search agents Update bestFitness, Xb Calculate a, b, p, and W by Equation (2)–(5) Calculate the MOP by Equation (8) Update vb For each search agent If r2 < z Update position by Equation (6) Else If r1 < p Update position Vi1 by Equation (1) (1)’ Else Update position Vi1 by Equation (7) End if If f(Vi1) < f(Xi) Xi = Vi1 End if If rand < b Apply RCS and generate candidate position Vi2 by Equation (11) If f(Vi2) < f(Xi) Xi = Vi2 End if End if If rand > b Apply SAS and generate candidate position Vi3 by Equation (9) If f(Vi3) < f(Xi) Xi = Vi3 End if End if End if End for t = t + 1 End While Return bestFitness, Xb |
3.5. The Computational Complexity of DESMAOA
4. Experimental Results and Discussions
4.1. Impacts of Components
- SMAOA;
- SMAOA combined with RCS (SMAOA1);
- SMAOA combined with SAS (SMAOA2);
- SMAOA combined with RCS and SAS (DESMAOA).
4.2. The Classical Benchmark Functions
4.2.1. Exploration and Exploitation Capability Analysis
4.2.2. Qualitative Analysis
4.2.3. Analysis of Convergence Behavior
4.2.4. Scalability Test
4.3. The IEEE CEC2021 Standard Test Functions
5. Applicability for Solving Engineering Design Problems
5.1. Pressure Vessel Design
5.2. Three-Bar Truss Design
5.3. Tension/Compression Spring Design
6. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abualigah, L.; Diaba, A. Advances in sine cosine algorithm: A comprehensive survey. Artif. Intell. Rev. 2021, 54, 2567–2608. [Google Scholar] [CrossRef]
- Abualigah, L.; Diaba, A. A comprehensive survey of the Grasshopper optimization algorithm: Results, variants, and applications. Neural Comput. Appl. 2020, 32, 15533–15556. [Google Scholar] [CrossRef]
- Jia, H.; Lang, C.; Oliva, D.; Song, W.; Peng, X. Dynamic Harris Hawks Optimization with Mutation Mechanism for Satellite Image Segmentation. Remote Sens. 2019, 11, 1421. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.; Peng, X.; Lang, C. Remora optimization algorithm. Expert Syst. Appl. 2021, 185, 115665. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Kaveh, A.; Dadras, A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017, 110, 69–84. [Google Scholar] [CrossRef]
- Asef, F.; Majidnezhad, V.; Feizi-Derakhshi, M.R.; Parsa, S. Heat transfer relation-based optimization algorithm (HTOA). Soft. Comput. 2021, 25, 8129–8158. [Google Scholar] [CrossRef]
- Corriveau, G.; Guilbault, R.; Tahan, A.; Sabourin, R. Bayesian network as an adaptive parameter setting approach for genetic algorithms. Complex Intell. Syst. 2016, 2, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Storn, R.; Price, K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 2010, 23, 689–694. [Google Scholar]
- Yao, X.; Liu, Y.; Lin, G. Evolutionary Programming Made Faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102. [Google Scholar]
- Chen, G.; Yu, J. Particle swarm optimization algorithm. Inf. Control 2005, 186, 454–458. [Google Scholar]
- Gaurav, D.; Vijay, K. Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowl. Based Syst. 2018, 159, 20–50. [Google Scholar]
- Abualigah, L.; Yousri, D.; Elaziz, M.A.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila optimizer: A novel meta-heuristic optimization Algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine predators algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Satapathy, S.; Naik, A. Social group optimization (SGO): A new population evolutionary optimization technique. Complex Intell. Syst. 2016, 2, 173–203. [Google Scholar] [CrossRef] [Green Version]
- Al-Betar, M.A. β-hill climbing: An exploratory local search. Neural Comput. Appl. 2017, 28, 153–168. [Google Scholar] [CrossRef]
- Martínez-Lvarez, F.; Asencio-Cortés, G.; Torres, J.F.; Gutiérrez-Avilés, D.; Melgar-García, L.; Pérez-Chacón, R.; Rubio-Escudero, C.; Riquelme, J.C.; Troncoso, A. Coronavirus Optimization Algorithm: A bioinspired metaheuristic based on the COVID-19 propagation model. Big Data 2020, 8, 308–322. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Muhammad, Y.S. Trade-off between exploration and exploitation with genetic algorithm using a novel selection operator. Complex Intell. Syst. 2019, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Shehadeh, H.A. A hybrid sperm swarm optimization and gravitational search algorithm (HSSOGSA) for global optimization. Neural Comput. Appl. 2021, 33, 11739–11752. [Google Scholar]
- Kaveh, A.; Rahmani, P.; Eslamlou, A.D. An efficient hybrid approach based on Harris Hawks optimization and imperialist competitive algorithm for structural optimization. Eng. Comput. 2021, 277, 1–29. [Google Scholar]
- Dhiman, G.; Kaur, A. A hybrid algorithm based on particle swarm and spotted hyena optimizer for global optimization. In Soft Computing for Problem Solving; Springer: Singapore, 2019; Volume 1, pp. 599–615. [Google Scholar]
- Dhiman, G. SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications. Knowl. Based Syst. 2021, 222, 106926. [Google Scholar] [CrossRef]
- Banaie-Dezfouli, M.; Nadimi-Shahraki, M.H.; Beheshti, Z. R-GWO: Representative-based grey wolf optimizer for solving engineering problems. Appl. Soft Comput. 2021, 106, 107328. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Chen, W.; Heidari, A.A.; Wang, M.; Zhao, X.; Liang, G.; Chen, H.; Zhang, X. Ensemble mutation-driven salp swarm algorithm with restart mechanism: Framework and fundamental analysis. Expert Syst. Appl. 2021, 165, 113897. [Google Scholar] [CrossRef]
- Yu, C.; Heidari, A.A.; Xue, X.; Zhang, L.; Chen, H.; Chen, W. Boosting quantum rotation gate embedded slime mould algorithm. Expert Syst. Appl. 2021, 181, 115082. [Google Scholar] [CrossRef]
- Zhang, H.; Cai, Z.; Ye, X.; Wang, M.; Kuang, F.; Chen, H.; Li, C.; Li, Y. A multi-strategy enhanced salp swarm algorithm for global optimization. Eng. Comput. 2020. [Google Scholar] [CrossRef]
- Che, Y.; He, D. A Hybrid Whale Optimization with Seagull Algorithm for Global Optimization Problems. Math. Probl. Eng. 2021, 2021, 1–31. [Google Scholar]
- Hassan, B.A. CSCF: A chaotic sine cosine firefly algorithm for practical application problems. Neural Comput. Appl. 2021, 33, 7011–7030. [Google Scholar] [CrossRef]
- Yue, S.; Zhang, H. A hybrid grasshopper optimization algorithm with bat algorithm for global optimization. Multimed. Tools Appl. 2021, 80, 3863–3884. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime Mould Algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Molga, M.; Smutnicki, C. Test Functions for Optimization Needs. 2005. Available online: http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf (accessed on 1 October 2021).
- Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K.; Agrawal, P.; Kumar, A.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2021 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization. Cairo University. Tech. Rep. 2020. Available online: http://home.elka.pw.edu.pl/~ewarchul/cec2021-specification.pdf (accessed on 1 October 2021).
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Demsar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
- Garcia, S.; Fernandez, A.; Luengo, J.; Herrera, F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inform. Sci. 2010, 180, 2044–2064. [Google Scholar] [CrossRef]
- Kannan, B.; Kramer, S.N. An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 1994, 116, 405–411. [Google Scholar] [CrossRef]
- Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Rizk-Allah, R.M. Hybridizing sine cosine algorithm with multi-orthogonal search strategy for engineering design problems. J. Comput. Des. Eng. 2018, 5, 249–273. [Google Scholar] [CrossRef]
- Zhou, Y.; Ling, Y.; Luo, Q. Lévy flight trajectory-based whale optimization algorithm for engineering optimization. Eng. Comput. 2018, 35, 2406–2428. [Google Scholar] [CrossRef]
- Pelusi, D.; Mascella, R.; Tallini, L.; Nayak, J.; Naik, B.; Deng, Y. An Improved Moth-Flame Optimization algorithm with hybrid search phase. Knowl. Based Syst. 2020, 191, 105277. [Google Scholar] [CrossRef]
- Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M. Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 2013, 13, 2592–2612. [Google Scholar] [CrossRef]
- Liu, H.; Cai, Z.; Wang, Y. Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl. Soft Comput. 2010, 10, 629–640. [Google Scholar] [CrossRef]
- Singh, N.; Kaur, J. Hybridizing sine-cosine algorithm with harmony search strategy for optimization design problems. Soft. Comput. 2021. [Google Scholar] [CrossRef]
- Baykasoğlu, A.; Akpinar, S. Weighted superposition attraction (WSA): A swarm intelligence algorithm for optimization problems–part2: Constrained optimization. Appl. Soft Comput. 2015, 37, 396–415. [Google Scholar] [CrossRef]
Name of Method | Representative Algorithm | Description |
---|---|---|
Hybridize two or more algorithms | Hybrid sperm swarm optimization and gravitational search algorithm (HSSOGSA) [22] | The capability of exploitation in SSO and the capability of exploration in GSA are combined for better performance. |
Imperialist competitive Harris hawks optimization (ICHHO) [23] | The exploration of ICA is utilized to improve the HHO for global optimization. | |
Hybrid particle swarm and spotted hyena optimizer (HPSSHO) [24] | Particle swarm algorithm is used to improve the hunting strategy of spotted hyena optimizer. | |
Sine-cosine and spotted hyena-based chimp optimization algorithm (SSC) [25] | Sine-cosine functions and attacking strategy of SHO are embedded in ChoA for better exploration and exploitation. | |
Add one or more strategies onto an algorithm | Representative-based grey wolf optimizer (R-GWO) [26] | A search strategy named representative-based hunting (RH) is utilized to improve the exploration and diversity of the population |
Reinforced salp swarm algorithm (CMSRSSSA) [27] | An ensemble/composite mutation strategy (CMS) is applied to boost the exploitation and exploration speed of SSA, while restart strategy (RS) is used to get away from local optimum. | |
Boosting quantum rotation gate embedded slime mold algorithm (WQSMA) [28] | The quantum rotation gate mechanism and the operation from water cycle are applied to balance the exploration and exploitation inclinations. | |
Enhanced salp swarm algorithm (ESSA) [29] | Orthogonal learning, quadratic interpolation, and generalized oppositional learning are embedded into SSA to boost the global exploration and local exploitation. | |
Hybridize two or more algorithms that are further improved by one or more strategies | Whale optimization with seagull algorithm (WSOA) [30] | WOA’s contraction surrounding mechanism and SOA’s spiral attack behavior work together, and then levy flight strategy is employed on the search process of SOA. |
Chaotic sine-cosine firefly (CSCF) algorithm [31] | Chaotic form of SCA and FA are integrated together to improve the convergence speed and efficiency. | |
Hybrid grasshopper optimization algorithm with bat algorithm (BGOA) [32] | In BGOA, Levy fight, local search part of BA, and random strategy are introduced into basic GOA. |
Function Type | Function | Dimension | Range | Theoretical Optimization Value |
---|---|---|---|---|
Unimodal test functions | F1 | 30, 50, 200, 1000 | [−100, 100] | 0 |
F2 | 30, 50, 200, 1000 | [−10, 10] | 0 | |
F3 | 30, 50, 200, 1000 | [−100, 100] | 0 | |
F4 | 30, 50, 200, 1000 | [−100, 100] | 0 | |
F5 | 30, 50, 200, 1000 | [−30, 30] | 0 | |
F6 | 30, 50, 200, 1000 | [−100, 100] | 0 | |
F7 | 30, 50, 200, 1000 | [−1.28, 1.28] | 0 | |
Multimodal test functions | F8 | 30, 50, 200, 1000 | [−500, 500] | −418.9829 × D |
F9 | 30, 50, 200, 1000 | [−5.12, 5.12] | 0 | |
F10 | 30, 50, 200, 1000 | [−32, 32] | 0 | |
F11 | 30, 50, 200, 1000 | [−600, 600] | 0 | |
F12 | 30, 50, 200, 1000 | [−50, 50] | 0 | |
F13 | 30, 50, 200, 1000 | [−50, 50] | 0 | |
Fixed-dimension multimodal test functions | F14 | 2 | [−65, 65] | 0.998004 |
F15 | 4 | [−5, 5] | 0.0003075 | |
F16 | 2 | [−5, 5] | −1.03163 | |
F17 | 2 | [−5, 5] | 0.398 | |
F18 | 2 | [−2, 2] | 3 | |
F19 | 3 | [−1, 2] | −3.8628 | |
F20 | 6 | [0, 1] | −3.3220 | |
F21 | 4 | [0, 10] | −10.1532 | |
F22 | 4 | [0, 10] | −10.4028 | |
F23 | 4 | [0, 10] | −10.5363 | |
CEC2021 unimodal test functions | CEC_01 | 10 | [−100, 100] | 100 |
CEC2021 basic test functions | CEC_02 | 10 | [−100, 100] | 1100 |
CEC_03 | 10 | [−100, 100] | 700 | |
CEC_04 | 10 | [−100, 100] | 1900 | |
CEC2021 hybrid test functions | CEC_05 | 10 | [−100, 100] | 1700 |
CEC_06 | 10 | [−100, 100] | 1600 | |
CEC_07 | 10 | [−100, 100] | 2100 | |
CEC2021 composition test functions | CEC_08 | 10 | [−100, 100] | 2200 |
CEC_09 | 10 | [−100, 100] | 2400 | |
CEC_10 | 10 | [−100, 100] | 2500 |
Function | SMAOA | SMAOA1 | SMAOA2 | DESMAOA | ||||
---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean | Std | |
F1 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 |
F2 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 |
F3 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 |
F4 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 |
F5 | 2.82 × 100 | 7.00 × 100 | 5.85 × 10−1 | 1.07 × 100 | 2.46 × 10−1 | 1.33 × 100 | 1.17 × 10−3 | 1.55 × 10−3 |
F6 | 2.44 × 10−2 | 2.34 × 10−2 | 7.77 × 10−3 | 1.21 × 10−2 | 5.80 × 10−6 | 1.92 × 10−6 | 4.95 × 10−6 | 2.01 × 10−6 |
F7 | 1.16 × 10−4 | 9.72 × 10−5 | 5.67 × 10−5 | 5.61 × 10−5 | 6.72 × 10−5 | 6.77 × 10−5 | 4.27 × 10−5 | 4.76 × 10−5 |
F8 | −12,569.2361 | 1.89 × 10−1 | −12,569.3229 | 1.38 × 10−1 | −12,569.4866 | 4.96 × 10−6 | −12,569.4866 | 4.11 × 10−6 |
F9 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 |
F10 | 8.8818 × 10−16 | 0.00 × 100 | 8.8818 × 10−16 | 0.00 × 100 | 8.8818 × 10−16 | 0.00 × 100 | 8.8818 × 10−16 | 0.00 × 100 |
F11 | 2.13 × 10−1 | 2.92 × 10−1 | 0.00 × 100 | 0.00 × 100 | 8.85 × 10−3 | 2.30 × 10−2 | 0.00 × 100 | 0.00 × 100 |
F12 | 2.63 × 10−3 | 4.65 × 10−3 | 5.08 × 10−5 | 8.33 × 10−5 | 4.84 × 10−8 | 7.54 × 10−8 | 1.09 × 10−7 | 1.59 × 10−7 |
F13 | 1.70 × 10−2 | 3.67 × 10−2 | 8.82 × 10−4 | 1.15 × 10−3 | 2.50 × 10−3 | 6.04 × 10−3 | 5.91 × 10−7 | 1.06 × 10−6 |
F14 | 9.98 × 10−1 | 2.60 × 10−11 | 9.98 × 10−1 | 9.58 × 10−12 | 9.98 × 10−1 | 9.91 × 10−16 | 9.98 × 10−1 | 8.05 × 10−16 |
F15 | 4.16 × 10−4 | 1.56 × 10−4 | 3.63 × 10−4 | 9.61 × 10−5 | 4.07 × 10−4 | 1.90 × 10−4 | 3.34 × 10−4 | 8.63 × 10−5 |
F16 | −1.0316 × 100 | 3.97 × 10−8 | −1.0316 × 100 | 9.46 × 10−8 | −1.0316 × 100 | 1.67 × 10−11 | −1.0316 × 100 | 1.87 × 10−11 |
F17 | 3.9789 × 10−1 | 6.82 × 10−7 | 3.9789 × 10−1 | 3.97 × 10−7 | 3.9789 × 10−1 | 5.63 × 10−12 | 3.9789 × 10−1 | 5.94 × 10−12 |
F18 | 3.00 × 100 | 2.79 × 10−9 | 3.00 × 100 | 6.69 × 10−10 | 3.00 × 100 | 8.56 × 10−11 | 3.00 × 100 | 9.42 × 10−11 |
F19 | −3.8627 × 100 | 4.32 × 10−5 | −3.8628 × 100 | 4.68 × 10−5 | −3.8628 × 100 | 5.61 × 10−5 | −3.8627 × 100 | 7.91 × 10−5 |
F20 | −3.25 × 100 | 5.98 × 10−2 | −3.2859 × 100 | 5.59 × 10−2 | −3.2583 × 100 | 6.06 × 10−2 | −3.286 × 100 | 5.59 × 10−2 |
F21 | −1.01528 × 101 | 4.26 × 10−4 | −1.01529 × 101 | 3.67 × 10−4 | −1.01531 × 101 | 9.07 × 10−5 | −1.01531 × 101 | 1.42 × 10−4 |
F22 | −1.04023 × 101 | 4.61 × 10−4 | −1.04025 × 101 | 4.47 × 10−4 | −1.04028 × 101 | 8.31 × 10−5 | −1.04028 × 101 | 7.38 × 10−5 |
F23 | −1.0536 × 101 | 3.47 × 10−4 | −1.05362 × 101 | 2.47 × 10−4 | −1.05363 × 101 | 9.44 × 10−5 | −1.05363 × 101 | 8.26 × 10−5 |
Algorithm | Parameter Settings |
---|---|
DESMAOA | z = 0.03; α = 5; μ = 0.499 |
SMA [33] | z = 0.03 |
AOA [34] | α = 5; μ = 0.499; Min = 0.2; Max = 1 |
GWO [38] | a = [2, 0] |
WOA [39] | a1 = [2, 0]; a2 = [−2, −1]; b = 1 |
SSA [40] | c1∈[0, 1]; c2∈[0, 1] |
MVO [5] | WEP∈[0.2, 1]; TDR∈[0, 1]; r1, r2, r3∈[0, 1] |
PSO [12] | c1 = 2; c2 = 2; W∈[0.2, 0.9]; vMax = 6 |
Function | Metric | DESMAOA | SMA | AOA | GWO | WOA | SSA | MVO | PSO |
---|---|---|---|---|---|---|---|---|---|
F1 | Mean | 0.00 × 100 | 9.93 × 10−302 | 5.37 × 10−6 | 7.21 × 10−28 | 2.42 × 10−73 | 3.96 × 10−7 | 1.34 × 100 | 1.76 × 10−4 |
Std | 0.00 × 100 | 0.00 × 100 | 2.14 × 10−6 | 1.17 × 10−27 | 8.81 × 10−73 | 9.50 × 10−7 | 5.38 × 10−1 | 1.82 × 10−4 | |
F2 | Mean | 0.00 × 100 | 5.05 × 10−138 | 1.74 × 10−3 | 8.26 × 10−17 | 8.81 × 10−52 | 2.07 × 100 | 2.20 × 100 | 7.05 × 100 |
Std | 0.00 × 100 | 2.77 × 10−137 | 2.08 × 10−3 | 6.54 × 10−17 | 2.46 × 10−51 | 1.33 × 100 | 7.31 × 100 | 7.01 × 100 | |
F3 | Mean | 0.00 × 100 | 5.43 × 10−323 | 1.24 × 10−3 | 1.55 × 10−5 | 4.41 × 104 | 1.66 × 103 | 2.04 × 102 | 7.93 × 101 |
Std | 0.00 × 100 | 0.00 × 100 | 8.14 × 10−4 | 3.50 × 10−5 | 1.08 × 104 | 9.24 × 102 | 6.63 × 101 | 2.57 × 101 | |
F4 | Mean | 0.00 × 100 | 7.56 × 10−154 | 1.53 × 10−2 | 8.03 × 10−7 | 4.68 × 101 | 1.15 × 101 | 2.16 × 100 | 1.12 × 100 |
Std | 0.00 × 100 | 4.14 × 10−153 | 1.06 × 10−2 | 6.71 × 10−7 | 2.77 × 101 | 4.04 × 100 | 8.66 × 10−1 | 2.40 × 10−1 | |
F5 | Mean | 1.17 × 10−3 | 8.56 × 100 | 2.79 × 101 | 2.71 × 101 | 2.82 × 101 | 2.90 × 102 | 7.89 × 102 | 8.16 × 101 |
Std | 1.55 × 10−3 | 1.21 × 101 | 3.01 × 10−1 | 8.49 × 10−1 | 4.97 × 10−1 | 4.77 × 102 | 8.74 × 102 | 7.03 × 101 | |
F6 | Mean | 4.95 × 10−6 | 5.74 × 10−3 | 3.06 × 100 | 7.58 × 10−1 | 3.72 × 10−1 | 1.78 × 10−7 | 1.34 × 100 | 1.37 × 10−4 |
Std | 2.01 × 10−6 | 3.38 × 10−3 | 2.69 × 10−1 | 4.94 × 10−1 | 2.18 × 10−1 | 1.51 × 10−7 | 3.43 × 10−1 | 1.65 × 10−4 | |
F7 | Mean | 4.27 × 10−5 | 1.24 × 10−4 | 6.74 × 10−5 | 1.69 × 10−3 | 3.15 × 10−3 | 1.73 × 10−1 | 3.21 × 10−2 | 2.55 × 100 |
Std | 4.76 × 10−5 | 1.07 × 10−4 | 7.11 × 10−5 | 8.95 × 10−4 | 3.61 × 10−3 | 5.61 × 10−2 | 1.32 × 10−2 | 4.54 × 100 | |
F8 | Mean | −12,569.4866 | −12,569.1799 | −5.48 × 103 | −6.01 × 103 | −1.06 × 104 | −7.47 × 103 | −7.55 × 103 | −4.69 × 103 |
Std | 4.11 × 10−6 | 2.66 × 10−1 | 3.69 × 102 | 6.42 × 102 | 1.69 × 103 | 8.76 × 102 | 6.27 × 102 | 1.21 × 103 | |
F9 | Mean | 0.00 × 100 | 0.00 × 100 | 1.66 × 10−6 | 2.26 × 100 | 3.79 × 10−15 | 5.53 × 101 | 1.20 × 102 | 1.02 × 102 |
Std | 0.00 × 100 | 0.00 × 100 | 1.27 × 10−6 | 3.27 × 100 | 2.08 × 10−14 | 1.83 × 101 | 3.29 × 101 | 3.19 × 101 | |
F10 | Mean | 8.8818 × 10−16 | 8.8818 × 10−16 | 4.36 × 10−4 | 1.01 × 10−13 | 3.85 × 10−15 | 2.56 × 100 | 2.03 × 100 | 1.69 × 10−2 |
Std | 0.00 × 100 | 0.00 × 100 | 1.62 × 10−4 | 1.81 × 10−14 | 2.10 × 10−15 | 6.94 × 10−1 | 5.47 × 10−1 | 1.30 × 10−2 | |
F11 | Mean | 0.00 × 100 | 0.00 × 100 | 8.42 × 10−4 | 6.19 × 10−3 | 1.68 × 10−2 | 1.88 × 10−2 | 8.60 × 10−1 | 4.39 × 10−3 |
Std | 0.00 × 100 | 0.00 × 100 | 3.12 × 10−3 | 8.92 × 10−3 | 6.38 × 10−2 | 1.46 × 10−2 | 8.21 × 10−2 | 6.85 × 10−3 | |
F12 | Mean | 1.09 × 10−7 | 5.81 × 10−3 | 7.44 × 10−1 | 4.42 × 10−2 | 2.81 × 10−2 | 7.54 × 100 | 2.43 × 100 | 2.07 × 10−2 |
Std | 1.59 × 10−7 | 6.50 × 10−3 | 3.03 × 10−2 | 1.86 × 10−2 | 2.18 × 10−2 | 3.43 × 100 | 1.39 × 100 | 4.22 × 10−2 | |
F13 | Mean | 5.91 × 10−7 | 6.35 × 10−3 | 2.96 × 100 | 6.94 × 10−1 | 6.36 × 10−1 | 1.38 × 101 | 1.96 × 10−1 | 5.55 × 10−3 |
Std | 1.06 × 10−6 | 7.05 × 10−3 | 1.03 × 10−2 | 2.45 × 10−1 | 3.53 × 10−1 | 1.10 × 101 | 1.26 × 10−1 | 9.01 × 10−3 | |
F14 | Mean | 9.98 × 10−1 | 9.98 × 10−1 | 9.87 × 100 | 4.16 × 100 | 2.54 × 100 | 1.36 × 100 | 9.98 × 10−1 | 2.97 × 100 |
Std | 8.05 × 10−16 | 3.93 × 10−13 | 3.89 × 100 | 4.28 × 100 | 2.91 × 100 | 8.82 × 10−1 | 4.31 × 10−11 | 2.55 × 100 | |
F15 | Mean | 3.34 × 10−4 | 4.84 × 10−4 | 8.39 × 10−3 | 3.15 × 10−3 | 8.25 × 10−4 | 2.91 × 10−3 | 5.24 × 10−3 | 7.22 × 10−3 |
Std | 8.63 × 10−5 | 2.15 × 10−4 | 1.29 × 10−2 | 6.88 × 10−3 | 5.40 × 10−4 | 5.93 × 10−3 | 1.26 × 10−2 | 9.03 × 10−3 | |
F16 | Mean | −1.0316 × 100 | −1.0316 × 100 | −1.0316 × 100 | −1.0316 × 100 | −1.0316 × 100 | −1.0316 × 100 | −1.0316 × 100 | −1.0316 × 100 |
Std | 1.87 × 10−11 | 8.36 × 10−10 | 2.28 × 10−11 | 3.13 × 10−8 | 1.68 × 10−9 | 3.89 × 10−14 | 4.19 × 10−7 | 6.25 × 10−16 | |
F17 | Mean | 3.9789 × 10−1 | 3.9789 × 10−1 | 4.0217 × 10−1 | 3.9789 × 10−1 | 3.9789 × 10−1 | 3.9789 × 10−1 | 3.9789 × 10−1 | 3.9789 × 10−1 |
Std | 5.94 × 10−12 | 5.40 × 10−9 | 1.52 × 10−2 | 8.10 × 10−7 | 6.71 × 10−6 | 7.99 × 10−15 | 1.27 × 10−7 | 0.00 × 100 | |
F18 | Mean | 3.0000 × 100 | 3.0000 × 100 | 4.8000 × 100 | 5.7000 × 100 | 3.0001 × 100 | 3.0000 × 100 | 3.0000 × 100 | 3.0000 × 100 |
Std | 9.42 × 10−11 | 1.17 × 10−9 | 6.85 × 100 | 1.48 × 101 | 8.14 × 10−5 | 2.13 × 10−13 | 3.49 × 10−6 | 1.79 × 10−15 | |
F19 | Mean | −3.8627 × 100 | −3.8628 × 100 | −3.8627 × 100 | −3.8605 × 100 | −3.8572 × 100 | −3.8628 × 100 | −3.8628 × 100 | −3.8628 × 100 |
Std | 7.91 × 10−5 | 1.58 × 10−7 | 2.62 × 10−4 | 4.08 × 10−3 | 1.02 × 10−2 | 1.17 × 10−12 | 7.73 × 10−6 | 2.58 × 10−15 | |
F20 | Mean | −3.286 × 100 | −3.2503 × 100 | −3.2942 × 100 | −3.2339 × 100 | −3.2225 × 100 | −3.2255 × 100 | −3.2454 × 100 | −3.2402 × 100 |
Std | 5.59 × 10−2 | 5.95 × 10−2 | 5.12 × 10−2 | 7.30 × 10−2 | 1.10 × 10−1 | 5.45 × 10−2 | 5.93 × 10−2 | 8.13 × 10−2 | |
F21 | Mean | −1.01531 × 101 | −1.01531 × 101 | −7.8781 × 100 | −8.8066 × 100 | −8.4438 × 100 | −6.9755 × 100 | −7.048 × 100 | −6.3883 × 100 |
Std | 1.42 × 10−4 | 1.05 × 10−4 | 2.68 × 100 | 2.54 × 100 | 2.44 × 100 | 3.35 × 100 | 3.28 × 100 | 3.27 × 100 | |
F22 | Mean | −1.04028 × 101 | −1.04028 × 101 | −7.2814 × 100 | −1.02239 × 101 | −7.0271 × 100 | −8.938 × 100 | −9.0327 × 100 | −8.71250 × 100 |
Std | 7.38 × 10−5 | 1.82 × 10−4 | 3.52 × 100 | 9.70 × 10−1 | 3.08 × 100 | 2.99 × 100 | 2.83 × 100 | 2.91 × 100 | |
F23 | Mean | −1.05363 × 101 | −1.05363 × 101 | −6.6743 × 100 | −1.05349 × 101 | −7.7815 × 100 | −8.1138 × 100 | −8.5201 × 100 | −9.1233 × 100 |
Std | 8.26 × 10−5 | 9.71 × 10−5 | 3.31 × 100 | 8.48 × 10−4 | 3.28 × 100 | 3.51 × 100 | 3.20 × 100 | 2.93 × 100 |
Function | DESMAOA vs. SMA | DESMAOA vs. AOA | DESMAOA vs. GWO | DESMAOA vs. WOA | DESMAOA vs. SSA | DESMAOA vs. MVO | DESMAOA vs. PSO |
---|---|---|---|---|---|---|---|
F1 | 1.00 × 100 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F2 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F3 | 1.00 × 100 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F4 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F6 | 1.22 × 10−4 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 8.54 × 10−4 |
F7 | 2.52 × 10−1 | 1.88 × 10−1 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F8 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F9 | 1.00 × 100 | 1.22 × 10−4 | 6.10 × 10−5 | 1.00 × 100 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F10 | 1.00 × 100 | 6.10 × 10−5 | 6.10 × 10−5 | 9.77 × 10−4 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F11 | 1.00 × 100 | 6.10 × 10−5 | 2.50 × 10−1 | 1.00 × 100 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F12 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 8.36 × 10−3 |
F13 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 1.22 × 10−4 |
F14 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 8.14 × 10−2 | 6.10 × 10−5 | 7.93 × 10−3 |
F15 | 3.30 × 10−1 | 5.54 × 10−2 | 4.54 × 10−1 | 5.54 × 10−2 | 6.10 × 10−5 | 1.16 × 10−3 | 1.22 × 10−4 |
F16 | 2.56 × 10−2 | 3.36 × 10−3 | 6.10 × 10−5 | 2.52 × 10−1 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F17 | 6.10 × 10−4 | 6.39 × 10−1 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F18 | 1.81 × 10−2 | 7.62 × 10−1 | 8.36 × 10−3 | 8.36 × 10−3 | 6.10 × 10−5 | 8.36 × 10−3 | 6.10 × 10−5 |
F19 | 6.10 × 10−5 | 1.03 × 10−2 | 2.56 × 10−2 | 6.10 × 10−5 | 6.10 × 10−5 | 4.27 × 10−3 | 6.10 × 10−5 |
F20 | 6.39 × 10−1 | 1.81 × 10−2 | 2.52 × 10−1 | 2.52 × 10−1 | 1.51 × 10−2 | 5.99 × 10−1 | 2.08 × 10−1 |
F21 | 3.05 × 10−4 | 3.02 × 10−2 | 6.10 × 10−5 | 1.22 × 10−4 | 1.88 × 10−1 | 1.53 × 10−3 | 8.04 × 10−1 |
F22 | 6.10 × 10−5 | 4.27 × 10−3 | 6.10 × 10−4 | 1.22 × 10−4 | 8.04 × 10−1 | 3.03 × 10−1 | 7.62 × 10−1 |
F23 | 6.10 × 10−4 | 1.21 × 10−1 | 1.22 × 10−4 | 6.10 × 10−5 | 3.30 × 10−1 | 6.79 × 10−1 | 6.79 × 10−1 |
Function | D | Metric | DESMAOA | SMA | AOA | GWO | WOA | SSA | MVO | PSO |
---|---|---|---|---|---|---|---|---|---|---|
F1 | 50 | Mean | 0.00 × 100 | 3.94 × 10−310 | 4.05 × 10−5 | 5.96 × 10−20 | 3.97 × 10−71 | 6.27 × 10−1 | 9.07 × 100 | 2.05 × 10−1 |
Std | 0.00 × 100 | 0.00 × 100 | 1.33 × 10−5 | 5.86 × 10−20 | 2.17 × 10−70 | 5.32 × 10−1 | 2.48 × 100 | 1.82 × 10−1 | ||
200 | Mean | 0.00 × 100 | 5.15 × 10−244 | 4.63 × 10−2 | 1.09 × 10−7 | 2.33 × 10−71 | 1.76 × 104 | 2.84 × 103 | 3.31 × 102 | |
Std | 0.00 × 100 | 0.00 × 100 | 1.24 × 10−2 | 7.08 × 10−8 | 9.24 × 10−71 | 1.60 × 103 | 3.15 × 102 | 4.11 × 101 | ||
1000 | Mean | 0.00 × 100 | 2.20 × 10−246 | 1.50 × 100 | 2.53 × 10−1 | 3.57 × 10−68 | 2.29 × 105 | 7.94 × 105 | 4.11 × 104 | |
Std | 0.00 × 100 | 0.00 × 100 | 4.79 × 10−2 | 5.65 × 10−2 | 1.95 × 10−67 | 1.19 × 104 | 2.70 × 104 | 2.32 × 103 | ||
F2 | 50 | Mean | 0.00 × 100 | 1.50 × 10−145 | 6.70 × 10−3 | 2.60 × 10−12 | 1.56 × 10−49 | 9.29 × 100 | 3.50 × 103 | 2.58 × 101 |
Std | 0.00 × 100 | 8.24 × 10−145 | 3.05 × 10−3 | 1.52 × 10−12 | 7.19 × 10−49 | 3.59 × 100 | 1.73 × 104 | 1.89 × 101 | ||
200 | Mean | 0.00 × 100 | 7.90 × 10−138 | 7.23 × 10−2 | 3.25 × 10−5 | 2.93 × 10−48 | 1.55 × 102 | 5.08 × 1077 | 4.66 × 102 | |
Std | 0.00 × 100 | 3.91 × 10−137 | 1.18 × 10−2 | 7.69 × 10−6 | 1.17 × 10−47 | 1.44 × 101 | 2.73 × 1078 | 6.40 × 101 | ||
1000 | Mean | 0.00 × 100 | 5.92 × 10−1 | 1.58 × 100 | 6.78 × 10−1 | 1.44 × 10−47 | 1.19 × 103 | 3.59 × 10278 | 1.41 × 103 | |
Std | 0.00 × 100 | 2.92 × 100 | 1.08 × 10−1 | 5.77 × 10−1 | 7.74 × 10−47 | 2.48 × 101 | Inf | 6.51 × 101 | ||
F3 | 50 | Mean | 0.00 × 100 | 1.03 × 10−293 | 1.81 × 10−2 | 3.84 × 10−1 | 2.01 × 105 | 9.10 × 103 | 6.50 × 103 | 1.48 × 103 |
Std | 0.00 × 100 | 0.00 × 100 | 8.60 × 10−3 | 1.01 × 100 | 4.50 × 104 | 4.69 × 103 | 1.95 × 103 | 4.64 × 102 | ||
200 | Mean | 0.00 × 100 | 3.94 × 10−219 | 7.32 × 10−1 | 1.98 × 104 | 4.55 × 106 | 2.05 × 105 | 3.16 × 105 | 8.34 × 104 | |
Std | 0.00 × 100 | 0.00 × 100 | 1.86 × 10−1 | 9.23 × 103 | 1.51 × 106 | 7.25 × 104 | 3.10 × 104 | 2.24 × 104 | ||
1000 | Mean | 0.00 × 100 | 4.81 × 10−125 | 3.35 × 101 | 1.53 × 106 | 1.36 × 108 | 5.19 × 106 | 7.98 × 106 | 2.27 × 106 | |
Std | 0.00 × 100 | 2.64 × 10−124 | 6.49 × 100 | 3.16 × 105 | 6.32 × 107 | 2.46 × 106 | 8.76 × 105 | 4.56 × 105 | ||
F4 | 50 | Mean | 0.00 × 100 | 3.80 × 10−158 | 3.56 × 10−2 | 7.25 × 10−4 | 7.35 × 101 | 1.94 × 101 | 1.67 × 101 | 3.74 × 100 |
Std | 0.00 × 100 | 2.06 × 10−157 | 7.14 × 10−3 | 1.42 × 10−3 | 1.99 × 101 | 3.14 × 100 | 4.24 × 100 | 7.18 × 10−1 | ||
200 | Mean | 0.00 × 100 | 3.11 × 10−114 | 9.10 × 10−2 | 2.39 × 101 | 8.41 × 101 | 3.52 × 101 | 8.32 × 101 | 1.93 × 101 | |
Std | 0.00 × 100 | 1.19 × 10−113 | 1.18 × 10−2 | 5.51 × 100 | 1.89 × 101 | 3.49 × 100 | 3.80 × 100 | 1.45 × 100 | ||
1000 | Mean | 0.00 × 100 | 3.86 × 10−101 | 1.54 × 10−1 | 7.88 × 101 | 7.94 × 101 | 4.43 × 101 | 9.81 × 101 | 3.31 × 101 | |
Std | 0.00 × 100 | 1.90 × 10−100 | 7.55 × 10−3 | 3.25 × 100 | 2.09 × 101 | 3.19 × 100 | 6.42 × 10−1 | 1.52 × 100 | ||
F5 | 50 | Mean | 4.84 × 100 | 1.89 × 101 | 4.83 × 101 | 4.72 × 101 | 4.83 × 101 | 1.64 × 103 | 7.66 × 102 | 4.21 × 102 |
Std | 1.47 × 101 | 1.93 × 101 | 1.40 × 10−1 | 7.35 × 10−1 | 4.05 × 10−1 | 3.66 × 103 | 7.47 × 102 | 2.18 × 102 | ||
200 | Mean | 1.29 × 101 | 6.23 × 101 | 1.98 × 102 | 1.98 × 102 | 1.98 × 102 | 3.79 × 106 | 3.91 × 105 | 5.98 × 105 | |
Std | 3.68 × 101 | 7.20 × 101 | 7.40 × 10−2 | 4.19 × 10−1 | 1.65 × 10−1 | 9.40 × 105 | 1.21 × 105 | 1.04 × 105 | ||
1000 | Mean | 1.11 × 102 | 4.01 × 102 | 1.00 × 103 | 1.05 × 103 | 9.94 × 102 | 1.21 × 108 | 2.33 × 109 | 2.95 × 108 | |
Std | 2.50 × 102 | 4.15 × 102 | 2.71 × 10−1 | 2.55 × 101 | 1.03 × 100 | 1.12 × 107 | 1.85 × 108 | 4.28 × 107 | ||
F6 | 50 | Mean | 1.66 × 10−4 | 8.78 × 10−2 | 7.29 × 100 | 2.57 × 100 | 1.20 × 100 | 8.30 × 10−1 | 9.61 × 100 | 1.97 × 10−1 |
Std | 5.60 × 10−5 | 6.54 × 10−2 | 4.04 × 10−1 | 4.02 × 10−1 | 5.39 × 10−1 | 7.25 × 10−1 | 1.88 × 100 | 1.74 × 10−1 | ||
200 | Mean | 3.73 × 10−2 | 8.26 × 100 | 3.59 × 101 | 2.91 × 101 | 1.11 × 101 | 1.76 × 104 | 2.99 × 103 | 3.21 × 102 | |
Std | 3.21 × 10−2 | 8.04 × 100 | 1.19 × 100 | 1.28 × 100 | 2.90 × 100 | 2.45 × 103 | 4.10 × 102 | 4.66 × 101 | ||
1000 | Mean | 3.34 × 100 | 6.80 × 101 | 2.42 × 102 | 2.02 × 102 | 6.68 × 101 | 2.37 × 105 | 8.04 × 105 | 4.02 × 104 | |
Std | 4.80 × 100 | 8.81 × 101 | 1.23 × 100 | 2.57 × 100 | 1.52 × 101 | 1.11 × 104 | 2.79 × 104 | 2.17 × 103 | ||
F7 | 50 | Mean | 1.36 × 10−4 | 1.96 × 10−4 | 6.63 × 10−5 | 3.54 × 10−3 | 3.97 × 10−3 | 4.86 × 10−1 | 1.07 × 10−1 | 3.97 × 101 |
Std | 1.18 × 10−4 | 1.69 × 10−4 | 5.90 × 10−5 | 1.90 × 10−3 | 4.79 × 10−3 | 1.53 × 10−1 | 2.32 × 10−2 | 2.76 × 101 | ||
200 | Mean | 1.29 × 10−4 | 4.32 × 10−4 | 5.35 × 10−5 | 1.63 × 10−2 | 4.14 × 10−3 | 1.72 × 101 | 5.40 × 100 | 2.95 × 103 | |
Std | 1.52 × 10−4 | 3.04 × 10−4 | 5.09 × 10−5 | 5.34 × 10−3 | 4.22 × 10−3 | 4.14 × 100 | 7.17 × 10−1 | 4.68 × 102 | ||
1000 | Mean | 1.17 × 10−4 | 6.93 × 10−4 | 8.25 × 10−5 | 1.55 × 10−1 | 3.29 × 10−3 | 1.74 × 103 | 2.88 × 104 | 2.39 × 105 | |
Std | 1.28 × 10−4 | 4.85 × 10−4 | 6.96 × 10−5 | 3.32 × 10−2 | 3.73 × 10−3 | 1.75 × 102 | 2.72 × 103 | 7.66 × 103 |
Function | D | Metric | DESMAOA | SMA | AOA | GWO | WOA | SSA | MVO | PSO |
---|---|---|---|---|---|---|---|---|---|---|
F8 | 50 | Mean | −2.0949 × 104 | −2.0947 × 104 | −8.3989 × 103 | −9.1468 × 103 | −1.8030 × 104 | −1.2107 × 104 | −1.2350 × 104 | −7.6172 × 103 |
Std | 1.54 × 10−4 | 2.27 × 100 | 5.06 × 102 | 1.59 × 103 | 2.78 × 103 | 1.00 × 103 | 1.11 × 103 | 2.18 × 103 | ||
200 | Mean | −8.3796 × 104 | −8.3757 × 104 | −2.1657 × 104 | −2.7533 × 104 | −7.1281 × 104 | −3.4381 × 104 | −4.0399 × 104 | −1.5591 × 104 | |
Std | 6.62 × 10−1 | 6.42 × 101 | 1.27 × 103 | 5.65 × 103 | 1.28 × 104 | 2.25 × 103 | 2.30 × 103 | 6.41 × 103 | ||
1000 | Mean | −4.1892 × 105 | −4.1862 × 105 | −5.4566 × 104 | −8.4602 × 104 | −3.5941 × 105 | −8.8084 × 104 | −1.1041 × 105 | −3.3236 × 104 | |
Std | 1.25 × 102 | 5.75 × 102 | 2.29 × 103 | 2.28 × 104 | 5.92 × 104 | 7.25 × 103 | 3.94 × 103 | 1.51 × 104 | ||
F9 | 50 | Mean | 0.00 × 100 | 0.00 × 100 | 1.61 × 10−5 | 5.24 × 100 | 1.89 × 10−15 | 8.82 × 101 | 2.54 × 102 | 2.84 × 102 |
Std | 0.00 × 100 | 0.00 × 100 | 4.42 × 10−6 | 7.71 × 100 | 1.04 × 10−14 | 2.32 × 101 | 5.65 × 101 | 5.01 × 101 | ||
200 | Mean | 0.00 × 100 | 0.00 × 100 | 1.34 × 10−3 | 2.41 × 101 | 7.58 × 10−15 | 8.27 × 102 | 1.90 × 103 | 2.02 × 103 | |
Std | 0.00 × 100 | 0.00 × 100 | 1.82 × 10−4 | 9.14 × 100 | 4.15 × 10−14 | 8.74 × 101 | 1.30 × 102 | 1.25 × 102 | ||
1000 | Mean | 0.00 × 100 | 0.00 × 100 | 3.79 × 10−2 | 2.06 × 102 | 0.00 × 100 | 7.63 × 103 | 1.46 × 104 | 1.41 × 104 | |
Std | 0.00 × 100 | 0.00 × 100 | 1.94 × 10−3 | 5.67 × 101 | 0.00 × 100 | 2.12 × 102 | 2.44 × 102 | 2.98 × 102 | ||
F10 | 50 | Mean | 8.8818 × 10−16 | 8.8818 × 10−16 | 1.14 × 10−3 | 4.3720 × 10−11 | 4.3225 × 10−15 | 4.83 × 100 | 3.56 × 100 | 1.69 × 100 |
Std | 0.00 × 100 | 0.00 × 100 | 1.93 × 10−4 | 2.44 × 10−11 | 2.38 × 10−15 | 1.23 × 100 | 3.13 × 100 | 5.70 × 10−1 | ||
200 | Mean | 8.8818 × 10−16 | 8.8818 × 10−16 | 1.06 × 10−2 | 2.18 × 10−5 | 4.09 × 10−15 | 1.30 × 101 | 2.04 × 101 | 6.61 × 100 | |
Std | 0.00 × 100 | 0.00 × 100 | 1.01 × 10−3 | 6.01 × 10−6 | 2.70 × 10−15 | 4.61 × 10−1 | 2.15 × 10−1 | 3.38 × 10−1 | ||
1000 | Mean | 8.8818 × 10−16 | 8.8818 × 10−16 | 3.32 × 10−2 | 1.89 × 10−2 | 4.91 × 10−15 | 1.45 × 101 | 2.10 × 101 | 1.60 × 101 | |
Std | 0.00 × 100 | 0.00 × 100 | 7.69 × 10−4 | 3.23 × 10−3 | 2.42 × 10−15 | 1.94 × 10−1 | 3.27 × 10−2 | 2.33 × 10−1 | ||
F11 | 50 | Mean | 0.00 × 100 | 0.00 × 100 | 7.70 × 10−3 | 2.94 × 10−3 | 1.34 × 10−2 | 5.55 × 10−1 | 1.09 × 100 | 1.62 × 10−2 |
Std | 0.00 × 100 | 0.00 × 100 | 1.91 × 10−2 | 6.06 × 10−3 | 5.11 × 10−2 | 2.74 × 10−1 | 2.30 × 10−2 | 1.19 × 10−2 | ||
200 | Mean | 0.00 × 100 | 0.00 × 100 | 7.85 × 100 | 6.27 × 10−3 | 0.00 × 100 | 1.46 × 102 | 2.73 × 101 | 2.28 × 100 | |
Std | 0.00 × 100 | 0.00 × 100 | 1.19 × 101 | 1.48 × 10−2 | 0.00 × 100 | 1.88 × 101 | 3.08 × 100 | 2.70 × 100 | ||
1000 | Mean | 0.00 × 100 | 0.00 × 100 | 1.33 × 104 | 2.37 × 10−2 | 0.00 × 100 | 2.12 × 103 | 7.25 × 103 | 2.74 × 102 | |
Std | 0.00 × 100 | 0.00 × 100 | 2.64 × 103 | 3.67 × 10−2 | 0.00 × 100 | 8.35 × 101 | 3.01 × 102 | 1.86 × 101 | ||
F12 | 50 | Mean | 6.67 × 10−7 | 6.02 × 10−3 | 9.06 × 10−1 | 1.22 × 10−1 | 3.46 × 10−2 | 1.26 × 101 | 5.51 × 100 | 8.03 × 10−2 |
Std | 6.28 × 10−7 | 1.22 × 10−2 | 2.39 × 10−2 | 7.35 × 10−2 | 1.86 × 10−2 | 4.57 × 100 | 1.37 × 100 | 1.53 × 10−1 | ||
200 | Mean | 2.01 × 10−5 | 5.76 × 10−3 | 8.41 × 10−1 | 5.42 × 10−1 | 7.03 × 10−2 | 7.55 × 103 | 2.30 × 103 | 4.84 × 101 | |
Std | 1.57 × 10−5 | 8.11 × 10−3 | 5.60 × 10−2 | 6.68 × 10−2 | 3.52 × 10−2 | 1.01 × 104 | 2.88 × 103 | 3.71 × 101 | ||
1000 | Mean | 1.53 × 10−4 | 9.67 × 10−3 | 1.04 × 100 | 1.26 × 100 | 1.05 × 10−1 | 1.16 × 107 | 4.19 × 109 | 9.21 × 106 | |
Std | 2.46 × 10−4 | 1.70 × 10−2 | 1.12 × 10−2 | 2.99 × 10−1 | 5.30 × 10−2 | 4.67 × 106 | 4.67 × 108 | 2.30 × 106 | ||
F13 | 50 | Mean | 1.08 × 10−3 | 2.52 × 10−2 | 4.94 × 100 | 2.03 × 100 | 1.14 × 100 | 8.07 × 101 | 7.29 × 100 | 1.84 × 10−1 |
Std | 4.27 × 10−3 | 3.02 × 10−2 | 6.56 × 10−4 | 2.80 × 10−1 | 4.84 × 10−1 | 1.61 × 101 | 1.15 × 101 | 1.16 × 10−1 | ||
200 | Mean | 1.85 × 10−3 | 4.73 × 10−1 | 1.97 × 101 | 1.67 × 101 | 6.18 × 100 | 1.61 × 106 | 1.11 × 105 | 5.27 × 103 | |
Std | 1.29 × 10−3 | 7.17 × 10−1 | 9.97 × 10−2 | 4.32 × 10−1 | 1.75 × 100 | 7.60 × 105 | 1.03 × 105 | 2.58 × 103 | ||
1000 | Mean | 6.06 × 10−2 | 3.82 × 100 | 1.00 × 102 | 1.21 × 102 | 4.02 × 101 | 1.47 × 108 | 9.13 × 109 | 8.26 × 107 | |
Std | 8.56 × 10−2 | 3.59 × 100 | 3.49 × 10−1 | 7.98 × 100 | 1.12 × 101 | 2.91 × 107 | 8.64 × 108 | 1.28 × 107 |
Function | DESMAOA vs. SMA | DESMAOA vs. AOA | DESMAOA vs. GWO | DESMAOA vs. WOA | DESMAOA vs. SSA | DESMAOA vs. MVO | DESMAOA vs. PSO |
---|---|---|---|---|---|---|---|
F1 | 5.00 × 10−1 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F2 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F3 | 5.00 × 10−1 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F4 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F5 | 5.37 × 10−3 | 6.10 × 10−5 | 1.22 × 10−4 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F6 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F7 | 8.33 × 10−2 | 7.30 × 10−2 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F8 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F9 | 1.00 × 100 | 6.10 × 10−5 | 6.10 × 10−5 | 1.00 × 100 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F10 | 1.00 × 100 | 6.10 × 10−5 | 6.10 × 10−5 | 2.44 × 10−4 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F11 | 1.00 × 100 | 6.10 × 10−5 | 2.50 × 10−1 | 1.00 × 100 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F12 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F13 | 2.01 × 10−3 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
Function | DESMAOA vs. SMA | DESMAOA vs. AOA | DESMAOA vs. GWO | DESMAOA vs. WOA | DESMAOA vs. SSA | DESMAOA vs. MVO | DESMAOA vs. PSO |
---|---|---|---|---|---|---|---|
F1 | 2.50 × 10−1 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F2 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F3 | 6.10 × 10−5 | 6.10 × 10−5 | 9.77 × 10−4 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F4 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 8.54 × 10−4 | 6.10 × 10−5 | 6.10 × 10−5 |
F6 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 1.22 × 10−4 | 6.10 × 10−5 |
F7 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F8 | 2.56 × 10−2 | 6.10 × 10−5 | 1.22 × 10−4 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F9 | 1.00 × 100 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F10 | 1.00 × 100 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F11 | 1.00 × 100 | 6.10 × 10−5 | 6.10 × 10−5 | 1.00 × 100 | 6.10 × 10−5 | 4.88 × 10−4 | 6.10 × 10−5 |
F12 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 1.22 × 10−4 |
F13 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
Function | DESMAOA vs. SMA | DESMAOA vs. AOA | DESMAOA vs. GWO | DESMAOA vs. WOA | DESMAOA vs. SSA | DESMAOA vs. MVO | DESMAOA vs. PSO |
---|---|---|---|---|---|---|---|
F1 | 3.91 × 10−3 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F2 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F3 | 6.10 × 10−5 | 6.10 × 10−5 | 1.22 × 10−4 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F4 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−4 | 6.10 × 10−5 | 6.10 × 10−5 |
F6 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 1.22 × 10−4 | 6.10 × 10−5 |
F7 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 8.36 × 10−3 |
F8 | 4.21 × 10−1 | 6.10 × 10−5 | 1.22 × 10−4 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F9 | 1.00 × 100 | 6.10 × 10−5 | 6.10 × 10−5 | 1.00 × 100 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F10 | 1.00 × 100 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
F11 | 1.00 × 100 | 6.10 × 10−5 | 6.10 × 10−5 | 1.00 × 100 | 6.10 × 10−5 | 9.77 × 10−4 | 6.10 × 10−5 |
F12 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 1.16 × 10−3 |
F13 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 | 6.10 × 10−5 |
Algorithm | D = 50 | D = 200 | D = 1000 | |||
---|---|---|---|---|---|---|
Mean | Rank | Mean | Mean | Rank | ||
DESMAOA | 1.1923 | 1 | 1.2308 | 1 | 1.2692 | 1 |
SMA | 1.9615 | 2 | 2.0000 | 2 | 2.1923 | 2 |
AOA | 4.7692 | 5 | 4.5385 | 5 | 4.4615 | 4 |
GWO | 4.3077 | 3 | 4.3846 | 4 | 4.6923 | 5 |
WOA | 4.3846 | 4 | 3.7692 | 3 | 3.4615 | 3 |
SSA | 6.7692 | 7 | 7.0000 | 8 | 6.1538 | 7 |
MVO | 6.8462 | 8 | 6.7692 | 7 | 7.4615 | 8 |
PSO | 5.7692 | 6 | 6.3077 | 6 | 6.3077 | 6 |
Function | Metric | DESMAOA | SMA | AOA | GWO | WOA | SSA | MVO | PSO |
---|---|---|---|---|---|---|---|---|---|
CEC_01 | Mean | 3.4126 × 103 | 8.4790 × 103 | 1.4400 × 1010 | 8.5800 × 107 | 8.8200 × 107 | 3.0497 × 103 | 2.0700 × 104 | 2.6509 × 103 |
Std | 3.2484 × 103 | 4.3942 × 103 | 5.4800 × 109 | 2.0600 × 108 | 1.0800 × 108 | 2.6586 × 103 | 1.2300 × 104 | 2.8147 × 103 | |
CEC_02 | Mean | 1.6460 × 103 | 1.7230 × 103 | 2.3794 × 103 | 1.7650 × 103 | 2.3408 × 103 | 1.9202 × 103 | 1.7883 × 103 | 2.0353 × 103 |
Std | 1.8064 × 102 | 2.0356 × 102 | 2.5500 × 102 | 4.0002 × 102 | 2.8907 × 102 | 3.0299 × 102 | 2.8914 × 102 | 3.3248 × 102 | |
CEC_03 | Mean | 7.4197 × 102 | 7.3268 × 102 | 8.0255 × 102 | 7.3186 × 102 | 7.9430 × 102 | 7.4133 × 102 | 7.3257 × 102 | 7.3096 × 102 |
Std | 1.3713 × 101 | 9.9242 × 100 | 8.5999 × 100 | 1.0358 × 101 | 2.9899 × 101 | 1.5608 × 101 | 9.4278 × 100 | 1.1527 × 101 | |
CEC_04 | Mean | 1.9024 × 103 | 1.9015 × 103 | 3.9200 × 105 | 1.9028 × 103 | 1.9116 × 103 | 1.9015 × 103 | 1.9014 × 103 | 1.9011 × 103 |
Std | 1.5132 × 100 | 4.7478 × 10−1 | 2.0400 × 105 | 1.1137 × 100 | 8.0854 × 100 | 4.6367 × 10−1 | 6.4272 × 10−1 | 6.8410 × 10−1 | |
CEC_05 | Mean | 4.7672 × 103 | 2.0900 × 104 | 4.6200 × 105 | 1.1600 × 105 | 5.8000 × 105 | 3.2100 × 104 | 6.7593 × 103 | 5.0581 × 103 |
Std | 4.2784 × 103 | 4.6800 × 104 | 1.1100 × 105 | 1.9300 × 105 | 8.5200 × 105 | 7.2900 × 104 | 4.2953 × 103 | 3.3481 × 103 | |
CEC_06 | Mean | 1.7312 × 103 | 1.7684 × 103 | 2.2222 × 103 | 1.7776 × 103 | 1.8431 × 103 | 1.7573 × 103 | 1.7587 × 103 | 1.8632 × 103 |
Std | 1.2285 × 102 | 9.1820 × 101 | 2.0670 × 102 | 1.1171 × 102 | 1.0223 × 102 | 8.6052 × 101 | 1.0387 × 102 | 1.0503 × 102 | |
CEC_07 | Mean | 7.0311 × 103 | 6.5603 × 103 | 2.9700 × 106 | 1.8000 × 104 | 3.4500 × 105 | 7.3733 × 103 | 7.5164 × 103 | 6.0549 × 103 |
Std | 7.7063 × 103 | 6.4319 × 103 | 3.8500 × 106 | 3.7100 × 104 | 5.3700 × 105 | 4.9714 × 103 | 6.1260 × 103 | 2.6469 × 103 | |
CEC_08 | Mean | 2.2974 × 103 | 2.4032 × 103 | 3.5700 × 103 | 2.3384 × 103 | 2.4289 × 103 | 2.3012 × 103 | 2.3861 × 103 | 2.4193 × 103 |
Std | 2.2368 × 101 | 3.1043 × 102 | 3.7790 × 102 | 9.1745 × 101 | 3.3946 × 102 | 1.4399 × 101 | 2.6287 × 102 | 3.7983 × 102 | |
CEC_09 | Mean | 2.7018 × 103 | 2.7599 × 103 | 2.9038 × 103 | 2.7449 × 103 | 2.7752 × 103 | 2.7330 × 103 | 2.7514 × 103 | 2.7922 × 103 |
Std | 1.0302 × 102 | 1.0211 × 101 | 9.9242 × 101 | 4.4570 × 101 | 6.2479 × 101 | 6.4081 × 101 | 9.5351 × 100 | 1.0509 × 102 | |
CEC_10 | Mean | 2.9231 × 103 | 2.9323 × 103 | 3.6576 × 103 | 2.9366 × 103 | 2.9545 × 103 | 2.9289 × 103 | 2.9290 × 103 | 2.9234 × 103 |
Std | 2.2799 × 101 | 3.1577 × 101 | 4.0387 × 102 | 2.4483 × 101 | 6.9125 × 101 | 2.4243 × 101 | 2.9085 × 101 | 2.3865 × 101 | |
Average rank | 2.3 | 3.9 | 7.9 | 4.6 | 6.9 | 3.3 | 3.7 | 3.4 | |
Rank | 1 | 5 | 8 | 6 | 7 | 2 | 4 | 3 |
Algorithm | Optimal Values for Variables | Optimal Cost | |||
---|---|---|---|---|---|
Ts | Th | R | L | ||
DESMAOA | 7.943124 × 10−1 | 3.927124 × 10−1 | 4.288001 × 101 | 1.671866 × 102 | 5.8363262 × 103 |
SMA [33] | 7.931 × 10−1 | 3.932 × 10−1 | 4.06711 × 101 | 1.962178 × 102 | 5.9941857 × 103 |
AOA [34] | 8.303737 × 10−1 | 4.162057 × 10−1 | 4.275127 × 101 | 1.693454 × 102 | 6.0487844 × 103 |
MVO [5] | 8.125 × 10−1 | 4.375 × 10−1 | 4.2090738 × 101 | 1.7673869 × 102 | 6.0608066 × 103 |
WOA [39] | 8.12500 × 10−1 | 4.37500 × 10−1 | 4.2098209 × 101 | 1.76638998 × 102 | 6.0597410 × 103 |
MFO [44] | 8.125 × 10−1 | 4.375 × 10−1 | 4.2098445 × 101 | 1.76636596 × 102 | 6.0597143 × 103 |
GWO [38] | 8.125 × 10−1 | 4.345 × 10−1 | 4.20892 × 101 | 1.767587 × 102 | 6.0515639 × 103 |
MOSCA [45] | 7.781909 × 10−1 | 3.830476 × 10−1 | 4.03207539 × 101 | 1.999841994 × 102 | 5.88071150 × 103 |
LWOA [46] | 7.78858 × 10−1 | 3.85321 × 10−1 | 4.032609 × 101 | 2.00 × 102 | 5.893339 × 103 |
IMFO [47] | 7.781948 × 10−1 | 3.846621 × 10−1 | 4.032097 × 101 | 1.999812 × 102 | 5.8853778 × 103 |
Algorithm | Optimal Values for Variables | Optimal Weight | |
---|---|---|---|
x1 | x2 | ||
DESMAOA | 7.882549 × 10−1 | 4.085642 × 10−1 | 2.638523657 × 102 |
SMA [33] | 7.729316 × 10−1 | 4.718874 × 10−1 | 2.658067955 × 102 |
AOA [34] | 7.9369 × 10−1 | 3.9426 × 10−1 | 2.639154 × 102 |
MBA [48] | 7.885650 × 10−1 | 4.085597 × 10−1 | 2.638958522 × 102 |
SSA [40] | 7.88665414 × 10−1 | 4.08275784 × 10−1 | 2.638958434 × 102 |
MFO [44] | 7.88244771 × 10−1 | 4.09466906 × 10−1 | 2.638959797 × 102 |
PSO-DE [49] | 7.886751 × 10−1 | 4.082482 × 10−1 | 2.638958433 × 102 |
HSCAHS [50] | 7.885721 × 10−1 | 4.084012 × 10−1 | 2.63881992 × 102 |
Algorithm | Optimal Values for Variables | Optimal Weight | ||
---|---|---|---|---|
d | D | p | ||
DESMAOA | 5.44827 × 10−2 | 4.83109 × 10−1 | 5.746128 × 100 | 1.11083 × 10−2 |
SMA [33] | 5.8992 × 10−2 | 6.23402 × 10−1 | 3.590304 × 100 | 1.2128 × 10−2 |
AOA [34] | 5.00 × 10−2 | 3.49809 × 10−1 | 1.18637 × 101 | 1.2124 × 10−2 |
MVO [5] | 5.251 × 10−2 | 3.7602 × 10−1 | 1.033513 × 101 | 1.2790 × 10−2 |
AO [14] | 5.02439 × 10−2 | 3.5262 × 10−1 | 1.05425 × 101 | 1.1165 × 10−2 |
SSA [40] | 5.1207 × 10−2 | 3.45215 × 10−1 | 1.2004032 × 101 | 1.26763 × 10−2 |
GWO [38] | 5.169 × 10−2 | 3.56737 × 10−1 | 1.128885 × 101 | 1.2666 × 10−2 |
GSA [6] | 5.0276 × 10−2 | 3.23680 × 10−1 | 1.3525410 × 101 | 1.27022 × 10−2 |
WSA [51] | 5.168626 × 10−2 | 3.5665047 × 10−1 | 1.129291654 × 101 | 1.267061 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, R.; Jia, H.; Abualigah, L.; Liu, Q.; Wang, S. Deep Ensemble of Slime Mold Algorithm and Arithmetic Optimization Algorithm for Global Optimization. Processes 2021, 9, 1774. https://doi.org/10.3390/pr9101774
Zheng R, Jia H, Abualigah L, Liu Q, Wang S. Deep Ensemble of Slime Mold Algorithm and Arithmetic Optimization Algorithm for Global Optimization. Processes. 2021; 9(10):1774. https://doi.org/10.3390/pr9101774
Chicago/Turabian StyleZheng, Rong, Heming Jia, Laith Abualigah, Qingxin Liu, and Shuang Wang. 2021. "Deep Ensemble of Slime Mold Algorithm and Arithmetic Optimization Algorithm for Global Optimization" Processes 9, no. 10: 1774. https://doi.org/10.3390/pr9101774
APA StyleZheng, R., Jia, H., Abualigah, L., Liu, Q., & Wang, S. (2021). Deep Ensemble of Slime Mold Algorithm and Arithmetic Optimization Algorithm for Global Optimization. Processes, 9(10), 1774. https://doi.org/10.3390/pr9101774