N–Doped Porous Carbon Microspheres Derived from Yeast as Lithium Sulfide Hosts for Advanced Lithium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, W.; Liu, H.; Ren, Z.; Jian, N.; Gao, M.; Wu, Y.; Liu, Y.; Pan, H. A novel multielement, multiphase, and B–containing SiOx composite as a stable anode material for Li–ion batteries. Adv. Mater. Interfaces 2019, 6, 1801631. [Google Scholar] [CrossRef]
- Wang, D.; Gao, M.; Pan, H.; Wang, J.; Liu, Y. High performance amorphous–Si@SiOx/C composite anode materials for Li–ion batteries derived from ball–milling and in situ carbonization. J. Power Sources 2014, 256, 190–199. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Pu, K.; Chen, X.; Tian, H.; Gao, M.; Zhu, M.; Pan, H. Highly stable cycling of amorphous Li2CO3–Coated α–Fe2O3 nanocrystallines prepared via a new mechanochemical strategy for Li–ion batteries. Adv. Funct. Mater. 2017, 27, 1605011. [Google Scholar] [CrossRef]
- Yang, Y.; Qu, X.; Zhang, X.; Liu, Y.; Hu, J.; Chen, J.; Gao, M.; Pan, H. Higher than 90% initial coulombic efficiency with staghorn–coral–like 3D porous LiFeO2–x as anode materials for Li–ion batteries. Adv. Mater. 2020, 32, 1908285. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Gao, M.; Pan, H.; Zhang, J.; Liang, C.; Wang, J.; Zhou, P.; Liu, Y. A facile synthesis of Fe3O4/C composite with high cycle stability as anode material for lithium–ion batteries. J. Power Sources 2013, 239, 466–474. [Google Scholar] [CrossRef]
- Huang, J.; Wang, S.; Xu, W.; Shi, W.; Fernandez, C. A novel autoregressive rainflow–integrated moving average modeling method for the accurate state of health prediction of lithium–ion batteries. Processes 2021, 9, 795. [Google Scholar] [CrossRef]
- Wang, L.; Wu, H.; Hu, Y.; Yu, Y.; Huang, K. Environmental sustainability assessment of typical cathode materials of lithium–ion battery based on three LCA approaches. Processes 2019, 7, 83. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Deng, Z.; Huang, J.; Li, H.; Li, Z.; Peng, X.; Tian, Y.; Lu, J.; Tang, H.; Chen, L.; et al. 2D Zr–Fc metal–organic frameworks with highly efficient anchoring and catalytic conversion ability towards polysulfides for advanced Li–S battery. Energy Storage Mater. 2021, 36, 466–477. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, M.; Li, X.; Liu, Y.; Pan, H. Preparation of mesohollow and microporous carbon nanofiber and its application in cathode material for lithium–sulfur batteries. J. Alloy. Compd. 2014, 608, 220–228. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, X.; Li, X.Y.; Li, B.Q.; Huang, J.Q. An organodiselenide comediator to facilitate sulfur redox kinetics in lithium–sulfur batteries. Adv. Mater. 2021, 33, 2007298. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, W.; Huang, D.; Ou, L.; Lan, Z.; Liang, X.; Huang, H.; Huang, D.; Guo, J. Functionalized hierarchical porous carbon with sulfur/nitrogen/oxygen tri–doped as high quality sulfur hosts for lithium–sulfur batteries. J. Alloy. Compd. 2021, 858, 157647. [Google Scholar] [CrossRef]
- Li, M.; Feng, W.; Wang, X. The dual–play of carbon nanotube embedded with CoNi N codoped porous polyhedra toward superior lithium–sulfur batteries. J. Alloy. Compd. 2021, 853, 157194. [Google Scholar] [CrossRef]
- Shao, Q.; Guo, D.; Wang, C.; Chen, J. Yolk–shell structure MnO2@Hollow carbon nanospheres as sulfur host with synergistic encapsulation of polysulfides for improved Li–S batteries. J. Alloy. Compd. 2020, 842, 155790. [Google Scholar] [CrossRef]
- Shi, Z.; Feng, W.; Wang, X.; Li, M.; Song, C.; Chen, L. Catalytic cobalt phosphide Co2P/carbon nanotube nanocomposite as host material for high performance lithium–sulfur battery cathode. J. Alloy. Compd. 2021, 851, 156289. [Google Scholar] [CrossRef]
- Wang, W.P.; Zhang, J.; Chou, J.; Yin, Y.X.; You, Y.; Xin, S.; Guo, Y.G. Solidifying cathode–electrolyte interface for lithium–sulfur batteries. Adv. Energy Mater. 2021, 11, 2000791. [Google Scholar] [CrossRef]
- Zhao, Z.; Yi, Z.; Li, H.; Pathak, R.; Yang, Z.; Wang, X.; Qiao, Q. Synergetic effect of spatially separated dual co–catalyst for accelerating multiple conversion reaction in advanced lithium sulfur batteries. Nano Energy 2021, 81, 105621. [Google Scholar] [CrossRef]
- Yan, W.; Wei, J.; Chen, T.; Duan, L.; Wang, L.; Xue, X.; Chen, R.; Kong, W.; Lin, H.; Li, C.; et al. Superstretchable, thermostable and ultrahigh–loading lithium–sulfur batteries based on nanostructural gel cathodes and gel electrolytes. Nano Energy 2021, 80, 105510. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.; Hencz, L.; Liu, J.; Kaghazchi, P.; Han, J.; Wang, L.; Zhang, S. Multifunctional cation–vacancy–rich ZnCo2O4 polysulfide–blocking layer for ultrahigh–loading Li–S battery. Nano Energy 2021, 89, 106331. [Google Scholar] [CrossRef]
- He, Y.; Chang, Z.; Wu, S.; Qiao, Y.; Bai, S.; Jiang, K.; He, P.; Zhou, H. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF–based membrane in Li–S batteries. Adv. Energy Mater. 2018, 8, 1802130. [Google Scholar] [CrossRef]
- Li, L.; Basu, S.; Wang, Y.; Chen, Z.; Hundekar, P.; Wang, B.; Shi, J.; Shi, Y.; Narayanan, S.; Koratkar, N. Self–heating–induced healing of lithium dendrites. Science 2018, 359, 1513–1516. [Google Scholar] [CrossRef] [Green Version]
- Pang, Q.; Shyamsunder, A.; Narayanan, B.; Kwok, C.Y.; Curtiss, L.A.; Nazar, L.F. Tuning the electrolyte network structure to invoke quasi–solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nat. Energy 2018, 3, 783–791. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, S.; Li, Y.; Qin, W.; Wu, X. A high–performance Li2S/MnO2 rechargeable battery. Mater. Lett. 2019, 248, 157–160. [Google Scholar] [CrossRef]
- Hao, Z.; Chen, J.; Yuan, L.; Bing, Q.; Liu, J.; Chen, W.; Li, Z.; Wang, F.R.; Huang, Y. Advanced Li2S/Si full battery enabled by TiN polysulfide immobilizer. Small 2019, 15, 1902377. [Google Scholar] [CrossRef] [PubMed]
- Seita, T.; Matsumae, Y.; Liu, J.; Tatara, R.; Ueno, K.; Dokko, K.; Watanabe, M. Graphite–lithium sulfide battery with a single–phase sparingly solvating electrolyte. ACS Energy Lett. 2020, 5, 1–7. [Google Scholar] [CrossRef]
- Liang, S.; Xia, Y.; Liang, C.; Gan, Y.; Huang, H.; Zhang, J.; Tao, X.; Sun, W.; Han, W.; Zhang, W. A green and facile strategy for the low–temperature and rapid synthesis of Li2S@PC–CNT cathodes with high Li2S content for advanced Li–S batteries. J. Mater. Chem. A 2018, 6, 9906–9914. [Google Scholar] [CrossRef]
- Li, X.; Gao, M.; Du, W.; Ni, B.; Wu, Y.; Liu, Y.; Shang, C.; Guo, Z.; Pan, H. A mechanochemical synthesis of submicron–sized Li2S and a mesoporous Li2S/C hybrid for high performance lithium/sulfur battery cathodes. J. Mater. Chem. A 2017, 5, 6471–6482. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Lu, S.; Zhou, J.; Wu, X.; Qin, W.; Ogoke, O.; Wu, G. 3D graphene framework supported Li2S coated with ultra–thin Al2O3 films: Binder–free cathodes for high–performance lithium sulfur batteries. J. Mater. Chem. A 2017, 5, 102–112. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Gao, C.; Shi, C.; He, L.; Xiang, Q.; Hong, B.; Lai, Y.; Zhang, Z.; Zhang, K. Promoting the conversion of Li2S by functional additives phenyl diselenide in Lithium–Sulfur batteries. J. Power Sources 2021, 482, 228967. [Google Scholar] [CrossRef]
- Chen, X.; Peng, L.; Yuan, L.; Zeng, R.; Xiang, J.; Chen, W.; Yuan, K.; Chen, J.; Huang, Y.; Xie, J. Facile synthesis of Li2S@C composites as cathode for Li–S batteries. J. Energy Chem. 2019, 37, 111–116. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Chen, Y.; Lv, W.; Wen, K.; Li, P.; Qi, F.; Wang, Z.; Zhang, W.; Li, Y.; Qin, W.; et al. Highly–flexible 3D Li2S/graphene cathode for high–performance lithium sulfur batteries. J. Power Sources 2016, 327, 474–480. [Google Scholar] [CrossRef]
- Wang, D.; Wu, Y.; Zheng, X.; Tang, S.; Gong, Z.; Yang, Y. Li2S@NC composite enable high active material loading and high Li2S utilization for all–solid–state lithium sulfur batteries. J. Power Sources 2020, 479, 228792. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, S.; Zhou, J.; Qin, W.; Wu, X. Synergistically assembled Li2S/FWNTs@reduced graphene oxide nanobundle forest for free–standing high–performance Li2S cathodes. Adv. Funct. Mater. 2017, 27, 1700987. [Google Scholar] [CrossRef]
- Hayashi, A.; Ohtsubo, R.; Ohtomo, T.; Mizuno, F.; Tatsumisago, M. All–solid–state rechargeable lithium batteries with Li2S as a positive electrode material. J. Power Sources 2008, 183, 422–426. [Google Scholar] [CrossRef]
- He, J.; Chen, Y.; Manthiram, A. Metal sulfide–decorated carbon sponge as a highly efficient electrocatalyst and absorbant for polysulfide in high–loading Li2S batteries. Adv. Energy Mater. 2019, 9, 1900584. [Google Scholar] [CrossRef]
- Wang, X.; Bi, X.; Wang, S.; Zhang, Y.; Du, H.; Lu, J. High–rate and long–term cycle stability of Li–S batteries enabled by Li2S/TiO2–impregnated hollow carbon nanofiber cathodes. ACS Appl. Mater. Interfaces 2018, 10, 16552–16560. [Google Scholar] [CrossRef]
- Cai, K.; Song, M.K.; Cairns, E.J.; Zhang, Y. Nanostructured Li2S–C composites as cathode material for high–energy lithium/sulfur batteries. Nano Lett. 2012, 12, 6474–6479. [Google Scholar] [CrossRef]
- Xia, Y.; Fang, R.; Xiao, Z.; Huang, H.; Gan, Y.; Yan, R.; Lu, X.; Liang, C.; Zhang, J.; Tao, X.; et al. Confining sulfur in N–doped porous carbon microspheres derived from microalgaes for advanced lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 23782–23791. [Google Scholar] [CrossRef]
- Qie, L.; Manthiram, A. Uniform Li2S precipitation on N, O–codoped porous hollow carbon fibers for high–energy–density lithium–sulfur batteries with superior stability. Chem. Commun. 2016, 52, 10964–10967. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shi, Y.; Ding, Y.; Peng, L.; Zhang, W.; Yu, G. A conductive molecular framework derived Li2S/N, P–codoped carbon cathode for advanced lithium–sulfur batteries. Adv. Energy Mater. 2017, 7, 1602876. [Google Scholar] [CrossRef]
- He, J.; Chen, Y.; Lv, W.; Wen, K.; Xu, C.; Zhang, W.; Li, Y.; Qin, W.; He, W. From metal–organic framework to Li2S@C–Co–N nanoporous architecture: A high–capacity cathode for lithium–sulfur batteries. ACS Nano 2016, 10, 10981–10987. [Google Scholar] [CrossRef]
- Li, Y.; Cai, Y.; Cai, Z.; Xu, J.; Sonamuthu, J.; Zhu, G.; Militky, J.; Jin, W.; Yao, J. Sulfur–infiltrated yeast–derived nitrogen–rich porous carbon microspheres@reduced graphene cathode for high–performance lithium–sulfur batteries. Electrochim. Acta 2018, 285, 317–325. [Google Scholar] [CrossRef]
- Li, W.K.; Feng, J.T.; Ma, Z.Q. Nitrogen, sulfur, boron and flavonoid moiety co–incorporated carbon dots for sensitive fluorescence detection of pesticides. Carbon 2020, 161, 685–693. [Google Scholar] [CrossRef]
- Liang, S.; Chen, J.; Zhou, N.; Hu, L.; Liu, L.; Wang, L.; Liang, D.; Yu, T.; Tian, C.; Liang, C. CNT threaded porous carbon nitride nanoflakes as bifunctional hosts for lithium sulfide cathode. J. Alloy. Compd. 2021, 887, 161356. [Google Scholar] [CrossRef]
- Wang, J.; Meng, Z.; Yang, W.; Yan, X.; Guo, R.; Han, W.Q. Facile synthesis of rGO/g–C3N4/CNT microspheres via an ethanol–assisted spray–drying method for high–performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 819–827. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, W.; Wang, J.G.; Zhou, G.; Zhuang, Z.; Luo, J.; Huang, H.; Gan, Y.; Liang, C.; Xia, Y.; et al. Facilitation of sulfur evolution reaction by pyridinic nitrogen doped carbon nanoflakes for highly–stable lithium–sulfur batteries. Energy Storage Mater. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Yang, J.; Wang, S.; Ma, Z.; Du, Z.; Li, C.; Song, J.; Wang, G.; Shao, G. Novel nitrogen–doped hierarchically porous coralloid carbon materials as host matrixes for lithium–sulfur batteries. Electrochim. Acta 2015, 159, 8–15. [Google Scholar] [CrossRef]
- Zeng, X.; Ding, Z.; Ma, C.; Wu, L.; Liu, J.; Chen, L.; Ivey, D.G.; Wei, W. Hierarchical nanocomposite of hollow N–doped carbon spheres decorated with ultrathin WS2 nanosheets for high–performance lithium–ion battery anode. ACS Appl. Mater. Interfaces 2016, 8, 18841–18848. [Google Scholar] [CrossRef]
- Xia, Y.; Zhong, H.; Fang, R.; Liang, C.; Xiao, Z.; Huang, H.; Gan, Y.; Zhang, J.; Tao, X.; Zhang, W. Biomass derived Ni(OH)2@porous carbon/sulfur composites synthesized by a novel sulfur impregnation strategy based on supercritical CO2 technology for advanced Li–S batteries. J. Power Sources 2018, 378, 73–80. [Google Scholar] [CrossRef]
- He, J.; Chen, Y.; Lv, W.; Wen, K.; Xu, C.; Zhang, W.; Qin, W.; He, W. Three–dimensional CNT/graphene–Li2S aerogel as freestanding cathode for high–performance Li–S batteries. ACS Energy Lett. 2016, 1, 820–826. [Google Scholar] [CrossRef]
- Tao, X.; Wang, J.; Ying, Z.; Cai, Q.; Zheng, G.; Gan, Y.; Huang, H.; Xia, Y.; Liang, C.; Zhang, W.; et al. Strong sulfur binding with conducting magnéli–phase TinO2n–1 nanomaterials for improving lithium–sulfur batteries. Nano Lett. 2014, 14, 5288–5294. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Nara, H.; Yokoshima, T.; Momma, T.; Osaka, T. Micro–scale Li2S–C composite preparation from Li2SO4 for cathode of lithium ion battery. Electrochim. Acta 2015, 183, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Qin, X.; Li, G.R.; Gao, X.P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 2010, 3, 1531–1537. [Google Scholar] [CrossRef]
- Chu, H.; Noh, H.; Kim, Y.J.; Yuk, S.; Lee, J.H.; Lee, J.; Kwack, H.; Kim, Y.; Yang, D.K.; Kim, H.T. Achieving three–dimensional lithium sulfide growth in lithium–sulfur batteries using high–donor–number anions. Nat. Commun. 2019, 10, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Xia, X.; Xie, D.; Niu, X.; Ge, X.; Gu, C.; Wang, X.; Tu, J. Rational in–situ construction of three–dimensional reduced graphene oxide supported Li2S/C composite as enhanced cathode for rechargeable lithium–sulfur batteries. J. Power Sources 2015, 299, 293–300. [Google Scholar] [CrossRef]
- Wang, D.H.; Xie, D.; Xia, X.H.; Zhang, X.Q.; Tang, W.J.; Zhong, Y.; Wu, J.B.; Wang, X.L.; Tu, J.P. A 3D conductive network with high loading Li2S@C for high performance lithium–sulfur batteries. J. Mater. Chem. A 2017, 5, 19358–19363. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, Y.; Wen, Z.; Wang, Y.; Chen, Z.; Hwang, B.J.; Zhao, J. Constructing fast electron and ion conductive framework for Li2S as advanced lithium sulfur battery. Chem. Eng. J. 2018, 346, 57–64. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, S.; Chen, J.; He, X.; Liu, L.; Zhou, N.; Hu, L.; Wang, L.; Liang, D.; Yu, T.; Tian, C.; et al. N–Doped Porous Carbon Microspheres Derived from Yeast as Lithium Sulfide Hosts for Advanced Lithium-Ion Batteries. Processes 2021, 9, 1822. https://doi.org/10.3390/pr9101822
Liang S, Chen J, He X, Liu L, Zhou N, Hu L, Wang L, Liang D, Yu T, Tian C, et al. N–Doped Porous Carbon Microspheres Derived from Yeast as Lithium Sulfide Hosts for Advanced Lithium-Ion Batteries. Processes. 2021; 9(10):1822. https://doi.org/10.3390/pr9101822
Chicago/Turabian StyleLiang, Sheng, Jie Chen, Xuehua He, Lingli Liu, Ningning Zhou, Lei Hu, Lili Wang, Dewei Liang, Tingting Yu, Changan Tian, and et al. 2021. "N–Doped Porous Carbon Microspheres Derived from Yeast as Lithium Sulfide Hosts for Advanced Lithium-Ion Batteries" Processes 9, no. 10: 1822. https://doi.org/10.3390/pr9101822
APA StyleLiang, S., Chen, J., He, X., Liu, L., Zhou, N., Hu, L., Wang, L., Liang, D., Yu, T., Tian, C., & Liang, C. (2021). N–Doped Porous Carbon Microspheres Derived from Yeast as Lithium Sulfide Hosts for Advanced Lithium-Ion Batteries. Processes, 9(10), 1822. https://doi.org/10.3390/pr9101822