Modified Dimension Reduction-Based Polynomial Chaos Expansion for Nonstandard Uncertainty Propagation and Its Application in Reliability Analysis
Abstract
:1. Introduction
2. Background of Polynomial Chaos Expansion (PCE)
3. Efficient UQ for Nonstandard Uncertainties
3.1. Approximation of Lognormal Uncertainties
3.2. Approximation of Other Nonstandard Uncertainties
3.3. Modified gDRM-Based PCE Using Quadrature Rules
3.4. Summary of the UQ Algorithm
4. Benchmark Examples in Structural Reliability Analysis
4.1. Example 1: Linear Performance Function
4.2. Example 2: Roof Structure
4.3. Example 3: Truss Structure with 13 Members
4.4. Example 4: Planar Truss Structure with 23 Members
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
BiDRM | Bivariate dimension reduction method |
CDF | Cumulative distribution function |
gDRM | Generalized dimension reduction method |
gDRM-PCE | gDRM-based PCE |
LAR | Least angle regression |
MC | Mote Carlo |
mgDRM-PCE | Modified gDRM-based PCE |
PCE | Polynomial chaos expansion |
Probability density function | |
SP | Spectral projection |
TriDRM | Trivariate dimension reduction method |
UQ | Uncertainty quantification |
References
- Coit, D.W.; Jin, T.; Wattanapongsakorn, N. System optimization with component reliability estimation uncertainty: A multi-criteria approach. IEEE Trans. Reliab. 2004, 53, 369–380. [Google Scholar] [CrossRef]
- Zaman, K.; Mahadevan, S. Reliability-based design optimization of multidisciplinary system under aleatory and epistemic uncertainty. Struct. Multidiscip. Optim. 2017, 55, 681–699. [Google Scholar] [CrossRef]
- Xu, J.; Li, J. Stochastic dynamic response and reliability assessment of controlled structures with fractional derivative model of viscoelastic dampers. Mech. Syst. Signal Process. 2016, 72–73, 865–896. [Google Scholar] [CrossRef]
- Ni, P.; Xia, Y.; Li, J.; Hao, H. Using polynomial chaos expansion for uncertainty and sensitivity analysis of bridge structures. Mech. Syst. Signal Process. 2019, 119, 293–311. [Google Scholar] [CrossRef]
- Kwon, K.; Ryu, N.; Seo, M.; Kim, S.; Lee, T.H.; Min, S. Efficient uncertainty quantification for integrated performance of complex vehicle system. Mech. Syst. Signal Process. 2020, 139, 106601. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, W.; Jiang, C. Sequential approximate reliability-based design optimization for structures with multimodal random variables. Struct. Multidiscip. Optim. 2020, 62, 511–528. [Google Scholar] [CrossRef]
- Dubourg, V.; Sudret, B.; Bourinet, J.-M. Reliability-based design optimization using kriging surrogates and subset simulation. Struct. Multidiscip. Optim. 2011, 44, 673–690. [Google Scholar] [CrossRef] [Green Version]
- Echard, B.; Gayton, N.; Lemaire, M. AK-MCS: An active learning reliability method combining kriging and monte Carlo simulation. Struct. Saf. 2011, 33, 145–154. [Google Scholar] [CrossRef]
- Wang, C.; Qiu, Z.; Xu, M.; Li, Y. Novel reliability-based optimization method for thermal structure with hybrid random, interval and fuzzy parameters. Appl. Math. Model. 2017, 47, 573–586. [Google Scholar] [CrossRef]
- Fishman, G.S. Monte Carlo: Concepts, Algorithms, and Applications; Springer: New York, NY, USA, 1996. [Google Scholar]
- Schueller, G.I. Efficient Monte Carlo simulation procedures in structural uncertainty and reliability analysis—Recent advances. Struct. Eng. Mech. 2009, 32, 1–20. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, C.; Wang, G.G.; Han, X. First and second order approximate reliability analysis methods using evidence theory. Reliab. Eng. Syst. Saf. 2015, 137, 40–49. [Google Scholar] [CrossRef]
- Smith, C.L. Uncertainty propagation using taylor series expansion and a spreadsheet. J. Ida. Acad. Sci. 1994, 30, 93–105. [Google Scholar]
- Wiener, N. The homogeneous chaos. Am. J. Math. 1938, 60, 897–936. [Google Scholar] [CrossRef]
- Ghanem, R.G.; Spanos, P.D. Stochastic Finite Elements: A Spectral Approach; Springer Science and Business Media LLC: New York, NY, USA, 1991. [Google Scholar]
- Hong, J.; Shaked, S.; Rosenbaum, R.K.; Jolliet, O. Analytical uncertainty propagation in life cycle inventory and impact assessment: Application to an automobile front panel. Int. J. Life Cycle Assess. 2010, 15, 499–510. [Google Scholar] [CrossRef]
- MacLeod, M.; Fraser, A.J.; Mackay, D. Evaluating and expressing the propagation of uncertainty in chemical fate and bioaccumulation models. Environ. Toxicol. Chem. 2002, 21, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-G.; Ono, T. Moment methods for structural reliability. Struct. Saf. 2001, 23, 47–75. [Google Scholar] [CrossRef]
- Xu, J.; Kong, F. A cubature collocation based sparse polynomial chaos expansion for efficient structural reliability analysis. Struct. Saf. 2018, 74, 24–31. [Google Scholar] [CrossRef]
- Xiu, D. Numerical Methods for Stochastic Computations: A Spectral Method Approach; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Xiu, D.; Karniadakis, G.E. The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 2002, 24, 619–644. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Li, Q. Moment-based evaluation of structural reliability. Reliab. Eng. Syst. Saf. 2019, 181, 38–45. [Google Scholar] [CrossRef]
- Pulch, R. Polynomial Chaos for the Computation of Failure Probabilities in Periodic Problems. In Scientific Computing in Electrical Engineering SCEE 2008; Roos, J., Costa, L.R.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 191–198. [Google Scholar]
- Le Maître, O.P.; Knio, O.M. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Najm, H.N. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annu. Rev. Fluid Mech. 2009, 41, 35–52. [Google Scholar] [CrossRef]
- Wan, H.-P.; Ren, W.-X.; Todd, M.D. Arbitrary polynomial chaos expansion method for uncertainty quantification and global sensitivity analysis in structural dynamics. Mech. Syst. Signal Process. 2020, 142, 106732. [Google Scholar] [CrossRef]
- Wang, C.; Matthies, H.G.; Xu, M.; Li, Y. Dual interval-and-fuzzy analysis method for temperature prediction with hybrid epistemic uncertainties via polynomial chaos expansion. Comput. Methods Appl. Mech. Eng. 2018, 336, 171–186. [Google Scholar] [CrossRef]
- Eldred, M.; Burkardt, J. Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification. In Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009. [Google Scholar]
- Son, J.; Du, Y. Comparison of intrusive and non-intrusive polynomial chaos expansion-based approaches for high dimensional parametric uncertainty quantification and propagation. Comput. Chem. Eng. 2020, 134, 106685. [Google Scholar] [CrossRef]
- Son, J.; Du, D.; Du, Y. Modified polynomial chaos expansion for efficient uncertainty quantification in biological systems. Appl. Mech. 2020, 1, 153–173. [Google Scholar] [CrossRef]
- Xu, H.; Rahman, S. A generalized dimension-reduction method for multidimensional integration in stochastic mechanics. Int. J. Numer. Methods Eng. 2004, 61, 1992–2019. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Li, T.; Ying, W.; Fang, D. Rising and descending bubble size distributions in gas–liquid and gas–liquid–solid slurry bubble column reactor. Chem. Eng. Res. Des. 2008, 86, 1143–1154. [Google Scholar] [CrossRef]
- Ghanem, R. The nonlinear gaussian spectrum of log-normal stochastic processes and variables. J. Appl. Mech. 1999, 66, 964–973. [Google Scholar] [CrossRef] [Green Version]
- Kundu, A.; Adhikari, S.; Friswell, M.I. Stochastic finite elements of discretely parameterized random systems on domains with boundary uncertainty. Int. J. Numer. Methods Eng. 2014, 100, 183–221. [Google Scholar] [CrossRef]
- Mohan, P.S.; Nair, P.B.; Keane, A.J. Stochastic projection schemes for deterministic linear elliptic partial differential equations on random domains. Int. J. Numer. Methods Eng. 2011, 85, 874–895. [Google Scholar] [CrossRef]
- Witteveen, J.A.; Bijl, H. Modeling Arbitrary Uncertainties Using Gram-Schmidt Polynomial Chaos. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006. [Google Scholar]
- Rosenblatt, M. Remarks on a multivariate transformation. Ann. Math. Stat. 1952, 23, 470–472. [Google Scholar] [CrossRef]
- Nataf, A. Détermination des distributions de probabilité dont les marges sont données. Comptes Rendus Acad. Sci. 1962, 225, 42–43. [Google Scholar]
- Ernst, O.G.; Mugler, A.; Starkloff, H.-J.; Ullmann, E. On the convergence of generalized polynomial chaos expansions. ESAIM Math. Model. Numer. Anal. 2012, 46, 317–339. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Budman, H.; Duever, T. Parameter estimation for an inverse nonlinear stochastic problem: Reactivity ratio studies in copolymerization. Macromol. Theory Simul. 2017, 26, 1600095. [Google Scholar] [CrossRef]
- Lasota, R.; Stocki, R.; Tauzowski, P.; Szolc, T. Polynomial chaos expansion method in estimating probability distribution of rotor-shaft dynamic responses. Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 413–422. [Google Scholar] [CrossRef] [Green Version]
- Krishnamoorthy, K. Handbook of Statistical Distributions with Applications; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Lomax, R.G.; Hahs-Vaughn, D.L. An Introduction to Statistical Concepts, 3rd ed.; Routledge: New York, NY, USA, 2013. [Google Scholar]
- McClarren, R.G. Gauss Quadrature and Multi-dimensional Integrals. In Computational Nuclear Engineering and Radiological Science Using Python; Academic Press: Cambridge, MA, USA, 2018; pp. 287–299. [Google Scholar]
- Gao, Z.; Hesthaven, J.S. On ANOVA expansions and strategies for choosing the anchor point. Appl. Math. Comput. 2010, 217, 3274–3285. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Chen, Z.; Gunzburger, M. ANOVA expansions and efficient sampling methods for parameter dependent nonlinear PDEs. Int. J. Numer. Anal. Model. 2009, 6, 256–273. [Google Scholar]
- Der Kiureghian, A.; Lin, H.-Z.; Hwang, S.-J. Second-order reliability approximations. J. Eng. Mech. 1987, 113, 1208–1225. [Google Scholar] [CrossRef]
- Xu, J.; Dang, C. A new bivariate dimension reduction method for efficient structural reliability analysis. Mech. Syst. Signal Process. 2019, 115, 281–300. [Google Scholar] [CrossRef]
- Zhang, Y.-G.; Huang, Y.-L.; Wu, Z.-M.; Li, N. A high order unscented Kalman filtering method. Acta Autom. Sin. 2014, 40, 838–848. [Google Scholar]
- Chen, X. Welcome to Xiaohui Chen’s Webpage, LARS: Least Angle Regression (LARS). Available online: https://publish.illinois.edu/xiaohuichen/code/lars/ (accessed on 28 March 2020).
- Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R. Least angle regression. Ann Stat. 2004, 32, 407–499. [Google Scholar] [CrossRef] [Green Version]
- Blatman, G.; Sudret, B. Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 2011, 230, 2345–2367. [Google Scholar] [CrossRef]
- Song, S.; Lu, Z.; Qiao, H. Subset simulation for structural reliability sensitivity analysis. Reliab. Eng. Syst. Saf. 2009, 94, 658–665. [Google Scholar] [CrossRef]
- Ayyub, B.M.; McCuen, R.H. Probability, Statistics, and Reliability for Engineers and Scientists; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Grigoriu, M. Stochastic Calculus: Applications in Science and Engineering; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Lee, S.H.; Kwak, B.M. Response surface augmented moment method for efficient reliability analysis. Struct. Saf. 2006, 28, 261–272. [Google Scholar] [CrossRef]
Variable | Distribution Type | Mean | Standard Deviation |
---|---|---|---|
Lognormal | 120 | 12 | |
Lognormal | 120 | 12 | |
Lognormal | 120 | 12 | |
Lognormal | 120 | 12 | |
Lognormal | 50 | 15 | |
Lognormal | 40 | 12 |
UQ Methods | ||||
---|---|---|---|---|
MC | 269.9226 | 103.2812 | 0.5276 | 3.6135 |
mBiDRM-PCE ( 2) | 270.0000 [0.0287%] | 103.2173 [0.0619%] | 0.4840 [8.2758%] | 3.3813 [6.4250%] |
mBiDRM-PCE ( 3) | 270.0000 [0.0287%] | 103.2703 [0.0105%] | 0.5261 [0.2911%] | 3.5897 [0.6577%] |
mTriDRM-PCE ( 2) | 270.0000 [0.0287%] | 103.2173 [0.0619%] | 0.4840 [8.2758%] | 3.3813 [6.4250%] |
mTriDRM-PCE ( 3) | 270.0000 [0.0287%] | 103.2703 [0.0105%] | 0.5261 [0.2911%] | 3.5897 [0.6577%] |
LAR-based PCE ( 2) | 270.0000 [0.0287%] | 103.2173 [0.0619%] | 0.4840 [8.2758%] | 3.3813 [6.4250%] |
LAR-based PCE ( 3) | 270.0000 [0.0287%] | 103.2703 [0.0105%] | 0.5261 [0.2911%] | 3.5897 [0.6577%] |
Reference [48] | 270.0010 [0.0291%] | 103.2146 [0.0645%] | 0.5165 [2.1124%] | 3.6980 [2.3383%] |
Variable | Distribution Type | Mean | Standard Deviation | Unit |
---|---|---|---|---|
Lognormal | 20,000 | 1400 | N/m | |
Weibull | 12 | 0.12 | m | |
Lognormal | 9.8 10−4 | 5.89 10−5 | m2 | |
Lognormal | 400 10−4 | 48 10−4 | m2 | |
Lognormal | 1 1011 | 6 109 | N/m2 | |
Lognormal | 2 1010 | 1.2 109 | N/m2 |
UQ Methods | ||||
---|---|---|---|---|
MC | 0.0064 | 0.0024 | 0.3004 | 3.1614 |
mBiDRM-PCE ( 2) | 0.0064 [0.0065%] | 0.0024 [0.0134%] | 0.2955 [1.6162%] | 3.1189 [1.3427%] |
mBiDRM-PCE ( 3) | 0.0064 [0.0060%] | 0.0024 [0.0030%] | 0.3000 [0.1340%] | 3.1485 [0.4067%] |
mTriDRM-PCE ( 2) | 0.0064 [0.0065%] | 0.0024 [0.0156%] | 0.2952 [1.7095%] | 3.1186 [1.3512%] |
mTriDRM-PCE ( 3) | 0.0064 [0.0060%] | 0.0024 [0.0011%] | 0.3000 [0.1374%] | 3.1620 [0.0202%] |
LAR-based PCE ( 2) | 0.0064 [0.0106%] | 0.0024 [0.0231%] | 0.2933 [2.3358%] | 3.1172 [1.3961%] |
LAR-based PCE ( 3) | 0.0064 [0.0058%] | 0.0024 [0.0033%] | 0.2995 [0.2836%] | 3.1610 [0.0120%] |
Variable | Distribution Type | Mean | Standard Deviation | Unit |
---|---|---|---|---|
Lognormal | 206 | 20.6 | Gpa | |
Lognormal | 500 | 50 | mm2 | |
Normal | 20 | 3 | kN | |
Normal | 20 | 3 | kN | |
Normal | 20 | 3 | kN |
UQ Methods | ||||
---|---|---|---|---|
MC | 10.6866 | 1.7808 | 0.4661 | 3.3907 |
mBiDRM-PCE ( 2) | 10.6864 [0.0021%] | 1.7802 [0.0306%] | 0.4507 [3.3024%] | 3.2762 [3.3761%] |
mBiDRM-PCE ( 3) | 10.6864 [0.0019%] | 1.7807 [0.0030%] | 0.4590 [1.5131%] | 3.3243 [1.9594%] |
mTriDRM-PCE ( 2) | 10.6864 [0.0021%] | 1.7803 [0.0273%] | 0.4518 [3.0748%] | 3.2774 [3.3414%] |
mTriDRM-PCE ( 3) | 10.6864 [0.0019%] | 1.7808 [0.0000%] | 0.4655 [0.1377%] | 3.3852 [0.1628%] |
LAR-based PCE ( 2) | 10.6863 [0.0032%] | 1.7802 [0.0302%] | 0.4545 [2.4969%] | 3.2810 [3.2371%] |
LAR-based PCE ( 3) | 10.6865 [0.0016%] | 1.7808 [0.0004%] | 0.4652 [0.1860%] | 3.3841 [0.1954%] |
Reference [48] | 10.6865 [0.0013%] | 1.7809 [0.0083%] | 0.4685 [0.5153%] | 3.4052 [0.4273%] |
Variable | Distribution Type | Mean | Standard Deviation | Unit |
---|---|---|---|---|
Lognormal | 2.10 1011 | 2.10 1010 | Pa | |
Lognormal | 2.0 10−3 | 2.0 10−4 | m2 | |
Lognormal | 1.0 10−3 | 1.0 10−4 | m2 | |
Weibull | 5.0 104 | 7.5 103 | N |
UQ Methods | ||||
---|---|---|---|---|
MC | 0.0794 | 0.0118 | 0.4067 | 3.3010 |
mBiDRM-PCE ( 2) | 0.0794 [0.0002%] | 0.0118 [0.0224%] | 0.3976 [2.2522%] | 3.2234 [2.3512%] |
mBiDRM-PCE ( 3) | 0.0794 [0.0000%] | 0.0118 [0.0181%] | 0.4131 [1.5571%] | 3.3429 [1.2683%] |
mTriDRM-PCE ( 2) | 0.0794 [0.0002%] | 0.0118 [0.0282%] | 0.3951 [2.8698%] | 3.2205 [2.4406%] |
mTriDRM-PCE ( 3) | 0.0794 [0.0000%] | 0.0118 [0.0027%] | 0.4086 [0.4477%] | 3.3039 [0.0863%] |
LAR-based PCE ( 2) | 0.0794 [0.0006%] | 0.0118 [0.0162%] | 0.3961 [2.6238%] | 3.2210 [2.4256%] |
LAR-based PCE ( 3) | 0.0794 [0.0008%] | 0.0118 [0.0080%] | 0.4084 [0.4159%] | 3.3032 [0.0667%] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, J.; Du, Y. Modified Dimension Reduction-Based Polynomial Chaos Expansion for Nonstandard Uncertainty Propagation and Its Application in Reliability Analysis. Processes 2021, 9, 1856. https://doi.org/10.3390/pr9101856
Son J, Du Y. Modified Dimension Reduction-Based Polynomial Chaos Expansion for Nonstandard Uncertainty Propagation and Its Application in Reliability Analysis. Processes. 2021; 9(10):1856. https://doi.org/10.3390/pr9101856
Chicago/Turabian StyleSon, Jeongeun, and Yuncheng Du. 2021. "Modified Dimension Reduction-Based Polynomial Chaos Expansion for Nonstandard Uncertainty Propagation and Its Application in Reliability Analysis" Processes 9, no. 10: 1856. https://doi.org/10.3390/pr9101856
APA StyleSon, J., & Du, Y. (2021). Modified Dimension Reduction-Based Polynomial Chaos Expansion for Nonstandard Uncertainty Propagation and Its Application in Reliability Analysis. Processes, 9(10), 1856. https://doi.org/10.3390/pr9101856