Graphite Classification Based on Improved Convolution Neural Network
Abstract
:1. Introduction
2. Experimental Data
2.1. Data Set Construction
2.2. Offline Expansion and Online Enhancement of Data Sets
3. Experimental Principle and Method
3.1. Transfer Learning
3.2. Convolution Neural Network Model
3.3. Focus Loss Function
3.4. Improved Migration Network Model
4. Result Analysis
4.1. Evaluation Index and Environmental Configuration
4.2. Test Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.Y.; Zhao, J.L.; Du, X.H. Hydrogen production from ammonia borane hydrolysis catalyzed by non-noble metal-based materials: A review. J. Mater. Sci. 2021, 56, 2856–2878. [Google Scholar] [CrossRef]
- Li, H.R.; Zhang, X.L.; Qi, Y.; Sun, R. Study on process of high pressure water jet cleaning mold of matrix PDC bit. Coal Mine Mach. 2021, 42, 93–96. [Google Scholar]
- Ma, Y.J.; Fang, M.; Li, G.X.; Huang, M.; Zhang, N. Study on wear resistance and thermal stability of graphite reinforced TPU materials. Mod. Plast. Process. Appl. 2021, 33, 1–3. [Google Scholar]
- Lu, J.J.; Liu, J.H.; Qian, G.Y.; Wang, Z.; Ma, J. Preparation of anode material for lithium-ion battery from waste silicon powder by ball milling. Min. Metall. 2021, 30, 12–18. [Google Scholar]
- Wu, E.H.; Li, J.; Hou, J.; Xu, Z.; Huang, P.; Jiang, Y.; Chen, F. Investigation on preparation and electrical properties of graphite/VO2.4-x composite powders. Rare Met. Cem. Carbides 2021, 49, 57–61. [Google Scholar]
- Feng, L.L.; Chen, Y.; Li, J.G.; Tang, S.Y.; Du, J.Z.; Li, T.Y.; Li, X.G. Research progress in carbon-based composition molded bipolar plates. Chin. J. Eng. 2021, 43, 585–593. [Google Scholar]
- Dong, Y.R.; Kong, G.L.; Zhang, Y.; Ma, L.; Wei, L.M. Preparation and application of micro silicon-graphite-carbon anodes for lithium-ion batteries. Micronanoelectron, Technol. 2021, 58, 379–385. [Google Scholar]
- Liu, M.Q.; Jiao, Y.Y.; Qin, J.C.; Zhongjun, L.; Wang, J. Boron doped C3N4 nanodots/nonmetal element (S, P, F, Br) doped C3N4 nanosheets heterojunction with synergistic effect to boost the photocatalytic hydrogen production performance. Appl. Surf. Sci. 2021, 541, 148558. [Google Scholar] [CrossRef]
- Yang, S.Z.; Liang, J.; Feng, B.; Liu, P.; Yang, X.F.; Liu, Q.C. Study on carbon coating modification of nana-silicon/graphite anode materials. Funct. Mater. 2021, 52, 03130–03134. [Google Scholar]
- Zhou, S.Z.; Nie, T.T.; Zhang, J.Y. Research and analysis of purification technology for graphite. Carbon Tech. 2021, 40, 60–62. [Google Scholar]
- Cui, A.L.; Feng, G.X.; Zhao, Y.F. Synthesis and separation of mellitic acid and graphite oxide colloid through electrochemical oxidation of graphite in deionized water. Electrochem. Commun. 2009, 11, 409–412. [Google Scholar] [CrossRef]
- Sheng, Z.H.; Lin, S.; Chen, J.J. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4357. [Google Scholar] [CrossRef] [PubMed]
- Laffont, L.; Pugliara, A.; Hungria, T.; Lacaze, J. Stem observation of a multiphase nucleus of spheroidal graphite. J. Mater. Res. Technol. 2020, 9, 4665–4671. [Google Scholar] [CrossRef]
- Kumar, V.S.P.; Deshpande, P.A. Synergistic effect of metal-nonmetal substitution on oxygen activation in Pd/C- and Pd/N- substituted TiO2. Comput. Mater. Sci. 2019, 162, 349–358. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.Y. Present situation and prospect of high purity graphite production process. Sci. Technol. Innov. 2018, 22, 166–167. [Google Scholar]
- Lecun, Y.; Bottou, L. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Song, W.J.; Kim, S.H. Double weight-based SAR and infrared sensor fusion for automatic ground target recognition with deep learning. Remote Sens. 2018, 10, 72. [Google Scholar] [CrossRef] [Green Version]
- Bouti, A.; Mahraz, M.A.; Riffi, J. A robust system for road sign detection and classification using LeNet architecture based on convolutional neural network. Soft Comput. 2020, 24, 121–128. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolution Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar]
- Han, X.; Zhong, Y.; Cao, L. Pre-trained AlexNet architecture with pyramid pooling and supervision for high spatial resolution remote sensing image scene classification. Remote Sens. 2017, 9, 848. [Google Scholar] [CrossRef] [Green Version]
- Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823. [Google Scholar]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Jian, S. Deep residual learning for image recognition [EB/OL]. arXiv 2021, arXiv:1512.03385. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition [EB/OL]. arXiv 2021, arXiv:1409.1556. [Google Scholar]
- Lu, J.; Behbood, V.; Hao, P.; Zuo, H.; Xue, S.; Zhang, G. Transfer learning using computational intelligence: A survey. Knowledge-Based Syst. 2015, 80, 14–23. [Google Scholar] [CrossRef]
- Tajbakhsh, N.; Shin, J.Y.; Gurudu, S.R.; Todd Hurst, R.; Kendall, C.B.; Gotway, M.B.; Liang, J. Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Trans. Med. Imaging 2016, 35, 1299–1312. [Google Scholar] [CrossRef] [Green Version]
- Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional net-works [EB/OL]. arXiv 2021, arXiv:1311.2901. [Google Scholar]
- Razavian, A.S.; Azizpour, H.; Sullivan, J.; Carlsson, S. CNN features off-the-shelf: An astounding baseline for recognition. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 512–519. [Google Scholar]
- Azizpour, H.; Razavian, A.S.; Sullivan, J.; Maki, A.; Carlsson, S. From generic to specific deep representations for visual recognition [EB/OL]. arXiv 2021, arXiv:1406.5774. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.L.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted residuals and linear bottlenecks [EB/OL]. arXiv 2021, arXiv:1801.04381. [Google Scholar]
Flake Graphite | Expanded Graphite | Artificial Graphite | Carbon Black | |
---|---|---|---|---|
Data set | 1020 | 965 | 715 | 875 |
Training set | 816 | 772 | 572 | 700 |
Test set | 204 | 193 | 143 | 175 |
Network | VGG16 | ResNet34 | MobileNet V2 |
---|---|---|---|
Year | 2014 | 2015 | 2018 |
Top-1 accuracy | 71.5% | - | 71.7% |
Number of parameters | 138,357,544 | 63,470,656 | 4,253,864 |
Number of layers | 16 | 34 | - |
BN | No | Yes | Yes |
Residual structure | No | Yes | Yes |
Model | Loss Value (×10−2) | Accuracy (%) | Training Time (min) |
---|---|---|---|
VGG16 | 0.36 | 92.93 | 74.73 |
I-VGG16 | 0.16 | 93.71 | 76.13 |
I-VGG16 + FL | 0.10 | 95.69 | 75.88 |
ResNet34 | 6.75 | 93.29 | 40.13 |
I-ResNet34 | 2.61 | 99.18 | 40.72 |
I-ResNet34 + FL | 0.97 | 99.84 | 41.27 |
MobileNet V2 | 4.37 | 98.57 | 39.10 |
I-MobileNet V2 | 1.68 | 99.81 | 45.18 |
I-MobileNet V2 + FL | 1.23 | 99.57 | 46.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Xu, X.; Yu, X.; Wang, F. Graphite Classification Based on Improved Convolution Neural Network. Processes 2021, 9, 1995. https://doi.org/10.3390/pr9111995
Liu G, Xu X, Yu X, Wang F. Graphite Classification Based on Improved Convolution Neural Network. Processes. 2021; 9(11):1995. https://doi.org/10.3390/pr9111995
Chicago/Turabian StyleLiu, Guangjun, Xiaoping Xu, Xiangjia Yu, and Feng Wang. 2021. "Graphite Classification Based on Improved Convolution Neural Network" Processes 9, no. 11: 1995. https://doi.org/10.3390/pr9111995
APA StyleLiu, G., Xu, X., Yu, X., & Wang, F. (2021). Graphite Classification Based on Improved Convolution Neural Network. Processes, 9(11), 1995. https://doi.org/10.3390/pr9111995