Silica-Supported Styrene-Co-Divinylbenzene Pickering Emulsion Polymerization: Tuning Surface Charge and Hydrophobicity by pH and Co-Aid Adsorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pre-Emulsion Preparation
2.3. St-Co-DVB Particles and Monoliths’ Characterization
3. Results and Discussion
3.1. SNps Aggregates and Surface-Modified SNps
3.2. St-Co-DVB Polymerization in the Presence of Flocculated SNps
3.3. St-Co-DVB Polymerization in the Presence of Surface-Modified SNps
3.3.1. Hybrid St-DVB Microsphere Preparation Using VBS Surface-Modified SNps
3.3.2. Hybrid St-DVB Monolith Preparation Using VBS Surface-Modified SNps
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schrade, A.; Mikhalevich, V.; Landfester, K.; Ziener, U. Synthesis and characterization of positively charged, alumina-coated silica/polystyrene hybrid nanoparticles via Pickering miniemulsion polymerization. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 4735–4746. [Google Scholar] [CrossRef]
- Li, H.; Li, S.; Li, F.; Li, Z.; Wang, H. Fabrication of SiO2 wrapped polystyrene microcapsules by Pickering polymerization for self-lubricating coatings. J. Colloid Interface Sci. 2018, 528, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tu, S.; Wang, H.; Du, Q. Preparation of polymer/graphene oxide nanocomposites by a two-step strategy composed of in situ polymerization and melt processing. Compos. Sci. Technol. 2018, 154, 1–7. [Google Scholar] [CrossRef]
- Park, S.S.; Ha, C.S. Hollow mesoporous functional hybrid materials: Fascinating platforms for advanced applications. Adv. Funct. Mater. 2018, 28, 1703814. [Google Scholar] [CrossRef]
- Du, Y.; Liu, H. Cage-like Silsesquioxanes-based hybrid materials. Dalton Trans. 2020, 49, 5396–5405. [Google Scholar] [CrossRef]
- Kim, J.N.; Dong, Y.Z.; Choi, H.J. Pickering emulsion polymerized polyaniline/zinc-ferrite composite particles and their dual electrorheological and magnetorheological responses. ACS Omega 2020, 5, 7675–7682. [Google Scholar] [CrossRef]
- Tiwari, T.; Mahanwar, P.A. Polyacrylate/silica hybrid materials: A step towards multifunctional properties. J. Disper. Sci. Tecnol. 2019, 40, 925–957. [Google Scholar] [CrossRef]
- Ali, N.; Bilal, M.; Khan, A.; Ali, F.; Yang, Y.; Khan, M.; Adil, S.F.; Iqbal, H.M.N. Dynamics of oil-water interface demulsification using multifunctional magnetic hybrid and assembly materials. J. Mol. Liq. 2020, 312, 113434. [Google Scholar] [CrossRef]
- Moreno, A.; Morsali, M.; Liu, J.; Sipponen, M.H. Access to tough and transparent nanocomposites via Pickering emulsion polymerization using biocatalytic hybrid lignin nanoparticles as functional surfactants. Green Chem. 2021, 23, 3001–3014. [Google Scholar] [CrossRef]
- Zou, H.; Zhai, S. Synthetic strategies for raspberry-like polymer composite particles. Polym. Chem. 2020, 11, 3370–3392. [Google Scholar] [CrossRef]
- Yan, W.; Pan, M.; Yuan, J.; Liu, G.; Cui, L.; Zhang, G.; Zhu, L. Raspberry-like patchy particles achieved by decorating carboxylated polystyrene cores with snowman-like poly(vinylidene fluoride)/poly(4-vinylpyridiene) Janus particles. Polymer 2017, 122, 139–147. [Google Scholar] [CrossRef]
- Luo, J.; Chen, Y.; Zheng, Y.; Wang, C.; Wei, W.; Liu, X. Hollow graphene-polyaniline hybrid spheres using sulfonated graphene as Pickering stabilizer for high performance supercapacitors. Electrochim. Acta 2018, 272, 221–232. [Google Scholar] [CrossRef]
- Lisuzzo, L.; Caruso, M.R.; Cavallaro, G.; Milioto, S.; Lazzara, G. Hydroxypropyl cellulose films filled with halloysite nanotubes/wax hybrid microspheres. Ind. Eng. Chem. Res. 2021, 60, 1656–1665. [Google Scholar] [CrossRef]
- Samanta, A.; Takkar, S.; Kulshreshtha, R.; Nandan, B.; Srivastava, R.K. Facile fabrication of composite electrospun nanofibrous matrices of poly(ε-caprolactone)−silica based Pickering emulsion. Langmuir 2017, 33, 8062–8069. [Google Scholar] [CrossRef]
- Galogahi, F.M.; Zhu, Y.; An, H.; Nguyen, N.T. Core-shell microparticles: Generation approaches and applications. J. Sci. Adv. Mater. Dev. 2020, 5, 417–435. [Google Scholar] [CrossRef]
- Dupont, H.; Maingret, V.; Schmitt, V.; Héroguez, V. New insights into the formulation and polymerization of Pickering emulsions stabilized by natural organic particles. Macromolecules 2021, 54, 4945–4970. [Google Scholar] [CrossRef]
- Tamai, T.; Watanabe, M. Acrylic polymer/silica hybrids prepared by emulsifier-free emulsion polymerization and the sol–gel process. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 273–280. [Google Scholar] [CrossRef]
- Raman, N.; Sudharsan, S.; Pothiraj, K. Synthesis and structural reactivity of inorganic–organic hybrid nanocomposites—A review. J. Saudi Chem. Soc. 2012, 16, 339–352. [Google Scholar] [CrossRef] [Green Version]
- Adnan, M.M.; Dalod, A.R.M.; Balci, M.H.; Glaum, J.; Einarsrud, M.A. In situ synthesis of hybrid inorganic–polymer nanocomposites. Polymers 2018, 10, 1129. [Google Scholar] [CrossRef] [Green Version]
- Fujisawa, S.; Togawa, E.; Kuroda, K. Facile route to transparent, strong, and thermally stable nanocellulose/polymer nanocomposites from an aqueous Pickering emulsion. Biomacromolecules 2017, 18, 266–271. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, C.; Li, Y.; Chen, Y.; Tong, Z. Facile fabrication of nanocomposite microspheres with polymer cores and magnetic shells by Pickering suspension polymerization. React. Funct. Polym. 2009, 69, 750–754. [Google Scholar] [CrossRef]
- Destribats, M.; Rouvet, M.; Gehin-Delval, C.; Schmitt, C.; Binks, B.P. Emulsions stabilized by whey protein microgel particles: Towards food-grade Pickering emulsions. Soft Matter 2014, 10, 6941–6954. [Google Scholar] [CrossRef] [PubMed]
- Ngai, T.; Tao, S.; Jiang, H.; Wang, R.; Yang, C.; Li, Y. Ultra-stable Pickering emulsion stabilized by a natural particle bilayer. Chem. Commun. 2020, 56, 14011–14014. [Google Scholar]
- Silverstein, M.S. PolyHIPEs: Recent advances in emulsion-templated porous polymers. Prog. Polym. Sci. 2014, 39, 199–234. [Google Scholar] [CrossRef]
- Zhang, T.; Sanguramath, R.A.; Israel, S.; Silverstein, M.S. Emulsion templating: Porous polymers and beyond. Macromolecules 2019, 52, 5445–5479. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhao, Y.; Wang, H.; Du, Q. Effect of initiation site location on morphology of polymer microspheres via Pickering polymerization. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 3537–3545. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, L.; Zha, X.; Li, X. Synthesis of Ag/fluorine-containing polyacrylate latex stabilized by Ag nanoparticle hybrid amphiphilic random copolymer micelles via Pickering emulsion polymerization and its application on fabric finishing. Cellulose 2020, 27, 9123–9134. [Google Scholar] [CrossRef]
- Shin, J.-H.; Park, J.-W.; Kim, H.-J. Clay-polystyrene nano-composite from Pickering emulsion polymerization stabilized by vinylsilane-functionalized montmorillonite platelets. Appl. Clay Sci. 2019, 182, 105288. [Google Scholar] [CrossRef]
- Monégier du Sorbier, Q.; Aimable, A.; Pagnoux, C. Influence of the electrostatic interactions in a Pickering emulsion polymerization for the synthesis of silica—Polystyrene hybrid nanoparticles. J. Colloid Interface Sci. 2015, 448, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Mageed, A.I.A.; Shalan, A.E.; Mohamed, L.A.; Essawy, H.A.; Taha, F.; Dyab, A.K.F. Effect of pH and zeta potential Pickering stabilizing magnetite nanoparticles on the features of magnetized polystyrene microspheres. Polym. Eng. Sci. 2021, 61, 234–244. [Google Scholar] [CrossRef]
- Jiménez Saelices, C.; Save, M.; Capron, I. Synthesis of latex stabilized by unmodified cellulose nanocrystals: The effect of monomers on particle size. Polym. Chem. 2019, 10, 727–737. [Google Scholar] [CrossRef]
- Lotierzo, A.; Bon, S.A.F. A mechanistic investigation of Pickering emulsion polymerization. Polym. Chem. 2017, 8, 5100–5111. [Google Scholar] [CrossRef] [Green Version]
- Ahn, W.J.; Jung, H.S.; Choi, H.J. Pickering emulsion polymerized smart magnetic poly(methyl methacrylate)/Fe2O3 composite particles and their stimulus-response. RSC Adv. 2015, 5, 23094. [Google Scholar] [CrossRef]
- Zhou, M.J.; Zhou, S.Z.; Pang, X.C.; Li, K.R.; Qiao, X.G. Preparation of superparamagnetic γ-Fe2O3@LS@PS composite latex particles through Pickering miniemulsion polymerization. Colloid Surf. A Physicochem. Eng. Asp. 2020, 585, 124040. [Google Scholar] [CrossRef]
- Fouconnier, B.; Román-Guerrero, A.; López-Serrano, F. Pickering emulsion polymerization kinetics of styrene: Comparison of bare and surface modified SiO2 nanoparticles. J. Polym. Sci. Part A Polym. Chem. 2016, 53, 403–412. [Google Scholar] [CrossRef]
- Solís-López, M.; Puente-Lee, I.; Fouconnier, B.; López-Serrano, F. Hybrid styrene emulsion polymerization: Bare, encapsulated and Pickering morphologies. J. Polym. Sci. Part A Polym. Chem. 2020, 57, 769–777. [Google Scholar] [CrossRef]
- Fouconnier, B.; López-Serrano, F.; Puente Lee, R.I.; Terrazas-Rodriguez, J.E.; Roman-Guerrero, A.; Barrera, M.C.; Escobar, J. Hybrid microspheres and percolated monoliths synthesized via Pickering emulsion co-polymerization stabilized by in situ surface-modified silica nanoparticles. Express Polym. Lett. 2021, 15, 554–567. [Google Scholar] [CrossRef]
- Sheibat-Othman, N.; Bourgeat-Lami, E. Use of silica particles for the formation of organic−inorganic particles by surfactant-free emulsion polymerization. Langmuir 2009, 25, 10121–10133. [Google Scholar] [CrossRef]
- Lee, J.; Hong, C.K.; Choe, S.; Shim, S.E. Synthesis of polystyrene/silica composite particles by soap-free emulsion polymerization using positively charged colloidal silica. J. Colloid Interface Sci. 2007, 310, 112–120. [Google Scholar] [CrossRef]
- Ma, H.; Luo, M.; Sanyal, S.; Rege, K.; Dai, L.L. The one-step Pickering emulsion polymerization route for synthesizing organic-inorganic nanocomposite particles. Materials 2010, 3, 1186–1202. [Google Scholar] [CrossRef] [Green Version]
- Šálek, P.; Horák, D. Hypercrosslinked polystyrene microspheres by suspension and dispersion polymerization. e-Polymers 2011, 11, 064. [Google Scholar] [CrossRef]
- Tan, L.; Tan, B. Hypercrosslinked porous polymer materials: Design, synthesis, and applications. Chem. Soc. Rev. 2017, 46, 3322–3356. [Google Scholar] [CrossRef]
- Peng, B.; Imhof, A. Surface morphology control of cross-linked polymer particles via dispersion polymerization. Soft Matter 2015, 11, 3589–3598. [Google Scholar] [CrossRef]
- Šálek, P.; Horák, D.; Hromádková, J. Novel preparation of monodisperse poly(Styrene-Co-Divinylbenzene) microspheres by controlled dispersion polymerization. Poly. Sci. Ser. B 2018, 60, 9–15. [Google Scholar] [CrossRef]
- Castaldo, R.; Gentile, G.; Avella, M.; Carfagna, C.; Ambrogi, V. Microporous hyper-crosslinked polystyrenes and nanocomposites with high adsorption properties: A review. Polymers 2017, 9, 651. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Qin, Z.; Wang, H.; Du, Q. Tailoring surface structure of polymer nanospheres in Pickering emulsion polymerization. J. Colloid Interface Sci. 2013, 401, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Zheng, Z.; Wang, H.; Du, Q. Slightly surface functionalized polystyrene microspheres prepared via Pickering emulsion polymerization using for electrophoretic displays. J. Colloid Interface Sci. 2011, 361, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Koroleva, M.; Bidanov, D.; Yurtov, E. Emulsions stabilized with mixed SiO2 and Fe3O4 nanoparticles: Mechanisms of stabilization and long-term stability. Phys. Chem. Chem. Phys. 2019, 21, 1536–1545. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Stöver, H.D.H. Doubly pH-responsive Pickering emulsion. Langmuir 2008, 24, 13237–13240. [Google Scholar] [CrossRef]
- Kumar, G.; Kakati, A.; Mani, E.; Sangwai, J.S. Nanoparticle stabilized solvent-based emulsion for enhanced heavy oil recovery. In Proceedings of the SPE Canada Heavy Oil Technical Conference, Calgary, Canada, 13–14 March 2018. [Google Scholar]
- Jia, K.; Guo, Y.; Yu, Y.; Zhang, J.; Yu, L.; Wen, W.; Mai, Y. pH-Responsive Pickering emulsions stabilized solely by surface-inactive nanoparticles via an unconventional stabilization mechanism. Soft Matter 2021, 17, 3346–3357. [Google Scholar] [CrossRef]
- Schmitt Pauly, C.; Genix, A.C.; Alauzun, J.G.; Sztucki, M.; Oberdisse, J.; Mutin, P.H. Surface modification of alumina-coated silica nanoparticles in aqueous sols with phosphonic acids and impact on nanoparticle interactions. Phys. Chem. Chem. Phys. 2015, 17, 19173–19182. [Google Scholar] [CrossRef]
- Eren, B.; Solmaz, Y. Preparation and properties of negatively charged styrene acrylic latex particles cross-linked with divinylbenzene. J. Therm. Anal. Calorim. 2019, 141, 1331–1339. [Google Scholar] [CrossRef]
- Shim, S.E.; Yang, S.; Jin, M.J.; Chang, Y.H.; Choe, S. Effect of the polymerization parameters on the morphology and spherical particle size of poly(Styrene-Co-Divinylbenzene) prepared by precipitation polymerization. Colloid Polym. Sci. 2004, 283, 41–48. [Google Scholar] [CrossRef]
- Tan, Z.; Ma, J.; Chen, H.; Ji, N.; Zong, G. Synthesis of monodisperse crosslinked poly(Styrene-Co-Divinylbenzene) microspheres by precipitation polymerization in acetic acid. J. Appl. Polym. Sci. 2012, 124, 3799–3806. [Google Scholar] [CrossRef]
- Solís-López, M.; Puente-Lee, I.; Fouconnier, B.; López-Serrano, F. Kinetic and mechanistic aspects during a styrene-based Pickering emulsion polymerization: Importance of the co-aid adsorption. J. Pol. Res. 2021, 28, 1–12. [Google Scholar]
- Bon, S.A.F. Pickering Emulsion Polymerization. In Encyclopedia of Polymeric Nanomaterials, 1st ed.; Kobayashi, S., Müllen, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 1, pp. 1634–1639. [Google Scholar]
- Song, X.; Yin, G.; Zhao, Y.; Wang, H.; Du, Q. Effect of an anionic monomer on the Pickering emulsion polymerization stabilized by titania hydrosol. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 5728–5736. [Google Scholar] [CrossRef]
- Asai, M.; Cacciuto, A.; Kumar, S.K. Quantitative analogy between polymer-grafted nanoparticles and patchy particles. Soft Matter 2015, 11, 793–797. [Google Scholar] [CrossRef]
- Choueiri, R.M.; Galati, E.; Thérien-Aubin, H.; Klinkova, A.; Larin, E.M.; Querejeta-Fernández, A.; Han, L.; Xin, H.L.; Gang, O.; Zhulina, E.B.; et al. Surface patterning of nanoparticles with polymer patches. Nature 2016, 538, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Shi, R.; Qian, H.-J.; Lu, Z.-Y. Versatile fabrication of patchy nanoparticles via patterning of grafted diblock copolymers on NP surface. Phys. Chem. Chem. Phys. 2019, 21, 1417–1427. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, Q.; Tripathy, M.; Luijten, E.; Schweizer, K.S.; Granick, S. Janus particle synthesis and assembly. Adv. Mat. 2010, 22, 1060–1071. [Google Scholar] [CrossRef]
- Yi, C.; Zhang, S.; Webb, K.T.; Nie, Z. Anisotropic self-assembly of hairy inorganic nanoparticles. Acc. Chem. Res. 2016, 50, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zheng, Z.; Liu, J.; Wu, Y.; Zhang, L. Tuning the mechanical properties of polymer nanocomposites filled with grafted nanoparticles by varying the grafted chain length and flexibility. Polymers 2016, 8, 270. [Google Scholar] [CrossRef] [Green Version]
- Israelachvili, J.N.; Mitchell, D.J.; Ninham, B.W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc., Faraday Trans. 2 1976, 72, 1525–1568. [Google Scholar] [CrossRef]
- Lukach, A.; Liu, K.; Therien-Aubin, H.; Kumacheva, E. Controlling the degree of polymerization, bond lengths, and bond angles of plasmonic polymers. J. Am. Chem. Soc. 2012, 134, 18853–18859. [Google Scholar] [CrossRef] [PubMed]
- Stratford, K.; Adhikari, R.; Pagonabarraga, I.; Desplat, J.-C.; Cates, M.E. Colloidal jamming at interfaces: A route to fluid-bicontinuous gels. Science 2005, 309, 2198–2201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cates, M.E.; Clegg, P.S. Bijels: A new class of soft materials. Soft Matter 2008, 4, 2132–2138. [Google Scholar] [CrossRef]
- Di Vitantonio, G.; Wang, T.; Stebe, K.J.; Lee, D. Fabrication and application of bicontinuous interfacially jammed emulsions gels. Appl. Phys. Rev. 2021, 8, 021323. [Google Scholar] [CrossRef]
- Cai, D.; Clegg, P.S.; Li, T.; Rumble, K.A.; Tavacoli, J.W. Bijels formed by direct mixing. Soft Matter 2017, 13, 4824–4829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Emulsion Composition (g) | 1% DVB | 2% DVB | 3% DVB |
---|---|---|---|
St | 50 | 50 | 50 |
DVB | 0.5 | 1.02 | 1.54 |
VBS | 0.0625 | 0.0625 | 0.0625 |
Ludox CL | 20 | 20 | 20 |
Water | 200 | 200 | 200 |
Buffer * | 26 | 26 | 26 |
APS in 3 mL of water | 1 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fouconnier, B.; Aboudzadeh, M.A.; López-Serrano, F. Silica-Supported Styrene-Co-Divinylbenzene Pickering Emulsion Polymerization: Tuning Surface Charge and Hydrophobicity by pH and Co-Aid Adsorption. Processes 2021, 9, 1820. https://doi.org/10.3390/pr9101820
Fouconnier B, Aboudzadeh MA, López-Serrano F. Silica-Supported Styrene-Co-Divinylbenzene Pickering Emulsion Polymerization: Tuning Surface Charge and Hydrophobicity by pH and Co-Aid Adsorption. Processes. 2021; 9(10):1820. https://doi.org/10.3390/pr9101820
Chicago/Turabian StyleFouconnier, Benoit, M. Ali Aboudzadeh, and Francisco López-Serrano. 2021. "Silica-Supported Styrene-Co-Divinylbenzene Pickering Emulsion Polymerization: Tuning Surface Charge and Hydrophobicity by pH and Co-Aid Adsorption" Processes 9, no. 10: 1820. https://doi.org/10.3390/pr9101820
APA StyleFouconnier, B., Aboudzadeh, M. A., & López-Serrano, F. (2021). Silica-Supported Styrene-Co-Divinylbenzene Pickering Emulsion Polymerization: Tuning Surface Charge and Hydrophobicity by pH and Co-Aid Adsorption. Processes, 9(10), 1820. https://doi.org/10.3390/pr9101820