Process-Induced Modifications on Quality Attributes of Cassava (Manihot esculenta Crantz) Flour
Abstract
:1. Introduction
2. Composition and Postharvest Deterioration of Cassava Root
3. Processing and Yield of Cassava Flour
Processing Type | Processing Steps | References | |
---|---|---|---|
Activity and Purpose | Method | ||
Sorting | To remove spoilt and fibrous roots. Only healthy roots are used. | Manually by visual inspection and discretion. | [39] |
Washing | To remove dirt, sand, and soil that adheres to surface of root. | Rinsing with clean water. | [14] |
Peeling | To remove outer layer, the stalk, woody tips, and fibrous part of the root. | Manually with sharp knives or other abrasive equipment. Efficient peeling machines are still a work in progress. | [47,48,49,50] |
Grating | Crushing fresh pulp to form a mash. | Mechanical graters. | [46] |
Pressing | Dewatering of fresh mash. | Mash in jute sacks is pressed using dewatering machines such as hydraulic jack and screw press. | [14] |
Chipping | The roots are cut into big chunks and then smaller chips (2–3 cm) in length and 1–2 mm thickness. | Manually with knives and chipping machines. | [51,52] |
Drying | Reduce moisture content of fresh chips or dewatered mash to about 8–12%. | On surfaces under the sun, cabinet dryers, and hot air oven. | [37,53,54] |
Milling | Reducing dried mash or chips to powder. | Pin, hammer, attrition, paddle, or mortar mills. | [46,51,55] |
Sieving | To remove large particles or fibers from milled chips to obtain fine flour. | Sieves of varying sizes. | [46,55] |
Fermenting | Action of microorganisms to reduce cyanide and develop flavor. | Naturally, soaking or inoculating microbes. | [56,57,58,59,60,61] |
Enriching/fortifying | Fermentation or addition of protein concentrate. | Solid-state fermentation or co-processing with protein-rich materials. | [62,63] |
Pre-gelatinising | Heating roots to gelatinize starch content. | Steaming or cooking. | [64,65,66] |
Packaging and storing | Cassava flour is kept till time of use. | In paper bags, plastic bags, or buckets kept on the shelf or refrigerated. | [67,68] |
4. Comparison of Cassava Flour and Starch: Physicochemical and Functional Properties
5. Classification, Nomenclature, and Properties of Cassava Flours
6. Microstructure of Cassava Flour
7. Effect of Processing Variables on Cassava Flour
7.1. Variety of Root
Number of Varieties | Description of Varieties | Source/Country | Difference in CF Properties Associated with Varieties | References |
---|---|---|---|---|
3 | Local varieties | Accra, Ghana | No significant difference in acidity, moisture, and starch content | [42] |
Difference in pasting characteristics, water-binding capacity, and swelling power | ||||
2 | White and yellow | National Root Crops Research Institute (NRCRI), Umudike, Nigeria | Significant differences in proximate composition and color attributes; exhibited slightly different hygroscopic behaviors during storage | [67,68] |
17 | Bitter yellow | State of Bahia, Brazil | Variation in total carotenoid content | [92] |
6 | New elite yellow and white | NRCRI, Umudike, Nigeria | Higher residual cyanide and quantities of reducing sugar and carotenoid in yellow varieties compared to the white | [91] |
31 | - | Crop Research Institute (CRI), Ghana | A wide variance in cyanide content, starch content, swelling power, water-binding capacity and gelatinization temperatures | [53] |
12 | Low cyanide varieties with different cooked textures: mealy, firm and mealy and firm | Rayong Field Crops Research Center, Thailand | Wide variation in pasting characteristics | [69] |
11 | Different genotypes | IITA, Ibadan, Nigeria | Variation in total dietary fiber and viscosity profile | [71] |
5 | Varieties developed in the Philippines | Philippines | Slight significant difference in soluble sugar, proximate, and mineral composition | [66] |
2 | Red and white landraces | Agricultural Research Council, South Africa | Significant difference in cyanide content | [44] |
7.2. Pre-Gelatinization
7.3. Fermentation
7.4. Drying and Processing Temperatures
7.5. Milling and Sieving
7.6. Fortification
7.7. Packaging Materials and Storage Conditions
8. Assessment of Microbial Safety
9. Application of Cassava Flour in Food and Industrial Processes
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burrell, M. Starch: The need for improved quality or quantity—An overview. J. Exp. Bot. 2003, 54, 451–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, K.M.; Schaal, B.A. Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: Further evidence for a southern Amazonian origin of domestication. Am. J. Bot. 2001, 88, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Nhassico, D.; Muquingue, H.; Cliff, J.; Cumbana, A.; Bradbury, J.H. Rising African cassava production, diseases due to high cyanide intake and control measures. J. Sci. Food Agric. 2008, 88, 2043–2049. [Google Scholar] [CrossRef]
- Haggblade, S.; Djurfeldt, A.A.; Nyirenda, D.B.; Lodin, J.B.; Brimer, L.; Chiona, M.; Chitundu, M.; Chiwona-Karltun, L.; Cuambe, C.; Dolislager, M. Cassava commercialization in Southeastern Africa. J. Agribus. Dev. Emerg. Econ. 2012. [Google Scholar] [CrossRef]
- Zhu, F. Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydr. Polym. 2015, 122, 456–480. [Google Scholar] [CrossRef] [PubMed]
- Tewe, O.O.; Lutaladio, N. Cassava for Livestock Feed in Sub-Saharan Africa. 2004. Available online: https://agris.fao.org/agris-search/search.do?recordID=XF2015041975 (accessed on 30 September 2020).
- Aloys, N.; Hui Ming, Z. Traditional cassava foods in Burundi—A review. Food Rev. Int. 2006, 22, 1–27. [Google Scholar] [CrossRef]
- Montagnac, J.A.; Davis, C.R.; Tanumihardjo, S.A. Nutritional value of cassava for use as a staple food and recent advances for improvement. Compr. Rev. Food Sci. Food Saf. 2009, 8, 181–194. [Google Scholar] [PubMed]
- Falade, K.O.; Akingbala, J.O. Utilization of cassava for food. Food Rev. Int. 2010, 27, 51–83. [Google Scholar] [CrossRef]
- Omodamiro, R.; Oti, E.; Etudaiye, H.; Egesi, C.; Olasanmi, B.; Ukpabi, U. Production of fufu from yellow cassava roots using the odourless flour technique and the traditional method: Evaluation of carotenoids retention in the fufu. Adv. Appl. Sci. Res. 2012, 3, 2566–2572. [Google Scholar]
- Westby, A. Cassava utilization, storage and small-scale processing. Cassava: Biol. Prod. Util. 2002, 281–300. [Google Scholar] [CrossRef]
- Sánchez, T.; Chávez, A.L.; Ceballos, H.; Rodriguez-Amaya, D.B.; Nestel, P.; Ishitani, M. Reduction or delay of post-harvest physiological deterioration in cassava roots with higher carotenoid content. J. Sci. Food Agric. 2006, 86, 634–639. [Google Scholar] [CrossRef]
- Udoro, E.; Gbadamosi, O.; Taiwo, K. Studies on the production and utilization of dried cassava chips as human food. In Using Food Science and Technology to Improve Nutrition and Promote National Development; International Union of Food Science & Technology: Guelph, ON, Canada, 2008. [Google Scholar]
- Dziedzoave, N.T.; Abass, A.B.; Amoa-Awua, W.K.; Sablah, M. Quality Management Manual for Production of High Quality Cassava Flour; IITA: Ibadan, Nigeria, 2006. [Google Scholar]
- IITA. Released Cassava Varieties in Nigeria. Available online: https://seedtracker.org/cassava/index.php/released-cassava-varieties-in-nigeria/ (accessed on 22 July 2021).
- Gil Llanos, J.L.; Buitrago, A.J.A. La yuca en la alimentación animal. In La yuca en el Tercer Milenio: Sistemas Modernos de Producción, Procesamiento, Utilización y Comercialización; CIAT: Cali, Columbi, 2002. [Google Scholar]
- Rojas, C.C.C.; Nair, B.; Herbas, A.; Bergenståhl, B. Simultaneous determination of glucose, maltose and sucrose in starch of six varieties of cassava. Rev. Boliv. De Química 2006, 23, 18–23. [Google Scholar]
- Charles, A.; Sriroth, K.; Huang, T. Proximate composition, mineral contents, hydrogen cyanide and phytic acid of 5 cassava genotypes. Food Chem. 2005, 92, 615–620. [Google Scholar] [CrossRef]
- Otache, M.A.; Agbajor, G.K.; Akpovona, A.E.; Ogoh, B. Quantitative Determination of Sugars in Three Varieties of Cassava Pulp. Asian J. Chem. Sci. 2017, 3, 1–8. [Google Scholar] [CrossRef]
- McMahon, J.M.; White, W.L.; Sayre, R.T. Cyanogenesis in cassava (Manihot esculenta Crantz). J. Exp. Bot. 1995, 46, 731–741. [Google Scholar] [CrossRef]
- Burns, A.E.; Bradbury, J.H.; Cavagnaro, T.R.; Gleadow, R.M. Total cyanide content of cassava food products in Australia. J. Food Compos. Anal. 2012, 25, 79–82. [Google Scholar] [CrossRef]
- Chiwona-Karltun, T.T.; Mkumbira, M.J.; Gebre-Medhin, H.; Rosling, L. Low dietary cyanogen exposure from frequent consumption of potentially toxic cassava in Malawi. Int. J. Food Sci. Nutr. 2000, 51, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Ellen, R.F.; Soselisa, H.L. A comparative study of the socio-ecological concomitants of cassava (Manihot esculenta Crantz): Diversity, local knowledge and management in eastern Indonesia. Ethnobot. Res. Appl. 2012, 10, 15–35. [Google Scholar] [CrossRef] [Green Version]
- Montagnac, J.A.; Davis, C.R.; Tanumihardjo, S.A. Processing techniques to reduce toxicity and antinutrients of cassava for use as a staple food. Compr. Rev. Food Sci. Food Saf. 2009, 8, 17–27. [Google Scholar] [CrossRef]
- Ebuehi, O.; Babalola, O.; Ahmed, Z. Phytochemical, nutritive and anti-nutritive composition of cassava (Manihot esculenta L) tubers and leaves. Niger. Food J. 2005, 23, 40–46. [Google Scholar] [CrossRef]
- Oboh, G.; Elusiyan, C. Changes in the nutrient and anti-nutrient content of micro-fungi fermented cassava flour produced from low-and medium-cyanide variety of cassava tubers. Afr. J. Biotechnol. 2007, 6, 2150–2157. [Google Scholar] [CrossRef]
- Sowmyapriya, S.; Kalarani, M.; Jeyakumar, P.; Kennedy, Z.J.; Velmurugan, M.; Arumugam, T. Assessment of biochemical changes during postharvest physiological deterioration in cassava tubers. Int. J. Pure Appl. Biosci. 2017, 5, 732–739. [Google Scholar] [CrossRef]
- Salcedo, A.; Siritunga, D. Insights into the physiological, biochemical and molecular basis of postharvest deterioration in cassava (Manihot esculenta) roots. J. Exp. Agric. Int. 2011, 414–431. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Djabou, A.S.M.; An, F.; Li, K.; Li, Z.; Yang, L.; Wang, X.; Chen, S. Proteomic analysis of injured storage roots in cassava (Manihot esculenta Crantz) under postharvest physiological deterioration. PLoS ONE 2017, 12, e0174238. [Google Scholar] [CrossRef]
- Atieno, L.; Owino, W.; Ateka, E.M.; Ambuko, J. Effect of Surface Coatings on the Shelf life and Quality of Cassava. J. Food Res. 2018, 7, 46–60. [Google Scholar]
- Reilly, K.; Bernal, D.; Cortés, D.F.; Gómez-Vásquez, R.; Tohme, J.; Beeching, J.R. Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration. Plant Mol. Biol. 2007, 64, 187–203. [Google Scholar] [CrossRef]
- Reilly, K.; Gómez-Vásquez, R.; Buschmann, H.; Tohme, J.; Beeching, J.R. Oxidative stress responses during cassava post-harvest physiological deterioration. Plant Mol. Biol. 2003, 53, 669–685. [Google Scholar] [CrossRef]
- Reilly, K.; Han, Y.; Tohme, J.; Beeching, J.R. Isolation and characterisation of a cassava catalase expressed during post-harvest physiological deterioration. Biochim. Et Biophys. Acta (BBA)-Gene Struct. Expr. 2001, 1518, 317–323. [Google Scholar] [CrossRef]
- Morante, N.; Sánchez, T.; Ceballos, H.; Calle, F.; Pérez, J.; Egesi, C.; Cuambe, C.; Escobar, A.; Ortiz, D.; Chávez, A.L. Tolerance to postharvest physiological deterioration in cassava roots. Crop Sci. 2010, 50, 1333–1338. [Google Scholar] [CrossRef]
- Djabou, A.S.; Carvalho, L.J.; Li, Q.X.; Niemenak, N.; Chen, S. Cassava postharvest physiological deterioration: A complex phenomenon involving calcium signaling, reactive oxygen species and programmed cell death. Acta Physiol. Plant. 2017, 39, 91. [Google Scholar] [CrossRef] [Green Version]
- Abass, A.; Onabolu, A.; Bokanga, M. Impact of the high quality cassava flour technology in Nigeria. In Proceedings of the 7th Triennial Symposium of the International Society for Tropical Root Crops Africa Branch (ISTRC-AB), Cotonou, Benin, 11–17 October 1998. [Google Scholar]
- Amoa-Awua, W.K.; Owusu, M.; Feglo, P. Utilization of unfermented cassava flour for the production of an indigenous African fermented food, agbelima. World J. Microbiol. Biotechnol. 2005, 21, 1201–1207. [Google Scholar] [CrossRef]
- Quaye, W.; Gayin, J.; Yawson, I.; Plahar, W.A. Characteristics of Various Cassava Processing Methods and the Adoption Requirements in Ghana. 2009. Available online: http://hdl.handle.net/123456789/1026 (accessed on 30 March 2020).
- Navia, D.P.; Villada, H.S. Thermoplastic Cassava Flour; El-Sonbati, A.Z., Ed.; InTech: Rijeka, Croatia, 2012; pp. 23–38. [Google Scholar] [CrossRef] [Green Version]
- Aristizábal, J.; García, J.A.; Ospina, B. Refined cassava flour in bread making: A review. Ing. E Investig. 2017, 37, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Dziedzoave, N.; Graffham, A.; Boateng, E. Training Manual for the Production of High Quality Cassava Flour. 2004. Available online: https://agris.fao.org/agris-search/search.do?recordID=GB2012100904 (accessed on 5 August 2021).
- Eriksson, E. Flour from Three Local Varieties of Cassava (Manihot esculenta Crantz)-Physico-Chemical Properties, Bread Making Quality and Sensory Evaluation. Master’s Thesis, Swedish University of Agricultural Science, Uppsala, Uppsala, 2013; p. 17. [Google Scholar]
- Falade, K.O.; Ibanga-Bamijoko, B.; Ayetigbo, O.E. Comparing properties of starch and flour of yellow-flesh cassava cultivars and effects of modifications on properties of their starch. J. Food Meas. Charact. 2019, 13, 2581–2593. [Google Scholar] [CrossRef]
- Udoro, E.O.; Anyasi, T.A.; Jideani, A.I.O. Characterization of the root and flour of South African Manihot esculenta Crantz landraces and their potential end-use properties. Int. J. Food Prop. 2020, 23, 820–838. [Google Scholar] [CrossRef]
- Apea-Bah, F.; Oduro, I.; Ellis, W.; Safo-Kantanka, O. Factor analysis and age at harvest effect on the quality of flour from four cassava varieties. World J. Dairy Food Sci. 2011, 6, 43–54. [Google Scholar]
- Adesina, B.; Bolaji, O. Effect of milling machines and sieve sizes on cooked cassava flour quality. Niger. Food J. 2013, 31, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Olukunle, O.; Oguntunde, P. Analysis of peeling pattern in an automated cassava peeling system. Niger. J. Technol. Dev. 2008, 6, 2. [Google Scholar]
- Olukunle, O.J.; Ogunlowo, A.; Sanni, L. The Search for an Effective Cassava Peeler. West Indian J. Eng. 2010, 32, 42–47. [Google Scholar]
- Jimoh, M.; Olukunle, O.; Manuwa, S.; Amumeji, O. Theoretical analysis of tuber movement during mechanical peeling of cassava. J. Mech. Civ. Eng. 2014, 6, 27–36. [Google Scholar] [CrossRef]
- Egbeocha, C.; Asoegwu, S.; Okereke, N. A review on performance of cassava peeling machines in Nigeria. Futo J. Ser. (FUTOJNLS) 2016, 2, 140–168. [Google Scholar]
- Fernandez, A.; Wenham, J.; Dufour, D.; Wheatley, C. The Influence of Variety and Processing on the Physicochemical and Functional Properties of Cassava Starch and Flour. 1996, pp. 263–269. Available online: https://books.google.com.hk/books?hl=zh-CN&lr=&id=Ns3JgEziPeIC&oi=fnd&pg=PA263&dq=The+influence+of+variety+and+processing+on+the+physicochemical+and+functional+properties+of+cassava+starch+and+flour.&ots=ZNWcdDCQXb&sig=QoKOAkbFYASsihs5QnG8jcE4WVQ&redir_esc=y#v=onepage&q&f=false (accessed on 5 August 2021).
- Irinkoyenikan, O.; Taiwo, K.; Gbadamosi, S.; Akanbi, C. Studies of fufu production from cassava chips. In Proceedings of the Humboldt-Kolleg Held at the Obafemi Awolowo University, Ile-Ife, Nigeria, 5–9 December 2008; pp. 117–132. [Google Scholar]
- Aryee, F.; Oduro, I.; Ellis, W.; Afuakwa, J. The physicochemical properties of flour samples from the roots of 31 varieties of cassava. Food Control 2006, 17, 916–922. [Google Scholar] [CrossRef]
- Kusumayanti, H.; Handayani, N.A.; Santosa, H. Swelling Power and Water Solubility of Cassava and Sweet Potatoes Flour. Procedia Environ. Sci. 2015, 23, 164–167. [Google Scholar] [CrossRef] [Green Version]
- Pereira, B.L.B.; Leonel, M. Resistant starch in cassava products. Food Sci. Technol. 2014, 34, 298–302. [Google Scholar] [CrossRef] [Green Version]
- Akindahunsi, A.; Oboh, G.; Oshodi, A. Effect of fermenting cassava with Rhizopus oryzae on the chemical composition of its flour and gari products. Riv. Ital. Delle Sostanze Grasse 1999, 76, 437–440. [Google Scholar]
- Padonou, S.W.; Hounhouigan, J.D.; Nago, M.C. Physical, chemical and microbiological characteristics of lafun produced in Benin. Afr. J. Biotechnol. 2009, 8, 14. [Google Scholar]
- Padonou, S.W.; Nielsen, D.S.; Hounhouigan, J.D.; Thorsen, L.; Nago, M.C.; Jakobsen, M. The microbiota of Lafun, an African traditional cassava food product. Int. J. Food Microbiol. 2009, 133, 22–30. [Google Scholar] [CrossRef]
- Oboh, G.; Akindahunsi, A. Biochemical changes in cassava products (flour & gari) subjected to Saccharomyces cerevisae solid media fermentation. Food Chem. 2003, 82, 599–602. [Google Scholar]
- Oboh, G.; Akindahunsi, A. Nutritional and toxicological evaluation of Saccharomyces cerevisae fermented cassava flour. J. Food Compos. Anal. 2005, 18, 731–738. [Google Scholar] [CrossRef]
- Oboh, G.; Oladunmoye, M. Biochemical changes in micro-fungi fermented cassava flour produced from low-and medium-cyanide variety of cassava tubers. Nutr. Health 2007, 18, 355–367. [Google Scholar] [CrossRef]
- Sulistyo, J.; Shya, L.J.; Mamat, H.; Wahab, N.A. Nutritional value of fortified cassava flour prepared from modified cassava flour and fermented protein hydrolysates. In Proceedings of the 4th International Conference of Biological Sciences, Yogyakarta, Indonesia, 18–19 September 2015; p. 020030. [Google Scholar]
- Wahyuni, S. Physico-chemical properties of Wikau maombo flour from cassava (Manihot esculenta Crantz). J. Food Meas. Charact. 2017, 11, 329–336. [Google Scholar] [CrossRef]
- Chukwuemeka, O.C. Effect of process modification on the physio-chemical and sensory quality of fufu-flour and dough. Afr. J. Biotechnol. 2007, 6, 1949–1953. [Google Scholar]
- Rodríguez-Sandoval, E.; Fernández-Quintero, A.; Cuvelier, G.; Relkin, P.; Bello-Pérez, L.A. Starch retrogradation in cassava flour from cooked parenchyma. Starch-Stärke 2008, 60, 174–180. [Google Scholar] [CrossRef]
- Murayama, D.; Kasano, M.; Santiago, D.M.; Yamauchi, H.; Koaze, H. Effect of pre-gelatinization on the physicochemical properties of dry flours produced from 5 cassava varieties of the Philippines. Food Sci. Technol. Res. 2014, 20, 1131–1140. [Google Scholar] [CrossRef] [Green Version]
- Uchechukwu-Agua, A.D.; Caleb, O.J.; Manley, M.; Opara, U.L. Effects of storage conditions and duration on physicochemical and microbial quality of the flour of two cassava cultivars (TME 419 and UMUCASS 36). CyTA-J. Food 2015, 13, 635–645. [Google Scholar] [CrossRef] [Green Version]
- Opara, U.L.; Caleb, O.J.; Uchechukwu-Agua, A.D. Evaluating the impacts of selected packaging materials on the quality attributes of cassava flour (cvs. TME 419 and UMUCASS 36). J. Food Sci. 2016, 81, C324–C331. [Google Scholar] [CrossRef] [PubMed]
- Charoenkul, N.; Uttapap, D.; Pathipanawat, W.; Takeda, Y. Physicochemical characteristics of starches and flours from cassava varieties having different cooked root textures. LWT-Food Sci. Technol. 2011, 44, 1774–1781. [Google Scholar] [CrossRef]
- Moorthy, S.; Wenham, J.E.; Blanshard, J.M. Effect of solvent extraction on the gelatinisation properties of flour and starch of five cassava varieties. J. Sci. Food Agric. 1996, 72, 329–336. [Google Scholar] [CrossRef]
- Niba, L.; Bokanga, M.; Jackson, F.; Schlimme, D.; Li, B. Physicochemical properties and starch granular characteristics of flour from various Manihot esculenta (cassava) genotypes. J. Food Sci. 2002, 67, 1701–1705. [Google Scholar] [CrossRef]
- Tonukari, N.J. Cassava and the future of starch. Electron. J. Biotechnol. 2004, 7, 5–8. [Google Scholar] [CrossRef]
- Taiwo, K.A. Utilization potentials of cassava in Nigeria: The domestic and industrial products. Food Rev. Int. 2006, 22, 29–42. [Google Scholar] [CrossRef]
- Uchechukwu-Agua, A.D.; Caleb, O.J.; Opara, U.L. Postharvest handling and storage of fresh cassava root and products: A review. Food Bioprocess Technol. 2015, 8, 729–748. [Google Scholar] [CrossRef]
- Jekayinfa, S.; Olajide, J. Analysis of energy usage in the production of three selected cassava-based foods in Nigeria. J. Food Eng. 2007, 82, 217–226. [Google Scholar] [CrossRef]
- Olaoye, O.A.; Ade-Omowaye, B.I. Composite flours and breads: Potential of local crops in developing countries. In Flour and Breads and Their Fortification in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2011; pp. 183–192. [Google Scholar]
- Iwuoha, C.; Ezumba, C.; Nnadozie, C. Effect of steaming on the proximate composition and physico-chemical properties of fufu flour made from two cassava varieties (Manihot esculenta Crantz and Manihot palmata, Muell). Niger. Food J. 2003, 21, 54–61. [Google Scholar]
- Tomlins, K.; Sanni, L.; Oyewole, O.; Dipeolu, A.; Ayinde, I.; Adebayo, K.; Westby, A. Consumer acceptability and sensory evaluation of a fermented cassava product (Nigerian fufu). J. Sci. Food Agric. 2007, 87, 1949–1956. [Google Scholar] [CrossRef]
- Jumah, A.; Dipeolu, A.O.; Ayinde, I.A.; Adebayo, K. An LA-AIDS analysis of cassava food products demand in Lagos. J. Dev. Areas 2008, 41, 109–117. [Google Scholar] [CrossRef]
- Jumah, A.; Johnson, P.N.T.; Quayson, E.T.; Tortoe, C.; Oduro-Yeboah, C. Market testing of a major cassava flour product in the Accra metropolitan area. Int. J. Consum. Stud. 2008, 32, 687–691. [Google Scholar] [CrossRef]
- Adebayo-Oyetoro, A.; Oyewole, O.; Obadina, A.; Omemu, M. Microbiological safety assessment of fermented cassava flour “lafun” available in Ogun and Oyo states of Nigeria. Int. J. Food Sci. 2013, 2013, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bamidele, O.P.; Fasogbon, M.B.; Oladiran, D.A.; Akande, E.O. Nutritional composition of fufu analog flour produced from Cassava root (Manihot esculenta) and Cocoyam (Colocasia esculenta) tuber. Food Sci. Nutr. 2015, 3, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Lim, T. Manihot esculenta. In Edible Medicinal and Non-Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2016; pp. 308–353. [Google Scholar]
- Taiwo, K.; Gbadamosi, S.; Izevbekhai, E.; Famuwagun, A.; Ajani, R.; Akanbi, C. Influence of Drying Methods and Soaking Media on Lafun Processed from Cassava Chips. Curr. J. Appl. Sci. Technol. 2016, 16, 1–14. [Google Scholar] [CrossRef]
- Sira, E.E.P.; Amaiz, M.L.; González, Z.; Tovar, J. Production and characterization of cassava (Manihot esculenta Crantz) flours using different thermal treatments. Interciencia 2007, 32, 615–619. [Google Scholar]
- Silva, D.; Santos, J.; Ferreira, E.; Silva, A.; França, A.; Sediyama, T. Manejo de plantas daninhas na cultura da mandioca. Planta Daninha 2012, 30, 901–910. [Google Scholar] [CrossRef] [Green Version]
- Chisté, R.C.; Cardoso, J.M.; Silva, D.A.d.; Pena, R.d.S. Hygroscopic behaviour of cassava flour from dry and water groups. Ciência Rural 2015, 45, 1515–1521. [Google Scholar] [CrossRef] [Green Version]
- Sajeev, M.S.; Sreekumar, J.; Unnikrishnan, M.; Moorthy, S.; Shanavas, S. Kinetics of thermal softening of cassava tubers and rheological modeling of the starch. J. Food Sci. Technol. 2010, 47, 507–518. [Google Scholar] [CrossRef] [Green Version]
- Manano, J.; Ogwok, P.; Byarugaba-Bazirake, G.W. Chemical composition of major cassava varieties in Uganda, targeted for industrialisation. J. Food Res. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Maziya-Dixon, B.; Dixon, A.G.; Adebowale, A.R.A. Targeting different end uses of cassava: Genotypic variations for cyanogenic potentials and pasting properties. Int. J. Food Sci. Technol. 2007, 42, 969–976. [Google Scholar] [CrossRef]
- Eleazu, C.; Eleazu, K. Determination of the proximate composition, total carotenoid, reducing sugars and residual cyanide levels of flours of 6 new yellow and white cassava (Manihot esculenta Crantz) varieties. Am. J. Food Technol. 2012, 7, 642–649. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.A.; De Carvalho, M.L.; Nutti, R.M.; De Carvalho, L.J.; Fukuda, W.G. Assessment and degradation study of total carotenoid and ß-carotene in bitter yellow cassava (Manihot esculenta Crantz) varieties. Embrapa Agroindústria Aliment.-Artig. Em Periódico Indexado (ALICE) 2010, 4, 148–155. [Google Scholar]
- Rodríguez-Sandoval, E.; Fernández-Quintero, A.; Sandoval-Aldana, A.; Cuvelier, G. Effect of processing conditions on the texture of reconstituted cassava dough. Braz. J. Chem. Eng. 2008, 25, 713–722. [Google Scholar] [CrossRef] [Green Version]
- Steinkraus, K. Handbook of Indigenous Fermented Foods, Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Aro, S. Improvement in the nutritive quality of cassava and its by-products through microbial fermentation. Afr. J. Biotechnol. 2008, 7, 4789–4797. [Google Scholar]
- Oboh, G.; Akindahunsi, A.; Oshodi, A. Aflatoxin and moisture content of micro-fungi. Appl. Trop. Agric. 2000, 5, 154–157. [Google Scholar]
- Omolola, A.O.; Kapila, P.F.; Anyasi, T.A.; Jideani, A.I.O.; McHau, G.A. Optimization of Color and Thermal Properties of Sweet Cassava (Manihot esculenta Crantz Var. UVLNR 0005) Flour Using Response Surface Methodology. Asian J. Agric. Res. 2017, 11, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Eduardo, M.; Svanberg, U.; Oliveira, J.; Ahrné, L. Effect of cassava flour characteristics on properties of cassava-wheat-maize composite bread types. Int. J. Food Sci. 2013, 2013, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oladunmoye, O.; Akinoso, R.; Olapade, A. Evaluation of some physical–chemical properties of wheat, cassava, maize and cowpea flours for bread making. J. Food Qual. 2010, 33, 693–708. [Google Scholar] [CrossRef]
- Chisenga, S.M.; Workneh, T.S.; Bultosa, G.; Laing, M. Proximate composition, cyanide contents, and particle size distribution of cassava flour from cassava varieties in Zambia. AIMS Agric. Food 2019, 4, 869. [Google Scholar] [CrossRef]
- Sahin, S.; Sumnu, S.G. Physical Properties of Foods; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Available online: https://books.google.co.za/books?id=v854Fu2D7VUC&lpg=PA1&ots=FzqVCs8llo&dq=Sahin%2C%20S.%3B%20Sumnu%2C%20S.G.%20Physical%20Properties%20of%20Foods%3B%20Springer%20Science%20%26%20Business%20Media%3A%20&lr&pg=PA1#v=onepage&q&f=false (accessed on 13 September 2020).
- Lépiz-Aguilar, L.; Rodríguez-Rodríguez, C.E.; Arias, M.L.; Lutz, G. Acetone-Butanol-Ethanol (ABE) production in fermentation of enzymatically hydrolyzed cassava flour by Clostridium beijerinckii BA101 and solvent separation. J. Microbiol. Biotechnol. 2013, 23, 1092–1098. [Google Scholar] [CrossRef] [Green Version]
- Jisha, S.; Padmaja, G.; Moorthy, S.; Rajeshkumar, K. Pre-treatment effect on the nutritional and functional properties of selected cassava-based composite flours. Innov. Food Sci. Emerg. Technol. 2008, 9, 587–592. [Google Scholar] [CrossRef]
- Jisha, S.; Padmaja, G.; Sajeev, M. Nutritional and textural studies on dietary fiber-enriched muffins and biscuits from cassava-based composite flours. J. Food Qual. 2010, 33, 79–99. [Google Scholar] [CrossRef]
- Ogiehor, I.; Ikenebomeh, M. The effects of different packaging materials on the shelf stability of garri. Afr. J. Biotechnol. 2006, 23, 2412–2416. [Google Scholar]
- Opara, U.L.; Al-Ani, M.R. Effects of cooking methods on carotenoids content of Omani kingfish (Scomeberomorus commerson L.). Br. Food J. 2010, 112, 811–820. [Google Scholar] [CrossRef]
- Cazumbá da Silva, Í.R.; Cardoso, R.d.C.V.; Góes, J.Â.W.; Druzian, J.I.; Vidal Júnior, P.O.; de Andrade, A.C.B. Food safety in cassava “flour houses” of Copioba Valley, Bahia, Brazil: Diagnosis and contribution to geographical indication. Food Control 2017, 72, 97–104. [Google Scholar] [CrossRef]
- Oyewole, O.B.; Sanni, L. Constraints in Traditional Cassava Processing: The Case of” FUFU” Production= Les Contraintes au Cours de la Transformation Traditionnelle du Manioc: Le cas de la Production de Foufou; Agbor-Egbe, T., Brauman, A., Griffon, D., Treche, S., Eds.; CIAT: Cali, Columbia, 1995; pp. 523–529. [Google Scholar]
- Gacheru, P.; Abong, G.; Okoth, M.; Lamuka, P.; Shibairo, S.; Katama, C. Microbiological safety and quality of dried cassava chips and flour sold in the Nairobi and coastal regions of Kenya. Afr. Crop Sci. J. 2016, 24, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Steenkamp, V.; McCrindle, C. Production, consumption and nutritional value of cassava (Manihot esculenta, Crantz) in Mozambique: An overview. J. Agric. Biotechnol. Sustain. Dev. 2014, 6, 29–38. [Google Scholar]
- Dada, O.A.; Oworu, O.O. Mineral and nutrient leaf composition of two cassava (Manihot esculenta Crantz) cultivars defoliated at varying phenological phases. Not. Sci. Biol. 2010, 2, 44–48. [Google Scholar] [CrossRef] [Green Version]
- El-Sharkawy, M.A. Physiological characteristics of cassava tolerance to prolonged drought in the tropics: Implications for breeding cultivars adapted to seasonally dry and semiarid environments. Braz. J. Plant Physiol. 2007, 19, 257–286. [Google Scholar] [CrossRef]
- Briani, C.; Samaroo, D.; Alaedini, A. Celiac disease: From gluten to autoimmunity. Autoimmun. Rev. 2008, 7, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Torbica, A.; Hadnađev, M.; Dapčević, T. Rheological, textural and sensory properties of gluten-free bread formulations based on rice and buckwheat flour. Food Hydrocoll. 2010, 24, 626–632. [Google Scholar] [CrossRef]
- Nugent, A.P. Health properties of resistant starch. Nutr. Bull. 2005, 30, 27–54. [Google Scholar] [CrossRef]
- Alobo, A.; Arueya, G. Physical, functional and chemical properties of Grewia venusta (Ururu) mucilage extract. Int. Food Res. J. 2017, 24, 2107–2115. [Google Scholar]
- Olatunde, S.J.; Oyeyinka, S.A.; Adetola, R.O.; Oyeyinka, A.T.; Owolabi, T. Physicochemical properties of pro-vitamin A cassava-wheat composite flour biscuit. Hrana U Zdr. I Boles. Znan.-Stručni Časopis Za Nutr. I Dijetetiku 2016, 5, 20–26. [Google Scholar]
- Abidin, A.Z.; Devi, C.; Adeline, A. Development of wet noodles based on cassava flour. J. Eng. Technol. Sci. 2013, 45, 97–111. [Google Scholar] [CrossRef] [Green Version]
- Falade, K.O.; Akingbala, J.O. Improved Nutrition and National Development through the Utilization of Cassava in Baked Foods. Available online: http://www.iufost.org/publications/books/documents/Chapter10FaladeAkingbala.pdf (accessed on 30 March 2020).
- Purwadi, R.; Teguh, C.; Mazaya, D. Fermented cassava as an alternative flour for pasta noodle. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Lisbon, Portugal, 23–25 June 2021; p. 012042. [Google Scholar]
- Abass, A.; Awoyale, W.; Alenkhe, B.; Malu, N.; Asiru, B.; Manyong, V.; Sanginga, N. Can food technology innovation change the status of a food security crop? A review of cassava transformation into “bread” in Africa. Food Rev. Int. 2018, 34, 87–102. [Google Scholar] [CrossRef]
- Ferraro, V.; Piccirillo, C.; Tomlins, K.; Pintado, M.E. Cassava (Manihot esculenta Crantz) and yam (Dioscorea spp.) crops and their derived foodstuffs: Safety, security and nutritional value. Crit. Rev. Food Sci. Nutr. 2016, 56, 2714–2727. [Google Scholar] [CrossRef] [PubMed]
- Parmar, A.; Sturm, B.; Hensel, O. Crops that feed the world: Production and improvement of cassava for food, feed, and industrial uses. Food Secur. 2017, 9, 907–927. [Google Scholar] [CrossRef]
- Obadina, A.; Oyewole, O.; Olaniyi, G. Effect of baking improvers on the quality of whole cassava biscuits. J. Food Sci. Technol. 2014, 51, 2803–2808. [Google Scholar] [CrossRef] [Green Version]
- Akubor, P.; Ukwuru, M. Functional properties and biscuit making potential of soybean and cassava flour blends. Plant Foods Hum. Nutr. 2003, 58, 1–12. [Google Scholar] [CrossRef]
- Thomas, O.O. The Effect of Soybean Pre-Treatment on The Sensory Properties of Cassava-Soy Flour Biscuit. Master’s Thesis, Department of Food Science and Technology, College of Food Science and Human Ecology, Federal University of Agriculture, Abeokuta, Nigeria, 2012. [Google Scholar]
- Nwabueze, T.U.; Anoruoh, G.A. Evaluation of flour and extruded noodles from eight cassava mosaic disease (CMD)-resistant varieties. Food Bioprocess Technol. 2011, 4, 80–91. [Google Scholar] [CrossRef]
- Maziya-Dixon, B.; Alamu, E.O.; Popoola, I.O.; Yomeni, M. Nutritional and sensory properties: Snack food made from high-quality cassava flour and legume blend. Food Sci. Nutr. 2017, 5, 805–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owuamanam, C.; Ogueke, C.; Ihediohanma, N.; Omeire, G.; Omeni, C. Blending of acetylated cassava starch, cassava flour and wheat flour for composite in bread making. Br. J. Appl. Sci. Technol. 2015, 10, 1–9. [Google Scholar] [CrossRef]
- Nwosu, J.N.; Owuamanam, C.; Omeire, G.; Eke, C. Quality parameters of bread produced from substitution of wheat flour with cassava flour using soybean as an improver. Am. J. Res. Commun. 2014, 2, 99–118. [Google Scholar]
- Eddy, N.; Udofia, P.; Eyo, D. Sensory evaluation of wheat/cassava composite bread and effect of label information on acceptance and preference. Afr. J. Biotechnol. 2007, 6. [Google Scholar] [CrossRef]
- Shittu, T.; Dixon, A.; Awonorin, S.; Sanni, L.O.; Maziya-Dixon, B. Bread from composite cassava–wheat flour. II: Effect of cassava genotype and nitrogen fertilizer on bread quality. Food Res. Int. 2008, 41, 569–578. [Google Scholar] [CrossRef]
- Shittu, T.; Raji, A.; Sanni, L. Bread from composite cassava-wheat flour: I. Effect of baking time and temperature on some physical properties of bread loaf. Food Res. Int. 2007, 40, 280–290. [Google Scholar] [CrossRef]
- Shittu, T.A.; Aminu, R.A.; Abulude, E.O. Functional effects of xanthan gum on composite cassava-wheat dough and bread. Food Hydrocoll. 2009, 23, 2254–2260. [Google Scholar] [CrossRef]
- Aboaba, O.; Obakpolor, E. The leavening ability of bakers’ yeast on dough prepared with composite flour (Wheat/Cassava). Afr. J. Food Sci. 2010, 4, 325–329. [Google Scholar]
- Oladunmoye, O.O.; Ojo, A.; Akinoso, R.; Akanbi, C.T. Thermo-physical properties of composite bread dough with maize and cassava flours. Int. J. Food Sci. Technol. 2010, 45, 587–593. [Google Scholar] [CrossRef]
- Adeboye, A.; Babajide, J.; Shittu, T.; Omemu, A.; Oluwatola, O. Effect of honey as partial sugar substitute on pasting properties, consumer preference and shelf stability of cassava-wheat composite bread. Niger. Food J. 2013, 31, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, E.; Koch, K.; Akonor, P.; Oduro-Yeboah, C. Evaluation of the Physical and Sensory Characteristics of Bread Produced from Three Varieties of Cassava and Wheat Composite Flours. 2014. Available online: http://hdl.handle.net/123456789/543 (accessed on 22 July 2021).
- Jensen, S.; Skibsted, L.H.; Kidmose, U.; Thybo, A.K. Addition of cassava flours in bread-making: Sensory and textural evaluation. LWT-Food Sci. Technol. 2015, 60, 292–299. [Google Scholar] [CrossRef]
- Alobo, A.P.; Arueya, G.L. Effect of Grewia venusta fresen mucilage on the proximate composition, physical and Sensory properties of bread produced from wheat and cassava composite flours. Int. J. Food Stud. 2017, 6, 192–200. [Google Scholar] [CrossRef]
- Iwe, M.; Michael, N.; Madu, N.; Obasi, N.; Onwuka, G.; Nwabueze, T. Production and evaluation of bread made from high quality cassava flour (HQCF) and Wheat Flour Blends. Agrotechnology 2017, 6, 166. [Google Scholar]
- Akonor, P.; Tortoe, C.; Buckman, E.; Hagan, L. Proximate composition and sensory evaluation of root and tuber composite flour noodles. Cogent Food Agric. 2017, 3, 1292586. [Google Scholar] [CrossRef]
- Bolade, M.K.; Adeyemi, I.A. Functionality enhancement of composite cassava flour in the production of maize tuwo (a non-fermented maize-based food dumpling). Food Bioprocess Technol. 2012, 5, 1340–1348. [Google Scholar] [CrossRef]
- Akinwande, B.; Ade-Omowaye, B.; Olaniyan, S.; Akintaro, O. Quality evaluation of ginger flavoured soy-cassava biscuit. Nutr. Food Sci. 2008, 38, 473–481. [Google Scholar] [CrossRef]
- Aly, M.M.; Seleem, H.A. Gluten-free flat bread and biscuits production by cassava, extruded soy protein and pumpkin powder. Food Nutr. Sci. 2015, 6, 660. [Google Scholar] [CrossRef] [Green Version]
- Oluwamukomi, M.; Oluwalana, I.; Akinbowale, O. Physicochemical and sensory properties of wheat-cassava composite biscuit enriched with soy flour. Afr. J. Food Sci. 2011, 5, 50–56. [Google Scholar]
- Oluwole, O.; Karim, O. Production of biscuits from Bambara, cassava and wheat flour blends. J. Raw Mater. Res. 2005, 2, 34–38. [Google Scholar]
- Gyedu-Akoto, E.; Laryea, D. Evaluation of cassava flour in the production of cocoa powder-based biscuits. Nutr. Food Sci. 2013, 43, 55–59. [Google Scholar] [CrossRef]
- Ammar, A.; El-Razik, A. Quality characteristics of gluten free cake produced from cassava, pumpkin and potato flours. J. Food Dairy Sci. 2013, 4, 401–412. [Google Scholar] [CrossRef]
- Olapade, A.A.; Adeyemo, M.A. Evaluation of cookies produced from blends of wheat, cassava and cowpea flours. Int. J. Food Stud. 2014, 3. [Google Scholar] [CrossRef]
Types of Cassava Flour | CHO (%) | Protein (%) | Fat (%) | Ash (%) | Fiber (%) | Moisture (%) | HCN (mg/kg) | Dextrose Equivalent | Total Sugars | Water Activity (aw) | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
Native or unmodified | 82.09 | 1.14 | 0.93 | 2.30 | 2.19 | 11.49 | 7.75 | 2.00 | [62] | ||
Modified (enzymatically) | 88.80 | 2.19 | 0.78 | 1.44 | 1.60 | 5.80 | 3.88 | 2.50 | |||
Fortified (fermented with protein hydrosylates) | 85.40 | 11.26 | 0.75 | 1.51 | 1.61 | 6.44 | 2.50 | 3.30 | |||
Pre-gelatinized | 64.10–75.31 | 1.19–1.42 | 0.38–0.60 | 1.89–3.28 | Nd | 8.46–9.76 | - | - | - | - | [66] |
Dry milled, ungelatinized, and unfermented | 72.99–78.76 | 1.31–1.98 | 0.48–1.03 | 2.13–3.36 | - | 10.57–11.66 | - | - | - | - | |
Water group | 68.32 | 1.10 | 1.04 | 0.75 | 8.28 | - | - | 0.42 | 0.45 | [87] | |
Dry group | 76.57 | 0.52 | 0.26 | 0.83 | 9.17 | - | - | 1.10 | 0.53 |
Flour Composition | Food Product | Level of CF Inclusion (%) | Key Findings | References |
---|---|---|---|---|
Pro-vitamin A CF and wheat flour | Biscuit | 10–40 | Fat and protein contents of biscuit decreased with increasing proportions of pro-vitamin A CF. Overall acceptability of 10% CF inclusion was same as 100% wheat flour. | [117] |
CF with improvers (ascorbic acid, sodium metabisulphite, sorbic acid, and soy flour) | Whole cassava biscuit | 100 | Slight decrease in mixing time, extrusion time, length, and width of the biscuits. | [124] |
CF and soybean flour | Biscuit | 50 | No significant differences in color, texture, flavor, taste, and overall acceptability of the flour-blend biscuits. | [125,126] |
CF (roasted, sun-dried, and fermented), wheat, and maize | Bread | 20–40 | Type of CF influenced product quality. For example, roasted CF yielded the highest bread volume. | [98] |
CF | Noodles | 100 | CF could serve as a good substitute for wheat flour in noodle production and utilization. | [127] |
HQCF and soybean; HQCF and cowpea | Fried snack | 50 | Soy variant of the snack contained significantly higher protein than the cowpea variant. Product was acceptable to panelist. | [128] |
Malted and pre-gelatinized CF with cereal and or legume bran | Muffins and biscuits | 70 | Pre-gelatinization and malting improved the functionality of CF. | [104] |
HQCF, acetylated cassava starch and wheatHQCF, acetylated cassava starch and wheat | Bread | 7–32 | Increasing component of CF in the blends was found to mask the undesirable influence of acetylated starch on the functional and physical properties of bread. | [129] |
CF, wheat, maize, and cowpea | Bread | 5–30 | Bread with up to 10% CF inclusion was acceptable by sensory panelist. | [99] |
CF, wheat, and malted soybean | Bread | 10–90 | The loaf volume, specific loaf volume, and oven spring reduced appreciably as the substitution with CF increased. It was recommended that CF be substituted for wheat flour up to 30%, using malted soybean flour as an improver. | [130] |
CF and wheat | Bread | 10–50 | CF can serve as a good substitute for wheat flour in bread making. | [131,132,133,134,135,136,137,138,139,140,141] |
CF and wheat | Noodles | 50–100 | Cassava–wheat composite flour noodles showed promising results, with their acceptability closely following the acceptability of commercial noodles used as control. | [118,142] |
Unfermented, dry milled CF and maize | Tuwo (a non-fermented maize-based dumpling) | 5–30 | Cohesiveness indices increased with an increase in the quantity of CF. | [143] |
HQCF and soy flour | Ginger-flavoured soy-cassava biscuit | 60–100 | Sensory evaluation confirmed positive acceptability of the product. | [144] |
CF, rice flour, extruded protein concentrate, and pumpkin powder | Gluten-free flatbread and biscuits | Approximately 50 | CF could serve as base flour for gluten-free baked products. | [145] |
CF, wheat, and soy flour | Biscuit | 10–70 | No significant difference in overall acceptability between biscuit from the control (100% wheat flour) and the composite flours of up to 40% cassava substitution level. | [146] |
CF, Bambara, and wheat | Biscuit | 35–90 | [147] | |
CF and cocoa powder | Cocoa-powder-based biscuits | 20–100 | Use of 100% CF could not form dough for biscuit production. Biscuits with 20% CF were found to be most acceptable. | [148] |
CF, pumpkin, and potato | Gluten-free cake | Approximately 35 | The flour mix (1:1:1) produced gluten-free cake samples with good nutritional values, cake volume, high freshness, and acceptable sensory properties. | [149] |
CF, wheat, and cowpea | Cookies | 35–80 | Cookies from composite flours were not significantly (p > 0.05) different from the control in overall acceptability. | [150] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udoro, E.O.; Anyasi, T.A.; Jideani, A.I.O. Process-Induced Modifications on Quality Attributes of Cassava (Manihot esculenta Crantz) Flour. Processes 2021, 9, 1891. https://doi.org/10.3390/pr9111891
Udoro EO, Anyasi TA, Jideani AIO. Process-Induced Modifications on Quality Attributes of Cassava (Manihot esculenta Crantz) Flour. Processes. 2021; 9(11):1891. https://doi.org/10.3390/pr9111891
Chicago/Turabian StyleUdoro, Elohor Oghenechavwuko, Tonna Ashim Anyasi, and Afam Israel Obiefuna Jideani. 2021. "Process-Induced Modifications on Quality Attributes of Cassava (Manihot esculenta Crantz) Flour" Processes 9, no. 11: 1891. https://doi.org/10.3390/pr9111891
APA StyleUdoro, E. O., Anyasi, T. A., & Jideani, A. I. O. (2021). Process-Induced Modifications on Quality Attributes of Cassava (Manihot esculenta Crantz) Flour. Processes, 9(11), 1891. https://doi.org/10.3390/pr9111891