Modeling CO2, H2S, COS, and CH3SH Simultaneous Removal Using Aqueous Sulfolane–MDEA Solution
Abstract
:1. Introduction
2. Model Theory
2.1. Thermodynamic Framework
2.1.1. Gas–Liquid Equilibrium
2.1.2. Aqueous Phase Chemical Equilibrium
2.2. Rate-Based Model Assumptions
2.3. Material and Energy Balance
2.4. Mass Transfer and Enhancement Factor
2.5. Computational Implementation
3. Modeling Results
3.1. Thermodynamics Model Validation
3.2. Rate-Based Absorption Model Validation
3.3. Rate-Based Absorption Model Calculation
3.4. The Influence of the Operating Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
P | system pressure | Pa |
yi | mole fraction of component i in the vapor phase | - |
xi | mole fraction of component i in the liquid phase | - |
Hi | Henry’s law constant of component i | Pa m3/mol |
φi | fugacity coefficient of component i in the vapor phase | - |
γi* | unsymmetric activity coefficient in the mixed solvent solution | - |
wA | weighting factor | - |
γ∞ | infinite dilution activity coefficient | - |
HiA | Henry’s constant of component i in pure solvent A | Pa m3/mol |
HCH3SH | Henry’s constants of CH3SH considering the influence of acid gas | Pa m3/mol |
HCH3SH’ | Henry’s constants of CH3SH ignoring the influence of acid gas | Pa m3/mol |
f | unremoved rate of MDEA | |
c | effect factor | |
K | chemical equilibrium constant | |
F | mole flow rate of feed | kmol/s |
L | mole flow rate of liquid | kmol/s |
V | mole flow rate of liquid | kmol/s |
N | mole transfer rate | kmol/s |
Q | heat input | J/s |
q | heat transfer rate | J/s |
HF | enthalpy of feed | J/kmol |
HV | enthalpy of the vapor | J/kmol |
HL | enthalpy of the liquid | J/kmol |
KG | overall mass transfer coefficient | kmol/m2 s kPa |
Pi* | partial pressure of component i in equilibrium with the liquid phase | - |
Pi | partial pressure of component i in the gas bulk | - |
ap | effective mass transfer area of the column per unit area of the tray | m2/m2 |
Ac | cross-sectional area of the column | m2 |
kG | mass transfer coefficient without reaction in the gas phase | kmol/m2 s kPa |
kL | mass transfer coefficient without reaction in the liquid phase | m/s |
E | enhancement factor | - |
Ha | Hatta number | - |
E∞ | enhancement number for infinite fast reactions | - |
DL | diffusivity in an aqueous sulfolane–MDEA solution | m2/s |
CIn | concentration at the gas–liquid interface | kmol/m3 |
CBulk | concentration in the bulk liquid | kmol/m3 |
k2t | rate constant | m3/kmol s |
T | temperature | K |
Subscripts | ||
i | component i | |
i’ | product i’ | |
j | stage number | |
Superscripts | ||
L | liquid phase | |
V | vapor phase |
References
- Bolhàr-Nordenkampf, M.; Friedl, A.; Koss, U.; Tork, T. Modelling selective H2S absorption and desorption in an aqueous MDEA-solution using a rate-based non-equilibrium approach. Chem. Eng. Process. 2004, 43, 701–715. [Google Scholar] [CrossRef]
- Baccanelli, M.; Langé, S.; Rocco, M.V.; Pellegrini, L.A.; Colombo, E. Low temperature techniques for natural gas purification and LNG production: An energy and exergy analysis. Appl. Energy 2016, 180, 546–559. [Google Scholar] [CrossRef]
- Song, C.; Liu, Q.; Ji, N.; Deng, S.; Zhao, J.; Kitamura, Y. Natural gas purification by heat pump assisted MEA absorption process. Appl. Energy 2017, 204, 353–361. [Google Scholar] [CrossRef]
- Shirazizadeh, H.A.; Haghtalab, A. Simultaneous solubility measurement of (ethyl mercaptan plus carbon dioxide) into the aqueous solutions of (N-methyl diethanolamine plus sulfolane plus water). J. Chem. Thermodyn. 2019, 133, 111–122. [Google Scholar] [CrossRef]
- Amararene, F.; Bouallou, C. Kinetics of carbonyl sulfide (COS) absorption with aqueous solutions of diethanolamine and methyldiethanolamine. Ind. Eng. Chem. Res. 2004, 43, 6136–6141. [Google Scholar] [CrossRef]
- Huttenhuis, P.J.G.; Agrawal, N.J.; Versteeg, G.F. Solubility of carbon dioxide and hydrogen sulfide in aqueous N-methyldiethanolamine solutions. Ind. Eng. Chem. Res. 2009, 48, 4051–4059. [Google Scholar] [CrossRef]
- Gutierrez, J.P.; Benitez, L.A.; Ale Ruiz, E.L.; Erdmann, E. A sensitivity analysis and a comparison of two simulators performance for the process of natural gas sweetening. J. Nat. Gas Sci. Eng. 2016, 31, 800–807. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Y.W.; Otto, F.D.; Mather, A.E. The physicochemical properties of the mixed-solvent of 2-piperidineethanol, sulfolane and water. J. Chem. Technol. Biotechnol. 1993, 56, 309–316. [Google Scholar] [CrossRef]
- Amararene, F.; Bouallou, C. Study of hydrogen sulfide absorption with diethanolamine in methanolic aqueous solutions. Chem. Eng. Trans. 2016, 52, 259–264. [Google Scholar]
- Zhang, Y.; Chen, C.-C. Thermodynamic modeling for CO2 absorption in aqueous MDEA solution with electrolyte NRTL model. Ind. Eng. Chem. Res. 2011, 50, 163–175. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, C.-C. Modeling Gas Solubilities in the Aqueous Solution of Methyldiethanolamine. Ind. Eng. Chem. Res. 2011, 50, 6436–6446. [Google Scholar] [CrossRef]
- Austgen, D.M.; Rochelle, G.T.; Peng, X.; Chen, C.C. Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems using the electrolyte-NRTL equation. Ind. Eng. Chem. Res. 1989, 28, 1060–1073. [Google Scholar] [CrossRef]
- Zong, L.; Chen, C.-C. Thermodynamic modeling of CO2 and H2S solubilities in aqueous DIPA solution, aqueous sulfolane-DIPA solution, and aqueous sulfolane–MDEA solution with electrolyte NRTL model. Fluid Phase Equilibria 2011, 306, 190–203. [Google Scholar] [CrossRef]
- Macgregor, R.J.; Mather, A.E. Equilibrium solubility of H2S and CO2 and their mixtures in a mixed solvent. Can. J. Chem. Eng. 1991, 69, 1357–1366. [Google Scholar] [CrossRef]
- Jou, F.Y.; Mather, A.E.; Ng, H.J. Effect of CO2 and H2S on the solubility ofmethanethiol in an aqueous methyldiethanolamine solution. Fluid Phase Equilibria 1999, 158–160, 933–938. [Google Scholar] [CrossRef]
- Haghtalab, A.; Eghbali, H.; Shojaeian, A. Experiment and modeling solubility of CO2 in aqueous solutions of diisopropanolamine+2-amino-2-methyl-1-propanol+Piperazine at high pressures. J. Chem. Thermodyn. 2014, 71, 71–83. [Google Scholar] [CrossRef]
- Kaur, H.; Chen, C.-C. Thermodynamic modeling of CO2 absorption in aqueous potassium carbonate solution with electrolyte NRTL model. Fluid Phase Equilibria 2020, 505, 112339–112350. [Google Scholar] [CrossRef]
- Simon, L.L.; Elias, Y.; Puxty, G.; Artanto, Y.; Hungerbuhler, K. Rate based modeling and validation of a carbon-dioxide pilot plant absorbtion column operating on monoethanolamine. Chem. Eng. Res. Des. 2011, 89, 1684–1692. [Google Scholar] [CrossRef]
- Borhani, T.N.G.; Afkhamipour, M.; Azarpour, A.; Akbari, V.; Emadi, S.H.; Manan, Z.A. Modeling study on CO2 and H2S simultaneous removal using MDEA solution. J. Ind. Eng. Chem. 2016, 34, 344–355. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Chen, C.-C.; Plaza, J.M.; Dugas, R.; Rochelle, G.T. Rate-based process modeling study of CO2 capture with aqueous monoethanolamine solution. Ind. Eng. Chem. Res. 2009, 48, 9233–9246. [Google Scholar] [CrossRef]
- Afkhamipour, M.; Mofarahi, M. Comparison of rate-based and equilibrium-stage models of a packed column for post-combustion CO2 capture using 2-amino-2-methyl-1-propanol (AMP) solution. Int. J. Greenh. Gas Control 2013, 15, 186–199. [Google Scholar] [CrossRef]
- Al-Baghli, N.A.; Pruess, S.A.; Yesavage, V.F.; Selim, M.S. A rate-based model for the design of gas absorbers for the removal of CO2 and H2S using aqueous solutions of MEA and DEA. Fluid Phase Equilibria 2001, 185, 31–43. [Google Scholar] [CrossRef]
- Pacheco, M.A.; Rochelle, G.T. Rate-based modeling of reactive absorption of CO2 and H2S into aqueous methyldiethanolamine. Ind. Eng. Chem. Res. 1998, 37, 4107–4117. [Google Scholar] [CrossRef]
- Mandal, B.; Bandyopadhyay, S.S. Simultaneous absorption of CO2 and H2S into aqueous blends of N-methyldiethanolamine and diethanolamine. Environ. Sci. Technol. 2006, 40, 6076–6084. [Google Scholar] [CrossRef]
- Moioli, S.; Pellegrini, L.A.; Picutti, B.; Vergani, P. Improved rate-based modeling of H2S and CO2 removal by methyldiethanolamine scrubbing. Ind. Eng. Chem. Res. 2013, 52, 2056–2065. [Google Scholar] [CrossRef]
- Yang, C.; Liu, K.; Li, L.; Wang, J.; Hu, T.; Zhang, X. Research on the factors affecting organic sulfur removal of natural gas purification unit. Chem. Eng. Oil Gas 2021, 50, 9–16. [Google Scholar]
- Peng, D.-Y.; Robinson, D.B. A New two-constant equation of state. Ind. Eng. Chem. Fundam. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- Van Ness, H.C.; Abbott, M.M. Vapor-liquid equilibrium. Part VI. standard state fugacities for supercritical components. AIChE J. 1979, 25, 645–653. [Google Scholar] [CrossRef]
- Bedell, S.A.; Miller, M. Aqueous amines as reactive solvents for mercaptan removal. Ind. Eng. Chem. Res. 2007, 46, 3729–3733. [Google Scholar] [CrossRef]
- Shokouhi, M.; Farahani, H.; Vahidi, M.; Taheri, S.A. Experimental solubility of carbonyl sulfide in sulfolane and γ-butyrolactone. J. Chem. Eng. Data 2017, 62, 3401–3408. [Google Scholar] [CrossRef]
- Jou, F.Y.; Deshmukh, R.D.; Otto, F.D.; Mather, A.E. Solubility of H2S, CO2, CH4and C2H6 in sulfolane at elevated pressures. Fluid Phase Equilibria 1990, 56, 313–324. [Google Scholar] [CrossRef]
- Al-Ghawas, H.A.; Ruiz-Ibanez, G.; Sandall, O.C. Absorption of carbonyl sulfide in aqueous methyldiethanolamine. Chem. Eng. Sci. 1989, 44, 631–639. [Google Scholar] [CrossRef]
- Song, Y.H.; Chen, C.C. Symmetric electrolyte nonrandom two-liquid activity coefficient model. Ind. Eng. Chem. Res. 2009, 48, 7788–7797. [Google Scholar] [CrossRef]
- Chen, C.-C.; Britt, H.I.; Boston, J.F.; Evans, L.B. Local composition model for excess Gibbs energy of electrolyte systems. Part I: Single solvent, single completely dissociated electrolyte systems. AIChE J. 1982, 28, 588–596. [Google Scholar] [CrossRef]
- Cleeton, C.; Kvam, O.; Rea, R.; Sarkisov, L.; De Angelis, M.G. Competitive H2S-CO2 absorption in reactive aqueous methyldiethanolamine solution: Prediction with ePC-SAFT. Fluid Phase Equilibria 2020, 511, 112453–112468. [Google Scholar] [CrossRef]
- Austgen, D.M.; Rochelle, G.T.; Chen, C.C. Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems. 2. Representation of hydrogen sulfide and carbon dioxide solubility in aqueous MDEA and carbon dioxide solubility in aqueous mixtures of MDEA with MEA or DEA. Ind. Eng. Chem. Res. 1991, 30, 543–555. [Google Scholar] [CrossRef]
- Hairul, N.A.H.; Shariff, A.M.; Tay, W.H.; Mortel, A.M.A.V.D.; Lau, K.K.; Tan, L.S. Modelling of high pressure CO2 absorption using PZ plus AMP blended solution in a packed absorption column. Sep. Purif. Technol. 2016, 165, 179–189. [Google Scholar] [CrossRef]
- Almoslh, A.; Alobaid, F.; Heinze, C.; Epple, B. Comparison of equilibrium-stage and rate-based models of a packed column for tar absorption using vegetable oil. Appl. Sci. 2020, 10, 2362. [Google Scholar] [CrossRef] [Green Version]
- Treybal, R.E. Adibatic gas absorption and stripping in packed towers. Ind. Eng. Chem. 1969, 61, 36–41. [Google Scholar] [CrossRef]
- Saimpert, M.; Puxty, G.; Qureshi, S.; Wardhaugh, L.; Cousins, A. A new rate based absorber and desorber modelling tool. Chem. Eng. Sci. 2013, 96, 10–25. [Google Scholar] [CrossRef]
- Danckwerts, P.V. Absorption by simultaneous diffusion and chemical reaction. Trans. Faraday Soc. 1950, 46, 300–304. [Google Scholar] [CrossRef]
- DeCoursey, W.J. Enhancement factors for gas absorption with reversible reaction. Chem. Eng. Sci. 1982, 37, 1483–1489. [Google Scholar] [CrossRef]
- Jou, F.-Y.; Carroll, J.J.; Mather, A.E.; Otto, F.D. The solubility of carbon dioxide and hydrogen sulfide in a 35 wt% aqueous solution of methyldiethanolamine. Can. J. Chem. Eng. 1993, 71, 264–268. [Google Scholar] [CrossRef]
- Qian, W.-M.; Li, Y.-G.; Mather, A.E. Correlation and prediction of the solubility of CO2 and H2S in an aqueous solution of methyldiethanolamine and sulfolane. Ind. Eng. Chem. Res. 1995, 34, 2545–2550. [Google Scholar] [CrossRef]
- Sidi-Boumedine, R.; Horstmann, S.; Fischer, K.; Provost, E.; Fürst, W.; Gmehling, J. Experimental determination of hydrogen sulfide solubility data in aqueous alkanolamine solutions. Fluid Phase Equilibria 2004, 218, 149–155. [Google Scholar] [CrossRef]
Solute i | Solvent A | A | B | C | D | Data Source |
---|---|---|---|---|---|---|
CH4 | sulfolane | 26.68 | −1538.38 | 0 | 0.02 | Jou et al. [31] |
CH3SH | H2O | 21.128 | −1299.310 | 0 | 0 | Bedell and Miller [29] |
CH3SH | sulfolane | 12.987 | 0 | 0 | 0 | Bedell and Miller [29] |
COS | H2O | 27.402 | −2407.192 | 0 | 0 | Al-Ghawas et al. [32] |
COS | MDEA | 19.323 | −603.363 | 0 | 0 | Al-Ghawas et al. [32] |
COS | sulfolane | 11.004 | 0.170 | 0 | 0.015 | Shokouhi et al. [30] |
Reaction | A | B/T | C | D/K−1 | T Range/K | Source |
---|---|---|---|---|---|---|
4 | 819.8 | −37655.9 | −124.5 | 0 | 273–498 | In this Work a |
5 | −553.4 | 28412.7 | 77.7 | 0 | 273–423 | In this Work a |
6 | −9.4165 | −4234.98 | 0 | 0 | 298–333 | Austgen et al. [36] |
7 | −32.0 | −3338.0 | 0 | 0 | 287–343 | Austgen et al. [36] |
8 | 216.049 | −12431.7 | −35.4819 | 0 | 273–498 | Austgen et al. [36] |
9 | 132.899 | −13445.9 | −22.4773 | 0 | 273–498 | Austgen et al. [36] |
Experimental No. | Number of Plates | Overflow Weir Height (m) | Inlet Gas Flow Rate (104 Nm3/d) | Inlet Gas-Liquid Ratio (vol/vol) | Pressure (Mpa) | Inlet Gas Loading H2S (vol.%) | Inlet Gas Loading CO2 (vol.%) | CH3SH Concentration (mg/m3) | COS Concentration (mg/m3) | Experimental Removal Efficiency (%) | Simulated Removal Efficiency (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CO2 | COS | CH3SH | CO2 | COS | CH3SH | ||||||||||
1 | 26 | 0.15 | 384.0 | 490.2 | 6.14 | 1.49 | 4.26 | 15.53 | 12.33 | 74.1 | 82.9 | 76.9 | 76.4 | 80.2 | 70.7 |
2 | 26 | 0.15 | 417.0 | 568.4 | 6.14 | 1.44 | 4.17 | 15.62 | 14.64 | 70.4 | 79.2 | 61.9 | 72.6 | 78.3 | 62.8 |
3 | 26 | 0.15 | 446.0 | 608.6 | 6.13 | 1.41 | 4.32 | 15.53 | 11.18 | 73.3 | 78.0 | 56.3 | 73.1 | 78.4 | 58.1 |
4 | 30 | 0.15 | 535.2 | 614.3 | 6.20 | 1.55 | 4.62 | 22.42 | 32.53 | 73.4 | 79.4 | 57.7 | 73.4 | 80.3 | 58.6 |
5 | 26 | 0.15 | 458.0 | 622.8 | 6.13 | 1.41 | 4.31 | 15.75 | 13.78 | 76.6 | 76.6 | 53.9 | 72.6 | 78.1 | 56.8 |
6 | 26 | 0.15 | 553.0 | 645.4 | 6.11 | 1.49 | 4.73 | 20.20 | 41.18 | 69.7 | 81.1 | 56.8 | 70.3 | 76.5 | 54.0 |
7 | 30 | 0.15 | 553.4 | 655.1 | 6.44 | 1.57 | 4.58 | 25.41 | 34.58 | 74.8 | 79.7 | 52.1 | 76.6 | 82.0 | 56.1 |
8 | 26 | 0.15 | 570.0 | 659.7 | 6.18 | 1.50 | 4.71 | 19.40 | 29.94 | 68.8 | 79.1 | 51.2 | 70.9 | 76.9 | 53.2 |
9 | 26 | 0.15 | 442.0 | 661.1 | 6.18 | 1.40 | 4.28 | 16.09 | 23.57 | 72.0 | 79.1 | 51.5 | 72.1 | 78.2 | 54.0 |
10 | 30 | 0.15 | 600.2 | 661.8 | 6.11 | 1.52 | 4.26 | 24.39 | 28.08 | 70.4 | 76.7 | 50.5 | 71.8 | 79.0 | 53.7 |
11 | 26 | 0.15 | 448.0 | 662.4 | 6.18 | 1.41 | 4.17 | 16.12 | 24.29 | 73.6 | 79.1 | 50.4 | 71.7 | 77.9 | 54.1 |
12 | 26 | 0.15 | 596.0 | 665.8 | 6.11 | 1.51 | 4.23 | 23.49 | 19.78 | 67.8 | 75.9 | 54.1 | 69.3 | 75.3 | 53.2 |
13 | 22 | 0.15 | 600.0 | 666.0 | 6.11 | 1.52 | 3.69 | 20.54 | 20.81 | 57.1 | 67.2 | 53.2 | 59.5 | 67.6 | 54.5 |
14 | 22 | 0.15 | 602.3 | 673.0 | 6.10 | 1.51 | 4.49 | 24.33 | 25.01 | 61.0 | 71.0 | 54.0 | 59.5 | 67.9 | 52.7 |
15 | 30 | 0.15 | 612.0 | 674.3 | 6.19 | 1.51 | 4.31 | 24.31 | 31.01 | 66.8 | 74.3 | 56.6 | 71.7 | 79.0 | 53.3 |
16 | 26 | 0.15 | 589.0 | 681.2 | 6.16 | 1.50 | 4.51 | 14.85 | 21.59 | 66.7 | 70.9 | 52.9 | 68.9 | 75.6 | 51.9 |
17 | 26 | 0.15 | 614.7 | 720.0 | 6.26 | 1.51 | 4.48 | 17.42 | 17.45 | 66.7 | 75.9 | 47.7 | 69.3 | 76.0 | 49.5 |
18 | 26 | 0.1 | 475.0 | 547.6 | 6.19 | 1.35 | 4.34 | 15.49 | 17.66 | 67.0 | 61.2 | 66.3 | 65.9 | 63.0 | 65.0 |
19 | 26 | 0.1 | 399.0 | 558.9 | 6.15 | 1.39 | 4.37 | 15.23 | 11.90 | 71.6 | 64.8 | 66.5 | 68.5 | 65.9 | 63.2 |
20 | 30 | 0.1 | 412.0 | 575.8 | 6.14 | 1.38 | 4.18 | 14.63 | 11.82 | 68.4 | 66.1 | 63.2 | 71.2 | 68.2 | 62.4 |
21 | 26 | 0.1 | 407.0 | 576.0 | 6.15 | 1.39 | 4.30 | 14.95 | 11.57 | 70.0 | 61.7 | 63.0 | 67.9 | 65.4 | 61.6 |
22 | 30 | 0.1 | 414.0 | 582.3 | 6.15 | 1.38 | 4.37 | 14.12 | 12.23 | 67.7 | 68.9 | 64.2 | 71.6 | 68.9 | 61.4 |
23 | 30 | 0.1 | 448.0 | 630.8 | 6.14 | 1.38 | 4.15 | 14.26 | 13.48 | 68.4 | 67.7 | 53.2 | 72.7 | 71.0 | 56.4 |
24 | 26 | 0.1 | 599.0 | 653.3 | 6.27 | 1.45 | 4.23 | 16.70 | 26.95 | 60.8 | 57.3 | 52.9 | 61.8 | 59.6 | 56.2 |
25 | 26 | 0.1 | 470.0 | 653.8 | 6.22 | 1.36 | 4.11 | 15.48 | 9.35 | 65.9 | 61.3 | 56.6 | 65.2 | 63.0 | 55.6 |
26 | 30 | 0.1 | 595.0 | 656.2 | 6.42 | 1.35 | 4.53 | 17.76 | 25.27 | 65.6 | 63.3 | 55.1 | 68.3 | 66.5 | 56.5 |
27 | 22 | 0.1 | 605.0 | 660.6 | 6.26 | 1.34 | 4.53 | 17.78 | 24.15 | 61.1 | 55.7 | 53.6 | 55.5 | 54.0 | 55.1 |
28 | 26 | 0.1 | 602.0 | 661.0 | 6.51 | 1.46 | 4.58 | 18.48 | 30.04 | 62.7 | 59.5 | 57.1 | 62.6 | 60.7 | 57.0 |
29 | 30 | 0.1 | 603.0 | 663.6 | 6.45 | 1.45 | 4.41 | 17.35 | 27.17 | 66.3 | 63.1 | 56.9 | 68.8 | 67.2 | 56.2 |
30 | 26 | 0.1 | 597.0 | 664.9 | 6.25 | 1.41 | 4.45 | 17.15 | 28.45 | 61.8 | 56.8 | 59.5 | 61.5 | 59.7 | 54.7 |
31 | 22 | 0.1 | 599.0 | 671.3 | 6.31 | 1.35 | 4.50 | 17.21 | 28.49 | 61.1 | 55.1 | 57.0 | 55.3 | 53.7 | 54.8 |
32 | 22 | 0.1 | 612.0 | 681.6 | 6.35 | 1.35 | 4.60 | 17.72 | 29.77 | 58.9 | 53.6 | 54.7 | 55.2 | 53.8 | 54.2 |
Parameters | Data |
---|---|
Column diameter (m) | 3.4 |
Number of plates | 25 |
Overflow weir height (m) | 0.08–0.2 |
Inlet gas flow rate (104 Nm3/d) | 500 |
Inlet gas temperature (°C) | 40 |
Inlet liquid temperature (°C) | 20 |
Inlet gas-liquid ratio | 400–800 |
Absorption pressure (MPa) | 4.0–8.0 |
Inlet gas loading CO2 (vol.%) | 0–6.0 |
Inlet gas loading H2S (vol.%) | 0–6.0 |
CH3SH concentration (mg/m3) | 15.0 |
COS concentration (mg/m3) | 15.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Chang, H.; Xiong, G.; He, J.; Liu, Q.; Li, J. Modeling CO2, H2S, COS, and CH3SH Simultaneous Removal Using Aqueous Sulfolane–MDEA Solution. Processes 2021, 9, 1954. https://doi.org/10.3390/pr9111954
Liu K, Chang H, Xiong G, He J, Liu Q, Li J. Modeling CO2, H2S, COS, and CH3SH Simultaneous Removal Using Aqueous Sulfolane–MDEA Solution. Processes. 2021; 9(11):1954. https://doi.org/10.3390/pr9111954
Chicago/Turabian StyleLiu, Ke, Honggang Chang, Gang Xiong, Jinlong He, Qisong Liu, and Jinjin Li. 2021. "Modeling CO2, H2S, COS, and CH3SH Simultaneous Removal Using Aqueous Sulfolane–MDEA Solution" Processes 9, no. 11: 1954. https://doi.org/10.3390/pr9111954
APA StyleLiu, K., Chang, H., Xiong, G., He, J., Liu, Q., & Li, J. (2021). Modeling CO2, H2S, COS, and CH3SH Simultaneous Removal Using Aqueous Sulfolane–MDEA Solution. Processes, 9(11), 1954. https://doi.org/10.3390/pr9111954