Nonlinear Offset-Free Model Predictive Control based on Dynamic PLS Framework
Abstract
:1. Introduction
2. T–S-Fuzzy Model-Overview
3. Nonlinear Dynamic PLS Model
3.1. Dynamic PLS Model
3.2. Nonlinear Dynamic Fuzzy PLS Model
4. Offset-Free Model Predictive Control Based on a Nonlinear Dynamic PLS Framework
4.1. Dynamic PLS Control Framework
4.2. Offset-Free Fuzzy Model Predictive Control Based on Dynamic PLS Framework
4.3. Getting a Proper Observer Gain
5. Case Study
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, C.; Blaabjerg, F. Advanced control of power electronic systems—An overview of methods. In Control of Power Electronic Converters and Systems; Elsevier: Amsterdam, The Nehterlands, 2021; pp. 1–33. [Google Scholar]
- Pereira, D.F.; Lopes, F.; Watanabe, E.H. Nonlinear model predictive control for the energy management of fuel cell hybrid electric vehicles in real-time. IEEE Trans. Ind. Electron. 2021, 68, 3213–3223. [Google Scholar] [CrossRef]
- Xu, X.; Simkoff, J.M.; Baldea, M.; Chiang, L.H.; Castillo, I.; Bindlish, R.; Ashcraft, B. Data-driven plant–model mismatch estimation for dynamic matrix control systems. Int. J. Robust Nonlinear Control 2020, 30, 7103–7129. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, S.; Zhang, C. Improved model predictive current control for SPMSM drives with parameter mismatch. IEEE Trans. Ind. Electron. 2019, 67, 852–862. [Google Scholar] [CrossRef]
- Gerksic, S.; Strmcnik, S.; Boom, T. Feedback action in predictive control: An experimental case study. Control Eng. Pract. 2008, 16, 321–332. [Google Scholar] [CrossRef]
- Jap, A.; Tlmsa, B.; Am, A. Mixed stochastic-deterministic tube MPC for offset-free tracking in the presence of plant-model mismatch. J. Process Control 2019, 83, 102–120. [Google Scholar]
- Wang, Z.; Zheng, Z.; Li, Y.; Sun, J. An offset-free robust model predictive control with incremental model and improved current observer for induction motor. Int. Trans. Electr. Energy Syst. 2019, 29, 1–18. [Google Scholar] [CrossRef]
- Awha, B.; Ssc, B. An offset-free MPC formulation for nonlinear systems using adaptive integral controller. ISA Trans. 2019, 91, 66–77. [Google Scholar]
- Hamdia, K.M.; Zhuang, X.; Rabczuk, T. An efficient optimization approach for designing machine learning models based on genetic algorithm. Neural Comput. Appl. 2021, 33, 1923–1933. [Google Scholar] [CrossRef]
- Benrabah, M.; Kara, K.; Aitsahed, O.; Hadjili, M.L. Constrained nonlinear predictive control using neural networks and teaching–learning-based optimization. J. Control Autom. Electr. Syst. 2021, 32, 1228–1243. [Google Scholar] [CrossRef]
- Wu, Z.; Rincon, D.; Christofides, P.D. Process structure-based recurrent neural network modeling for model predictive control of nonlinear processes. J. Process Control 2020, 89, 74–84. [Google Scholar] [CrossRef]
- Kong, L.; Yuan, J. Generalized Discrete-time nonlinear disturbance observer based fuzzy model predictive control for boiler-turbine systems. ISA Trans. 2019, 90, 89–106. [Google Scholar] [CrossRef] [PubMed]
- Escano, J.M.; Bordons, C.; Witheephanich, K.; Gomez-Estern, F. Fuzzy model predictive control: Complexity reduction for implementation in industrial systems. Int. J. Fuzzy Syst. 2019, 21, 2008–2020. [Google Scholar] [CrossRef]
- Han, H.; Liu, Z.; Hou, Y.; Qiao, J. Data-driven multiobjective predictive control for wastewater treatment process. IEEE Trans. Ind. Inform. 2020, 16, 2767–2775. [Google Scholar] [CrossRef]
- Metz, M.; Lesnoff, M.; Abdelghafour, F.; Akbarinia, R.; Roger, J.M. A “big-data” algorithm for KNN-PLS. Chemometr. Intell. Lab. Syst. 2020, 203, 104076. [Google Scholar] [CrossRef]
- Dong, Y.; Qin, S.J. Dynamic-inner partial least squares for dynamic data modeling. IFAC-PapersOnLine 2015, 48, 117–122. [Google Scholar] [CrossRef]
- Kaspar, M.H.; Ray, W.H. Dynamic PLS modelling for process control. Chem. Eng. Sci. 1993, 48, 3447–3461. [Google Scholar] [CrossRef]
- Fei, Z.; Liu, K.; Chi, Q.; Liang, J. Latent-variable nonlinear model predictive control strategy for a pH neutralization process. Asian J. Control Affil. ACPA Asian Control Profr. Assoc. 2015, 17, 2427–2434. [Google Scholar]
- Chen, J.; Cheng, Y.C.; Yea, Y. Multiloop PID controller design using partial least squares decoupling structure. Korean J. Chem. Eng. 2005, 22, 173–183. [Google Scholar] [CrossRef]
- Lü, Y.; Liang, J. Multi-loop constrained iterative model predictive control using ARX-PLS decoupling structure. Chin. J. Chem. Eng. 2013, 21, 1129–1143. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, M.; Chen, J.; Xu, J.; Li, K. PLS-based multi-loop robust H-2 control for improvement of operating efficiency of waste heat energy conversion systems with organic Rankine cycle. Energy 2017, 123, 460–472. [Google Scholar] [CrossRef] [Green Version]
- Bang, Y.H.; Chang, K.Y.; Lee, I.B. Nonlinear PLS modeling with fuzzy inference system. Chemometr. Intell. Lab. Syst. 2002, 64, 137–155. [Google Scholar] [CrossRef]
- Abdel-Rahman, A.I.; Lim, G.J. A nonlinear partial least squares algorithm using quadratic fuzzy inference system. J. Chemometr. 2010, 23, 530–537. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Z.; Liu, F. Latent variable iterative learning model predictive control for multivariable control of batch processes. J. Process Control 2020, 94, 1–11. [Google Scholar] [CrossRef]
- Gao, T.; Luo, H.; Yin, S.; Kaynak, O. A recursive modified partial least square aided data-driven predictive control with application to continuous stirred tank heater. J. Process Control 2020, 89, 108–118. [Google Scholar] [CrossRef]
- Zhao, Z.; Bin, H.U.; Liang, J. Multi-loop adaptive internal model control based on a dynamic partial least squares model. J. Zhejiang Univ. Sci. A Appl. Phys. Eng. 2011, 22, 190–200. [Google Scholar] [CrossRef]
- Chi, Q.; Liang, J. A multiple model predictive control strategy in the PLS framework. J. Process Control 2015, 25, 129–141. [Google Scholar] [CrossRef]
- Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. Read. Fuzzy Sets Intell. Syst. 1993, 15, 387–403. [Google Scholar]
- Forgy, E.W. Cluster analysis of multivariate data: eIciency versus interpretability of classifications. Biometrics 1965, 21, 768–780. [Google Scholar]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Gustafson, D.E.; Kessel, W.C. Fuzzy Clustering with a Fuzzy Covariance Matrix. In Proceedings of the 1978 IEEE Conference on Decision and Control Including the 17th Symposium on Adaptive Processes, San Diego, CA, USA, 10–12 January 1978. [Google Scholar]
- Cao, S.G.; Rees, N.W. Identification of dynamic fuzzy models. Fuzzy Sets Syst. 1995, 74, 307–320. [Google Scholar] [CrossRef]
- Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemometr. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Malthouse, E.C.; Tamhane, A.C.; Mah, R. Nonlinear partial least squares. Comput. Chem. Eng. 1997, 21, 875–890. [Google Scholar] [CrossRef]
- Qin, S.J.; Mcavoy, T.J. Nonlinear PLS modeling using neural networks. Comput. Chem. Eng. 1992, 16, 379–391. [Google Scholar] [CrossRef]
- Wang, H.O.; Tanaka, K.; Griffin, M.F. An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Trans. Fuzzy Syst. 2002, 4, 14–23. [Google Scholar] [CrossRef]
- Zhang, T.; Gang, F.; Zeng, X.J. Output tracking of constrained nonlinear processes with offset-free input-to-state stable fuzzy predictive control. Automatica 2009, 45, 900–909. [Google Scholar] [CrossRef]
- Tanaka, K.; Ikeda, T.; Wang, H.O. Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs. IEEE Trans. Fuzzy Syst. 2002, 6, 250–265. [Google Scholar] [CrossRef] [Green Version]
- Su, H. Basic Theory of Robust Control; Science Press: Beijing, China, 2010. [Google Scholar]
- Hall, R.C.; Seborg, D.E. Modelling and Self-Tuning Control of a Multivariable pH Neutralization Process Part I: Modelling and Multiloop Control. In Proceedings of the American Control Conference, Pittsburgh, PA, USA, 21–23 June 1989. [Google Scholar]
- Lü, Y. Modeling and Predictive Controller Design Based on the Dynamic PLS Method; Zhejiang University: Hangzhou, China, 2013. [Google Scholar]
A = 207 cm2. Cv = 8.75 mL·cm−1/2·s−1 pK1 = 6.35 pK2 = 10.25 Wa1 = 3 × 10−3 M Wa2 = −3 × 10−2 M Wa3 = −3.05 × 10−3 M | Wb3 = −5.05 × 10−5 M q1 = 16.6 mL·s−1 q2 = 0.55 mL·s−1 q3 = 15.6 mL·s−1 [acid] = 0.003 M HNO3 [buffer] = 0. 03 M NaHCO3 [base] = 0.003 M NaOH |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Jin, X.; Yu, H.; Lu, S. Nonlinear Offset-Free Model Predictive Control based on Dynamic PLS Framework. Processes 2021, 9, 1784. https://doi.org/10.3390/pr9101784
Zhao Q, Jin X, Yu H, Lu S. Nonlinear Offset-Free Model Predictive Control based on Dynamic PLS Framework. Processes. 2021; 9(10):1784. https://doi.org/10.3390/pr9101784
Chicago/Turabian StyleZhao, Qiang, Xin Jin, Huapeng Yu, and Shan Lu. 2021. "Nonlinear Offset-Free Model Predictive Control based on Dynamic PLS Framework" Processes 9, no. 10: 1784. https://doi.org/10.3390/pr9101784
APA StyleZhao, Q., Jin, X., Yu, H., & Lu, S. (2021). Nonlinear Offset-Free Model Predictive Control based on Dynamic PLS Framework. Processes, 9(10), 1784. https://doi.org/10.3390/pr9101784