Influence of Microwave Frequency and Gas Humidity on the In-Vitro Blood Coagulation in Cold Atmospheric Pressure Plasma
Abstract
:1. Introduction
2. Experimental Setup
3. Materials and Methods
4. Results and Discussion
4.1. Spectral Analysis
4.2. Effect of Microwave Frequencies and Gas Humidies on Blood Coagulation
4.3. Treatment without and with Ar-H2O Mixture Gas Plasma Jet
5. Conclusions
- 1.
- The doses of ROS in plasmas detected are higher at 5800 MHz in the coaxial based CAPP. The humidity of ionized gas also promotes the generation of ROS.
- 2.
- Plasma with a higher gas humidity requires a shorter treatment time to form a clot layer on blood samples. Under 5800 MHz, the bubble of the shell appears more seriously collapsed.
- 3.
- The clotting effect in this work is attributed to the ROS in plasmas. Thermal effects are not the cause of clotting.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fridman, G.; Friedman, G.; Gutsol, A.; Shekhter, A.B.; Vasilets, V.N.; Fridman, A. Applied plasma medicine. Plasma Process. Polym. 2008, 5, 503–533. [Google Scholar] [CrossRef]
- Weltmann, K.D.; Kindel, E.; von Woedtke, T.; Hähnel, M.; Stieber, M.; Brandenburg, R. Atmospheric-pressure plasma sources: Prospective tools for plasma medicine. Pure Appl. Chem. 2010, 82, 1223–1237. [Google Scholar] [CrossRef]
- Keidar, M. Plasma for cancer treatment. Plasma Sources Sci. Technol. 2015, 24, 033001. [Google Scholar] [CrossRef]
- Marsit, N.M.; Sidney, L.E.; Branch, M.J.; Wilson, S.L.; Hopkinson, A. Terminal sterilization: Conventional methods versus emerging cold atmospheric pressure plasma technology for non-viable biological tissues. Plasma Process. Polym. 2017, 14, e1600134.1–e1600134.17. [Google Scholar] [CrossRef] [Green Version]
- Tappi, S.; Berardinelli, A.; Ragni, L.; Dalla Rosa, M.; Guarnieri, A.; Rocculi, P. Atmospheric gas plasma treatment of fresh-cut apples. Innov. Food Sci. Emerg. Technol. 2014, 21, 114–122. [Google Scholar] [CrossRef]
- Fridman, G.; Peddinghaus, M.; Fridman, A.; Balasubramanian, M.; Gutsol, A.; Friedman, G. Use of Non-Thermal Atmospheric Pressure Plasma Discharge for Coagulation and Sterilization of Surface Wounds. In Proceedings of the 17th International Symposium on Plasma Chemistry, Toronto, Ontario, Canada, 7–12 August 2005. [Google Scholar]
- Hong, Y.C.; Kang, W.S.; Hong, Y.B.; Yi, W.J.; Uhm, H.S. Atmospheric pressure air-plasma jet evolved from microdischarges: Eradication of E. coli with the jet. Phys. Plasmas 2009, 16, 158. [Google Scholar] [CrossRef]
- Kim, C.H.; Kwon, S.; Bahn, J.H.; Lee, K.; Jun, S.I.; Rack, P.D.; Baek, S.J. Effects of atmospheric nonthermal plasma on invasion of colorectal cancer cells. Appl. Phys. Lett. 2010, 96, 243701. [Google Scholar] [CrossRef] [Green Version]
- Keping, Y.A.N.; Qikang, J.I.N.; Zheng, C.; Guanlei, D.E.N.G.; Shengyong, Y.I.N.; Zhen, L.I.U. Pulsed cold plasma-induced blood coagulation and its pilot application in stanching bleeding during rat hepatectomy. Plasma Sci. Technol. 2018, 20, 31–37. [Google Scholar]
- Kuo, S.P.; Chen, C.Y.; Lin, C.S.; Chiang, S.H. Applications of Air Plasma for Wound Bleeding Control and Healing. IEEE Trans. Plasma Sci. 2012, 40, 1117–1123. [Google Scholar] [CrossRef]
- Milovanov, A.P.; Kirsanov, Y.N. The pathogenesis of uterine hemorrhages in the so-called placental polyps. Arkhiv Patol. 2008, 70, 34–37. [Google Scholar]
- Kalghatgi, S.U.; Fridman, G.; Cooper, M.; Nagaraj, G.; Peddinghaus, M.; Balasubramanian, M.; Vasilets, V.N.; Gutsol, A.F.; Fridman, A.; Friedman, G. Mechanism of Blood Coagulation by Non-Thermal Atmospheric Pressure Dielectric Barrier Discharge. IEEE Int. Conf. Plasma Sci. 2007, 35, 1559–1566. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, H.Y.; Shin, H.K.; Kwon, H.C.; Sim, J.Y.; Lee, J.K. Comparative study between atmospheric microwave and low-frequency plasmas: Production efficiency of reactive species and their effectiveness. Jpn. J. Appl. Phys. 2014, 53, 05FR02. [Google Scholar]
- Wu, L.; Zhang, W.; Liu, Z.; Yu, J.; Tao, J.; Yang, Y.; Huang, K. Discharge properties of a coaxial plasma jet at different microwave frequencies. Phys. Plasmas 2020, 27, 123508. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, W.; Wu, X.; Wu, L.; Tao, J.; Huang, K. The influence of gas humidity on the discharge properties of a microwave atmospheric-pressure coaxial plasma jet. AIP Adv. 2021, 11, 025131. [Google Scholar] [CrossRef]
- Srivastava, N.; Wang, C. Effects of water addition on OH radical generation and plasma properties in an atmospheric argon microwave plasma jet. J. Appl. Phys. 2011, 110, 2405. [Google Scholar] [CrossRef]
- Simberg, D.; Zhang, W.M.; Merkulov, S.; McCrae, K.; Park, J.H.; Sailor, M.J.; Ruoslahti, E. Contact activation of kallikrein-kinin system by superparamagnetic iron oxide nanoparticles in vitro and in vivo. J. Control. Release Off. J. Control Release Soc. 2009, 140, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhang, W.; Tao, J.; Wu, L.; Huang, K. A Microwave-Induced Room-Temperature Atmospheric-Pressure Plasma Jet. IEEE Trans. Plasma Sci. 2019, 47, 1749. [Google Scholar] [CrossRef]
- Kalghatgi, S.U.; Fridman, A.; Friedman, G.; Clyne, A.M. Cell proliferation following non-thermal plasma is related to reactive oxygen species induced fibroblast growth factor-2 release. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Hilton Minneapolis, MN, USA, 2–6 September 2009; pp. 6030–6033. [Google Scholar]
- Herrmann, H.W.; Henins, I.; Park, J.; Selwyn, G.S. Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ). Phys. Plasmas 1999, 6, 2284–2289. [Google Scholar] [CrossRef] [Green Version]
- Kuo, S.P.; Tarasenko, O.; Yao, P.; Levon, K. Decontamination of Bacterial Spores by a Microwave Plasma Torch. In Proceedings of the IEEE Conference Record—Abstracts. 2005 IEEE International Conference on Plasma Science, Monterey, CA, USA, 20–23 June 2005; p. 257. [Google Scholar]
- Ma, Y.; Zhang, G.J.; Shi, X.M.; Xu, G.M.; Yang, Y. Chemical Mechanisms of Bacterial Inactivation Using Dielectric Barrier Discharge Plasma in Atmospheric Air. IEEE Trans. Plasma Sci. 2008, 36, 1615–1620. [Google Scholar] [CrossRef]
- Giuseppe, A.; Isabella, T.; Paolo, G. Reactive oxygen metabolites and arterial thrombosis. Cardiovasc. Res. 1997, 3, 445–452. [Google Scholar]
- Lloyd, G.; Friedman, G.; Jafri, S.; Schultz, G.; Fridman, A.; Harding, K. Gas Plasma: Medical Uses and Developments in Wound Care. Plasma Process. Polym. 2010, 7, 194–211. [Google Scholar] [CrossRef]
- Kuo, S.P.; Tarasenko, O.; Chang, J.; Popovic, S.; Chen, C.Y.; Fan, H.W.; Scott, A.; Lahiani, M.; Alusta, P.; Drake, J.D. Contribution of a portable air plasma torch to rapid blood coagulation as a method of preventing bleeding. New J. Phys. 2009, 11, 115016. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Wu, L.; Huang, K. Influence of Microwave Frequency and Gas Humidity on the In-Vitro Blood Coagulation in Cold Atmospheric Pressure Plasma. Processes 2021, 9, 1837. https://doi.org/10.3390/pr9101837
Yu J, Wu L, Huang K. Influence of Microwave Frequency and Gas Humidity on the In-Vitro Blood Coagulation in Cold Atmospheric Pressure Plasma. Processes. 2021; 9(10):1837. https://doi.org/10.3390/pr9101837
Chicago/Turabian StyleYu, Jie, Li Wu, and Kama Huang. 2021. "Influence of Microwave Frequency and Gas Humidity on the In-Vitro Blood Coagulation in Cold Atmospheric Pressure Plasma" Processes 9, no. 10: 1837. https://doi.org/10.3390/pr9101837
APA StyleYu, J., Wu, L., & Huang, K. (2021). Influence of Microwave Frequency and Gas Humidity on the In-Vitro Blood Coagulation in Cold Atmospheric Pressure Plasma. Processes, 9(10), 1837. https://doi.org/10.3390/pr9101837