Distribution of Nanoparticles in a Turbulent Taylor–Couette Flow Considering Particle Coagulation and Breakage
Abstract
:1. Introduction
2. Governing Equations
2.1. Equations of Turbulent Taylor–Couette Flow
2.2. Population Balance Equation (PBE) for Nanoparticles
2.3. Taylor Series Expansion Moment Method (TEMOM)
3. Numerical Simulation
3.1. Numerical Model
3.2. Mesh Independence Test and Validation
4. Results and Discussion
4.1. Difference between Considering and Not Considering Particle Breakage
4.1.1. Particle Number Density
4.1.2. Particle Diameter
4.1.3. Particle Polydispersity
4.2. Effect of the Gap Width between Two Cylinders
4.2.1. Particle Number Density
4.2.2. Particle Size and Polydispersity
4.3. Effect of Reynolds Number
4.3.1. Particle Number Density
4.3.2. Particle Size and Polydispersity
5. Conclusions
- (1)
- Particle breakage leads to an increase in the particle number density and a decrease in the particle mean diameter, but it has no obvious effect on the particle polydispersity.
- (2)
- The coagulation and breakage of particles reach a balance when the system lasts for a period of time. Accordingly, the particle number density, diameter and polydispersity tend to a steady state.
- (3)
- The gap width between two cylinders has an effect on the flow field, vortex structure and even particle distribution. The values of the particle number density, particle diameter and polydispersity increase with an increasing gap width. The difference in the values of the particle number density becomes smaller along the axial direction with an increase in the gap width.
- (4)
- The change in the Reynolds number has little effect on the distribution of the particle number density when the Re is large. The effect of turbulence on particle breakage is greater than that on particle coagulation. With an increase in the Reynolds number, the particle number density increases, but the particle diameter and polydispersity decrease.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, J.; Qi, H.; Wang, J. Nanoparticle dispersion and coagulation in a turbulent round jet. Int. J. Multiph. Flow 2013, 54, 22–30. [Google Scholar]
- Garrick, C.S. Effects of Turbulent fluctuations on nanoparticle coagulation in shear flows. Aerosol Sci. Technol. 2011, 45, 1272–1285. [Google Scholar] [CrossRef]
- He, Q.I.; Xie, M.L. Thermodynamic analysis of Brownian motion-induced particle agglomeration using the taylor-series expansion. Processes 2021, 9, 1218. [Google Scholar] [CrossRef]
- Park, S.H.; Kruis, F.E.; Lee, K.W.; Fissan, H. Evolution of particle size distributions due to turbulent and brownian coagulation. Aerosol Sci. Technol. 2002, 36, 419–432. [Google Scholar] [CrossRef]
- Yu, Z.; Bu, S.; Zhang, L.; Wu, R.; Chen, F.Y.; Xu, W.G.; Liu, L.; Zhao, Y.H.; Xu, Y.S. Turbulent coagulation of micron and submicron particles in swirling flow. Separ. Purif. Technol. 2020, 248, 117098. [Google Scholar] [CrossRef]
- Gan, F.; Lin, J.Z.; Yu, M. Particle size distribution in a planar jet flow undergoing shear-induced coagulation and breakage. J. Hydrodynam. 2010, 22, 445–455. [Google Scholar] [CrossRef]
- Yuan, F.; Tu, C.; Yu, J.; Cui, Z.W. High-pressure dispersion of nanoparticle agglomerates through a continuous aerosol disperse. Appl. Nanosci. 2019, 9, 1857–1868. [Google Scholar] [CrossRef]
- Ammar, Y.; Dehbi, A.; Reeks, M.W. Break-up of aerosol agglomerates in highly turbulent gas flow. Flow Turbul. Combust. 2012, 89, 465–489. [Google Scholar] [CrossRef] [Green Version]
- Soos, M.; Sefcik, J.; Morbidelli, M. Investigation of aggregation, breakage and restructuring kinetics of colloidal dispersions in turbulent flows by population balance modeling and static light scattering. Chem. Eng. Sci. 2006, 61, 2349–2363. [Google Scholar] [CrossRef]
- Baldyga, J.; Orciuch, W.; Makowski, L.; Krasinski, A.; Malski-Brodzicki, M.; Malik, K. Shear flow of aggregated nanosuspensions—Fundamentals and model formulation. J. Dispers. Sci. Technol. 2008, 29, 564–572. [Google Scholar] [CrossRef]
- Far, E.K.; Geier, M.; Kutscher, K.; Krafczyk, M. Simulation of micro aggregate breakage in turbulent flows by the cumulant lattice Boltzmann method. Comput. Fluids 2016, 140, 222–231. [Google Scholar] [CrossRef]
- Lin, J.Z.; Yin, Z.Q.; Lin, P.F.; Yu, M.Z.; Ku, X.K. Distribution and penetration efficiency of nanoparticles between 8–550 nm in pipe bends under laminar and turbulent flow conditions. Int. J. Heat Mass Transf. 2015, 85, 61–70. [Google Scholar] [CrossRef]
- Amani, P.; Amani, M.; Saidur, R.; Yan, W.M. Hydrodynamic performance of a pulsed extraction column containing ZnO nanoparticles: Drop size and size distribution. Chem. Eng. Res. Design 2017, 121, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Conchuir, B.O.; Harshe, Y.M.; Lattuada, M.; Zaccone, A. Analytical model of fractal aggregate stability and restructuring in shear flows. Ind. Eng. Chem. Res. 2014, 53, 9109–9119. [Google Scholar] [CrossRef]
- Schrimpf, M.; Esteban, J.; Warmeling, H.; Farber, T.; Behr, A.; Vorholt, A.J. Taylor-Couette reactor: Principles, design, and applications. AIChE J. 2021, 67, e17228. [Google Scholar] [CrossRef]
- Wang, L.; Vigil, R.D.; Fox, R.O. CFD simulation of shear-induced aggregation and breakage in turbulent Taylor–Couette flow. J. Coll. Interf. Sci. 2005, 285, 167–178. [Google Scholar] [CrossRef]
- Marchisio, D.L.; Soos, M.; Sefcik, J.; Morbidelli, M. Role of turbulent shear rate distribution in aggregation and breakage processes. AIChE J. 2006, 52, 158–173. [Google Scholar] [CrossRef]
- Guichard, R.; Belut, E. Simulation of airborne nanoparticles transport, deposition and aggregation: Experimental validation of a CFD-QMOM approach. J. Aerosol Sci. 2017, 104, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Lin, J.Z. Taylor-expansion moment method for agglomerate coagulation due to Brownian motion in the entire size regime. J. Aerosol Sci. 2009, 40, 549–562. [Google Scholar] [CrossRef]
- Saffman, P.G.; Turner, J.S. On the collision of drops in turbulent clouds. J. Fluid Mechan. 1956, 1, 16–30. [Google Scholar] [CrossRef] [Green Version]
- Spicer, P.T.; Pratsinis, S.E. Coagulation and fragmentation: Universal steady-state particle-size distribution. AICHE J. 1996, 42, 1612–1620. [Google Scholar] [CrossRef]
- Yu, M.; Lin, J.Z.; Chan, T.L. A new moment method for solving the coagulation equation for particles in Brownian motion. Aerosol Sci. Technol. 2008, 42, 705–713. [Google Scholar] [CrossRef]
- Yu, M.; Lin, J.Z. Taylor series expansion scheme applied for solving population balance equation. Rev. Chem. Eng. 2018, 34, 561–594. [Google Scholar] [CrossRef]
- Belut, E.; Théo, C. A new experimental dataset to validate CFD models of airborne nanoparticles agglomeration. In Proceedings of the 9th International Conference on Multiphase Flow, Firenze, Italy, 22–27 May 2016. [Google Scholar]
- Pratsinis, S.E. Simultaneous nucleation, condensation, and coagulation in aerosol reactors. J. Coll. Interf. Sci. 1988, 124, 416–427. [Google Scholar] [CrossRef]
Case | Radius of Outer Cylinder R2 (m) | R = R1/R2 | Angular Velocity ω1 (rad/s) | Reynolds Number | Particle Breakage |
---|---|---|---|---|---|
0 | 4.760 | 0.733 | 31.718 | 13,520 | no |
1 | 4.760 | 0.733 | 31.718 | 13,520 | yes |
2 | 5.584 | 0.625 | 31.718 | 13,520 | yes |
3 | 4.363 | 0.800 | 31.718 | 13,520 | yes |
4 | 4.760 | 0.733 | 10.000 | 4263 | yes |
5 | 4.760 | 0.733 | 19.830 | 8453 | yes |
6 | 4.760 | 0.733 | 39.700 | 16,923 | yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, R.; Lin, J.; Yang, H. Distribution of Nanoparticles in a Turbulent Taylor–Couette Flow Considering Particle Coagulation and Breakage. Processes 2021, 9, 1789. https://doi.org/10.3390/pr9101789
Shi R, Lin J, Yang H. Distribution of Nanoparticles in a Turbulent Taylor–Couette Flow Considering Particle Coagulation and Breakage. Processes. 2021; 9(10):1789. https://doi.org/10.3390/pr9101789
Chicago/Turabian StyleShi, Ruifang, Jianzhong Lin, and Hailin Yang. 2021. "Distribution of Nanoparticles in a Turbulent Taylor–Couette Flow Considering Particle Coagulation and Breakage" Processes 9, no. 10: 1789. https://doi.org/10.3390/pr9101789
APA StyleShi, R., Lin, J., & Yang, H. (2021). Distribution of Nanoparticles in a Turbulent Taylor–Couette Flow Considering Particle Coagulation and Breakage. Processes, 9(10), 1789. https://doi.org/10.3390/pr9101789