Enhanced Cell Performance and Improved Catalyst Utilization for a Direct Methanol Fuel Cell with an In-Plane Gradient Loading Catalyst Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalyst and Electrode Preparation
2.2. Single Cell Assembly
2.3. Single-Cell Test
2.4. Electrode Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Joghee, P.; Malik, J.N.; Pylypenko, S.; O’Hayre, R. A review on direct methanol fuel cells–In the perspective of energy and sustainability. MRS Energy Sustain. 2015, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Verhelst, S.; Turner, J.W.; Sileghem, L.; Vancoillie, J. Methanol as a fuel for internal combustion engines. Prog. Energy Combust. Sci. 2019, 70, 43–88. [Google Scholar] [CrossRef] [Green Version]
- Kulikovsky, A. Optimal temperature for DMFC stack operation. Electrochim. Acta 2008, 53, 6391–6396. [Google Scholar] [CrossRef]
- Lohoff, A.S.; Günther, D.; Hehemann, M.; Müller, M.; Stolten, D. Extending the lifetime of direct methanol fuel cell systems to more than 20,000 h by applying ion exchange resins. Int. J. Hydrogen Energy 2016, 41, 15325–15334. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhang, Y.; Fu, W.; Li, Z.; Liu, X. Investigation of a small-volume direct methanol fuel cell stack for portable applications. Energy 2013, 51, 462–467. [Google Scholar] [CrossRef]
- Das, S.; Dutta, K.; Nessim, G.D.; Kader, M.A. Introduction to direct methanol fuel cells. Direct Methanol Fuel Cell Technol. 2020, 1–12. [Google Scholar] [CrossRef]
- Thimmappa, R.; Aralekallu, S.; Devendrachari, M.C.; Kottaichamy, A.R.; Bhat, Z.M.; Shafi, S.P.; Lokesh, K.S.; Thotiyl, M.O. A Single Chamber Direct Methanol Fuel Cell. Adv. Mater. Interfaces 2017, 4, 1700321. [Google Scholar] [CrossRef]
- Kamarudin, S.K.; Achmad, F.; Daud, W.R.W. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int. J. Hydrogen Energy 2009, 34, 6902–6916. [Google Scholar] [CrossRef]
- Li, X.; Faghri, A. Review and advances of direct methanol fuel cells (DMFCs) part I: Design, fabrication, and testing with high concentration methanol solutions. J. Power Sources 2013, 226, 223–240. [Google Scholar] [CrossRef]
- Chen, X.; Li, T.; Shen, J.; Hu, Z. From structures, packaging to application: A system-level review for micro direct methanol fuel cell. Renew. Sustain. Energy Rev. 2017, 80, 669–678. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Shen, J.; Hu, Z. Micro direct methanol fuel cell: Functional components, supplies management, packaging technology and application. Int. J. Energy Res. 2016, 41, 613–627. [Google Scholar] [CrossRef]
- Kumar, P.; Dutta, K.; Das, S.; Kundu, P. An overview of unsolved deficiencies of direct methanol fuel cell technology: Factors and parameters affecting its widespread use. Int. J. Energy Res. 2014, 38, 1367–1390. [Google Scholar] [CrossRef]
- Ozden, A.; Shahgaldi, S.; Li, X.; Hamdullahpur, F. A review of gas diffusion layers for proton exchange membrane fuel cells—With a focus on characteristics, characterization techniques, materials and designs. Prog. Energy Combust. Sci. 2019, 74, 50–102. [Google Scholar] [CrossRef]
- Jing, F.; Sun, R.; Wang, S.; Sun, H.; Sun, G. Effect of the Anode Structure on the Stability of a Direct Methanol Fuel Cell. Energy Fuels 2020, 34, 3850–3857. [Google Scholar] [CrossRef]
- Kamarudin, S.; Hashim, N. Materials, morphologies and structures of MEAs in DMFCs. Renew. Sustain. Energy Rev. 2012, 16, 2494–2515. [Google Scholar] [CrossRef]
- Kim, H.-T.; Reshentenko, T.V.; Kweon, H.-J. Microstructured Membrane Electrode Assembly for Direct Methanol Fuel Cell. J. Electrochem. Soc. 2007, 154, B1034–B1040. [Google Scholar] [CrossRef]
- Matar, S.; Ge, J.; Liu, H. Modeling the cathode catalyst layer of a Direct Methanol Fuel Cell. J. Power Sources 2013, 243, 195–202. [Google Scholar] [CrossRef]
- Gong, L.; Yang, Z.; Li, K.; Xing, W.; Liu, C.; Ge, J. Recent development of methanol electrooxidation catalysts for direct methanol fuel cell. J. Energy Chem. 2018, 27, 1618–1628. [Google Scholar] [CrossRef]
- Bresciani, F.; Rabissi, C.; Zago, M.; Gazdzicki, P.; Schulze, M.; Guétaz, L.; Escribano, S.; Bonde, J.L.; Marchesi, R.; Casalegno, A. A combined in-situ and post-mortem investigation on local permanent degradation in a direct methanol fuel cell. J. Power Sources 2016, 306, 49–61. [Google Scholar] [CrossRef]
- Alia, S.M.; Jensen, K.; Contreras, C.; Garzon, F.; Pivovar, B.; Yan, Y. Platinum coated copper nanowires and platinum nanotubes as oxygen reduction electrocatalysts. ACS Catal. 2013, 3, 358–362. [Google Scholar] [CrossRef]
- Xing, L.; Shi, W.; Su, H.; Xu, Q.; Das, P.; Mao, B.; Scott, K. Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization. Energy 2019, 177, 445–464. [Google Scholar] [CrossRef]
- Suo, C.G.; Bin Zhang, W.; Wang, H.; Wu, G.M. Optimization of Membrane Electrode Assemblies Anode of a Micro Direct Methanol Fuel Cell by Mathematical Modeling. Adv. Mater. Res. 2013, 652–654, 819–822. [Google Scholar] [CrossRef]
- Nakashima, T.; Saito, H.; Murano, K.; Fukuhara, C.; Sudoh, M. Design of Multi-layer Anode for Direct Methanol Fuel Cell. Electrochemistry 2011, 79, 361–363. [Google Scholar] [CrossRef]
- Wang, T.; Lin, C.; Ye, F.; Fang, Y.; Li, J.; Wang, X. MEA with double-layered catalyst cathode to mitigate methanol crossover in DMFC. Electrochem. Commun. 2008, 10, 1261–1263. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, J.; Hang, W.; Cho, Y.H.; Sung, Y.E. A hierarchical cathode catalyst layer architecture for improving the performance of direct methanol fuel cell. Environmental 2017, 209, 91–97. [Google Scholar] [CrossRef]
- Deng, H.C.; Zhou, J.X.; Zhang, Y.F. A Trilaminar-catalytic layered MEA structure for a passive micro-direct methanol fuel cell. Micromachines 2021, 12, 381. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.H.; Sun, X.D. Effect of gradient porosity and catalyst loading on the performance of direct methanol fuel cell with ordered electrode. J. Electrochem. Energy Convers. Storage 2021, 19, 10908–10917. [Google Scholar] [CrossRef]
- Zhao, G.; Zhao, T.; Yan, X.; Zeng, L. A High Catalyst-Utilization Electrode for Direct Methanol Fuel Cells. Electrochim. Acta 2015, 164, 337–343. [Google Scholar] [CrossRef]
- Santis, M.; Freunberger, S.; Reiner, A.; Büchi, F. Homogenization of the current density in polymer electrolyte fuel cells by in-plane cathode catalyst gradients. Electrochim. Acta 2006, 51, 5383–5393. [Google Scholar] [CrossRef]
- Prasanna, M.; Cho, E.; Kim, H.J.; Lim, T.; Hong, S.-K. Performance of proton exchange membrane fuel cells using the catalyst-gradient electrode technique. J. Power Sources 2007, 166, 53–58. [Google Scholar] [CrossRef]
- Xing, L.; Xu, Y.X.; Penga, Ž.; Xu, Q.; Su, H.N.; Barbir, F.; Shi, W.D.; Xuan, J. A segmented fuel cell unit with functionally graded distributions of platinum loading and operating temperature. J. Chem. Eng. 2021, 406, 126889. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, C.; Sun, F.; Fan, J.; Li, H.; Wang, H. Research progress of catalyst layer and interlayer interface structures in membrane electrode assembly (MEA) for proton exchange membrane fuel cell (PEMFC) system. eTransportation 2020, 5, 100075. [Google Scholar] [CrossRef]
- Ghosh, S.; Ohashi, H.; Tabata, H.; Hashimasa, Y.; Yamaguchi, T. In-plane and through-plane non-uniform carbon corrosion of polymer electrolyte fuel cell cathode catalyst layer during extended potential cycles. J. Power Sources 2017, 362, 291–298. [Google Scholar] [CrossRef]
- Jung, S.; Leng, Y.; Wang, C.-Y. Role of CO2 in Methanol and Water Transport in Direct Methanol Fuel Cells. Electrochim. Acta 2014, 134, 35–48. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, T.; Ye, Q. In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields. J. Power Sources 2005, 139, 79–90. [Google Scholar] [CrossRef]
- Takanohashi, K.; Suga, T.; Uchida, M.; Ueda, T.; Nagumo, Y.; Inukai, J.; Nishide, H.; Watanabe, M. Simultaneous visualization of oxygen partial pressure, current density, and water droplets in serpentine fuel cell during power generation for understanding reaction distributions. J. Power Sources 2017, 343, 135–141. [Google Scholar] [CrossRef]
- Kang, K.; Lee, G.; Gwak, G.; Ju, H. Development of an advanced MEA to use high-concentration methanol fuel in a direct methanol fuel cell system. Int. J. Hydrogen Energy 2012, 37, 6285–6291. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, W.; Su, H.; Xing, L.; Xu, L.; Yang, C.; Xu, Q. Improving cell performance and alleviating performance degradation by constructing a novel structure of membrane electrode assembly (MEA) of DMFCs. Int. J. Hydrogen Energy 2019, 44, 32231–32239. [Google Scholar] [CrossRef]
- Zhang, J.; Leung, P.; Qiao, F.; Xing, L.; Su, H.N.; Xu, Q. Balancing the electron conduction and mass transfer: Effect of nickel foam thickness on the performance of an alkaline direct ethanol fuel cell (ADEFC) with 3D porous anode. Int. J. Hydrogen Energy 2020, 45, 19801–19812. [Google Scholar] [CrossRef]
- Yang, S.H.; Chen, C.Y.; Wang, W.J. An impedance study of an operating direct methanol fuel cell. J. Power Sources 2010, 195, 2319–2330. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Z.; Zhang, J.; Zhang, W.; Su, H.; Xing, L.; Ma, Q.; Zhang, H.; Xu, Q. Enhanced Cell Performance and Improved Catalyst Utilization for a Direct Methanol Fuel Cell with an In-Plane Gradient Loading Catalyst Electrode. Processes 2021, 9, 1787. https://doi.org/10.3390/pr9101787
Chang Z, Zhang J, Zhang W, Su H, Xing L, Ma Q, Zhang H, Xu Q. Enhanced Cell Performance and Improved Catalyst Utilization for a Direct Methanol Fuel Cell with an In-Plane Gradient Loading Catalyst Electrode. Processes. 2021; 9(10):1787. https://doi.org/10.3390/pr9101787
Chicago/Turabian StyleChang, Zhixin, Jiajia Zhang, Weiqi Zhang, Huaneng Su, Lei Xing, Qiang Ma, Hong Zhang, and Qian Xu. 2021. "Enhanced Cell Performance and Improved Catalyst Utilization for a Direct Methanol Fuel Cell with an In-Plane Gradient Loading Catalyst Electrode" Processes 9, no. 10: 1787. https://doi.org/10.3390/pr9101787
APA StyleChang, Z., Zhang, J., Zhang, W., Su, H., Xing, L., Ma, Q., Zhang, H., & Xu, Q. (2021). Enhanced Cell Performance and Improved Catalyst Utilization for a Direct Methanol Fuel Cell with an In-Plane Gradient Loading Catalyst Electrode. Processes, 9(10), 1787. https://doi.org/10.3390/pr9101787