Effects of Adding Laccase to Bacterial Consortia Degrading Heavy Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Heavy Oil Composition
2.2. Heavy Oil–Degrading Bacterial Consortia
2.3. Crude Laccase Solution
2.4. Culture Medium
2.5. Heavy Oil Biodegradation
2.6. Heavy Oil Degradation Efficiency and Degradation Kinetics
2.7. Separation and GC–MS Analysis of the Saturated and Aromatic Hydrocarbons of Heavy Oil
3. Results
3.1. Crude Laccase Solution Preparation for Heavy Oil Degradation
3.2. Heavy Oil Degradation Efficiency and Kinetics of the Laccase-Bacterial Consortia
3.3. Biodegradation of Saturated Hydrocarbons of Heavy Oil
3.4. Biodegradation of the Aromatic Hydrocarbons of Heavy Oil
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, K.; Li, H.L.; Yu, Z.X. In-situ heavy and extra-heavy oil recovery: A review. Fuel 2016, 185, 886–902. [Google Scholar] [CrossRef]
- Chen, J.H.; Zhang, W.P.; Wan, Z.; Li, S.F.; Huang, T.C.; Fei, Y.J. Oil spills from global tankers: Status review and future governance. J. Clean. Prod. 2019, 227, 20–32. [Google Scholar] [CrossRef]
- Head, J.M.; Jones, D.M.; Röling, W.F.M. Marine microorganisms make a meal of oil. Nat. Rev. Microbiol. 2006, 4, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Al-Sayegh, A.; Al-Wahaibi, Y.; Joshi, S.; Al-Bahry, S.; Elshafie, A.; Al-Bemani, A. Bioremediation of heavy crude oil contamination. Open Biotechnol. J. 2016, 10 (Suppl. S2), 301–311. [Google Scholar] [CrossRef]
- Jung, D.; Kim, J.A.; Park, M.S.; Yim, U.H.; Choi, K. Human health and ecological assessment programs for Hebei Spirit oil spill accident of 2007: Status, lessons, and future challenges. Chemosphere 2017, 173, 180–189. [Google Scholar] [CrossRef]
- Agarwal, A.; Liu, Y. Remediation technologies for oil-contaminated sediments. Mar. Pollut. Bull. 2015, 101, 483–490. [Google Scholar] [CrossRef]
- Lee, E.H.; Kim, M.; Moon, Y.S.; Yim, U.H.; Ha, S.Y.; Jeong, C.B.; Lee, J.S.; Jung, J.H. Adverse effects and immune dysfunction in response to oral administration of weathered. Aquat. Toxicol. 2018, 200, 127–135. [Google Scholar] [CrossRef]
- Das, R.; Li, G.Y.; Mai, B.X.; An, T.C. Spore cells from BPA degrading bacteria Bacillus sp. GZB displaying high laccase activity and stability for BPA degradation. Sci. Total Environ. 2018, 640–641, 798–806. [Google Scholar] [CrossRef]
- Dellagnezze, B.M.; Vasconcellos, S.P.; Angelim, A.L.; Melo, V.M.M.; Santisi, S.; Cappello, S.; Oliveira, V.M. Bioaugmentation strategy employing a microbial consortium immobilized in chitosan beads for oil degradation in mesocosm scale. Mar. Pollut. Bull. 2016, 107, 107–117. [Google Scholar] [CrossRef]
- Tao, K.Y.; Zhang, X.Y.; Chen, X.P.; Liu, X.Y.; Hu, X.X.; Yuan, X.Y. Response ofsoil bacterial community to bioaugmentation with a plant residue-immobilized bacterial consortium for crude oil removal. Chemosphere 2019, 222, 831–838. [Google Scholar] [CrossRef]
- Al-Bahry, S.N.; Al-Wahaibi, Y.M.; Al-Hinai, B.; Joshi, S.J.; Elshafie, A.E.; Al-Bemani, A.S.; Al-Sabahi, J. Potential in heavy oil biodegradation via enrichment of spore forming bacterial consortia. J. Petrol. Explor. Prod. Technol. 2016, 6, 787–799. [Google Scholar] [CrossRef] [Green Version]
- Alcade, M.; Ferrer, M.; Plou, F.J. Environmental biocatalysis: From remediation with enzymes to novel green processes. Trends Biotechnol. 2006, 24, 281–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saravanan, A.; Senthil Kumar, P.; Vo Dai-Viet, N.; Jeevanantham, S.; Karishma, S.; Yaashika, P.R. A review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes. J. Hazard. Mater. 2021, 419, 126451. [Google Scholar] [CrossRef]
- Kucharzyk, K.H.; Benotti, M.; Darlington, R.; Lalgudi, R. Enhanced biodegradation of sediment-bound heavily weathered crude oil with ligninolytic enzymes encapsulated in calcium-alginate beads. J. Hazard. Mater. 2018, 357, 498–505. [Google Scholar] [CrossRef]
- Franciscon, E.; Piubeli, F.; Fantinatti-Garboggini, F.; Menezes, C.R.D.; Silva, I.S.; Cavaco-Paulo, A.; Grossman, M.J.; Durrant, L.R. Polymerization study of the aromatic amines generated by the biodegradation of azo dyes using the laccase enzyme. Enzyme Microb. Technol. 2010, 46, 360–365. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.F.; Du, H.; Peng, X.; Tang, Y.; Zhou, Y.Y.; Chen, X.Y.; Fei, J.; Meng, Y.; Yuan, L. Degradation of several polycyclic aromatic hydrocarbons by laccase in reverse micelle system. Sci. Total Environ. 2020, 708, 134970. [Google Scholar] [CrossRef]
- Sadeghzadeh, S.; Nejad, Z.G.; Ghasemi, S.; Khafaji, M.; Borghei, S.M. Removal of bisphenol A in aqueous solution using magnetic cross-linked laccase aggregates from Trametes hirsute. Bioresour. Technol. 2020, 306, 123169. [Google Scholar] [CrossRef]
- Bilal, M.; Rasheed, T.; Nabeel, F.; Iqbal, H.M.N.; Zhao, Y.P. Hazardous contaminants in the environment and their laccase-assisted degradation—A review. J. Environ. Manag. 2019, 234, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.C.; Teng, Y.; Li, Z.G.; Liao, X.W.; Luo, Y.M. Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil. Soil Biol. Biochem. 2008, 40, 789–796. [Google Scholar] [CrossRef]
- Bautista, L.F.; Morales, G.; Sanz, R. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by laccase from Trametes versicolor covalently immobilized on amino-functionalized SBA-15. Chemosphere 2015, 136, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.Q.; Liu, J.P.; Ju, M.T.; Li, X.J.; Wang, P. Bacteria-white-rot fungi joint remediation of petroleum-contaminated soil based on sustained release of laccase. RSC Adv. 2017, 7, 39075–39081. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.L.; Lv, J.; Guo, S.H.; Wei, W.X. Heavy oil biodegradation by mixed bacterial consortium of biosurfactant-producing and heavy oil-degrading bacteria. Pol. J. Environ. Stud. 2021, 30, 71–80. [Google Scholar] [CrossRef]
- China, M.E.P. Water Quality-Determination of Petroleum Oil, Animal and Vegetable Oils-Infrared Photometric Method (HJ 637-2012); Chinese Ministry of Environmental Protection: Beijing, China, 2012. [Google Scholar]
- Dai, X.L.; Yan, G.X.; Guo, S.H. Characterization of Dietzia cercidiphylli C-1 isolated from extra-heavy oil contaminated soil. RSC Adv. 2017, 7, 19486. [Google Scholar] [CrossRef] [Green Version]
- Chettri, B.; Singh, A.K. Kinetics of hydrocarbon degradation by a newly isolated heavy metal tolerant bacterium Novosphingobium panipatense P5:ABC. Bioresour. Technol. 2019, 294, 122190. [Google Scholar] [CrossRef]
- Varjani, S.J. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 2017, 223, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Ma, J.; Yan, G.X.; Dai, X.L.; Li, M.; Guo, S.H. Comparison of phytoremediation, bioaugmentation and naturalattenuation for remediating saline soil contaminated by heavy crude oil. Biochem. Eng. J. 2016, 112, 170–177. [Google Scholar] [CrossRef]
- Navada, K.K.; Kulal, A. Enzymatic degradation of chloramphenicol by laccase from Trametes hirsute and comparison among mediators. Int. Biodeterior. Biodegrad. 2019, 13, 63–69. [Google Scholar] [CrossRef]
- Imam, A.; Suman, S.K.; Singh, R.; Vempatapu, B.P.; Ray, A.; Kanaujia, P.K. Application of laccase immobilized rice straw biochar for anthracene degradation. Environ. Pollut. 2021, 268, 115827. [Google Scholar] [CrossRef]
- Sun, J.N.; Zheng, M.X.; Lu, Z.X.; Lu, F.X.; Zhang, C. Heterologous production of a temperature and pH-stable laccase from Bacillus vallismortis fmb-103 in Escherichia coli and its application. Process. Biochem. 2017, 55, 77–84. [Google Scholar] [CrossRef]
- Xu, K.Z.; Ma, H.; Wang, Y.J.; Cai, Y.J.; Liao, X.R.; Guan, Z.B. Extracellular expression of mutant CotA-laccase SF in Escherichia coliand itsdegradation of malachite green. Ecotoxicol. Environ. Saf. 2020, 193, 110335. [Google Scholar] [CrossRef]
- Harms, H.; Schlosser, D.; Wick, L.Y. Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nat. Rev. Microbiol. 2011, 9, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.L.; Yu, Y.; Bai, Y.; Wang, L.P.; Wu, Y.A. Marine oil-degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: A review. Curr. Microbiol. 2015, 71, 220–228. [Google Scholar] [CrossRef]
- Asadi, E.; Makhdoumi, A.; Asoodeh, A. Laccase mediator system obtained from a marine spore exhibits decolorization potential in harsh environmental conditions. Ecotoxicol. Environ. Saf. 2020, 191, 110184. [Google Scholar] [CrossRef]
- Arulazhagan, P.; Sivaraman, C.; Kumar, S.A.; Aslam, M.; Banu, J.R. Co-metabolic degradation of benzo (e) pyrene by halophilic bacterial consortium at different saline conditions. J. Environ. Biol. 2014, 35, 445. [Google Scholar] [CrossRef]
- Kadri, T.; Rouissi, T.; Brar, S.K.; Cledon, M.; Sarma, S.; Verma, M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. J. Environ. Sci. (China) 2017, 51, 52–74. [Google Scholar] [CrossRef] [PubMed]
- Zoueki, C.W.; Ghoshal, S.; Tufenkji, N. Bacterial adhesion to hydrocarbons: Role of asphaltenes and resins. Colloids Surf. B 2010, 79, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Lopez, E.L.; Ayala, M.; Vazquez-Duhalt, R. Microbial and enzymatic biotransformations of asphaltenes. Pet. Sci. Technol. 2015, 33, 1017–1029. [Google Scholar] [CrossRef]
- Fuentes, S.; Méndez, V.; Aguila, P.; Seeger, M. Bioremediation of petroleum hydrocarbons: Catabolic genes, microbial communities, and applications. Appl. Microbiol. Biotechnol. 2014, 98, 4781–4794. [Google Scholar] [CrossRef]
- Varjani, S.J.; Rana, D.P.; Jain, A.K.; Bateja, S.; Upasani, V.N. Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. Int. Biodeterior. Biodegrad. 2015, 103, 116–124. [Google Scholar] [CrossRef]
- Chen, Q.; Li, J.; Liu, M.; Sun, H.; Bao, M. Study on the biodegradation of crude oil by free and immobilized bacterial consortium in marine environment. PLoS ONE 2017, 12, e0174445. [Google Scholar] [CrossRef]
- Tao, K.; Liu, X.; Chen, X.; Hu, X.; Cao, L.; Yuan, X. Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis. Bioresour. Technol. 2017, 224, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Kong, D.; Liu, X.; Xie, H.; Lou, X.; Zeng, C. Combined microbial degradation of crude oil under alkaline conditions by Acinetobacter baumannii and Talaromyces sp. Chemosphere 2021, 273, 129666. [Google Scholar] [CrossRef] [PubMed]
- Pozdnyakova, N.; Dubrovskaya, E.; Chernyshova, M.; Makarov, O.; Golubev, S.; Balandina, S.; Turkovskaya, O. The peculiarities of degradation of three ringed polycyclic aromatic hydrocarbons by wood-inhabiting fungus Pleurotus ostreatus and soil-inhabiting fungus Agaricus bisporus. Fungal Biol. 2018, 122, 363–372. [Google Scholar] [CrossRef]
- Boonchan, S.; Britz, M.L.; Stanley, G.A. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl. Environ. Microbiol. 2000, 66, 1007–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
n-Alkanes | Bacterial Consortia Degradation | Laccase-Bacterial Consortia Degradation | ||||
---|---|---|---|---|---|---|
Initial Abundance | Residual Abundance | Degradation Efficiency (%) | Initial Abundance | Residual Abundance | Degradation Efficiency (%) | |
C15 | 1.4 | ND | 97.6 ± 0.9 | 2.0 ± 0.4 | ND | 100 |
C16 | 6.0 ± 0.1 | 0.1 | 98.0 ± 0.6 | 4.6 ± 0.7 | 0.1 | 98.3 ± 0.3 |
C17 | 10.4 ± 0.6 | 0.8 | 92.4 ± 0.4 | 7.4 ± 0.9 | 0.4 ± 0.1 | 94.0 ± 0.2 |
C18 | 14.6 ± 0.3 | 2.7 ± 0.1 | 81.7 ± 0.5 | 8.4 ± 0.7 | 0.9 ± 0.1 | 89.0 ± 1.5 |
C19 | 19.8 ± 0.5 | 4.8 ± 0.5 | 75.9 ± 2.1 | 9.1 ± 1.6 | 1.3 ± 0.4 | 84.4 ± 6.5 |
C20 | 26.0 ± 0.9 | 7.3 ± 0.5 | 72.0 ± 3.0 | 10.1 ± 1.2 | 1.7 ± 0.3 | 83.3 ± 4.8 |
C21 | 30.5 ± 1.6 | 9.1 ± 0.6 | 70.2 ± 3.0 | 10.3 ± 1.6 | 1.8 ± 0.4 | 83.0 ± 1.4 |
C22 | 32.9 ± 0.7 | 10.4 ± 0.9 | 68.4 ± 3.1 | 10.4 ± 2.0 | 1.8 ± 0.3 | 82.0 ± 3.4 |
C23 | 37.1 ± 1.0 | 12.2 ± 1.0 | 67.1 ± 2.5 | 10.9 ± 1.4 | 1.9 ± 0.2 | 81.6 ± 4.4 |
C24 | 33.5 ± 1.4 | 11.7 ± 0.9 | 64.9 ± 4.0 | 9.9 ± 1.2 | 1.7 ± 0.4 | 81.6 ± 6.8 |
C25 | 38.5 ± 1.0 | 13.9 ± 1.0 | 63.9 ± 2.4 | 11.1 ± 1.0 | 1.9 ± 0.2 | 82.4 ± 3.5 |
C26 | 30.0 ± 1.1 | 10.6 ± 0.9 | 64.3 ± 4.3 | 9.0 ± 0.7 | 1.6 ± 0.4 | 82.6 ± 4.9 |
C27 | 28.0 ± 0.8 | 9.9 ± 0.7 | 64.6 ± 3.3 | 8.3 ± 0.8 | 1.4 ± 0.2 | 82.7 ± 1.7 |
C28 | 21.4 ± 0.6 | 7.8 ± 0.7 | 63.5 ± 2.3 | 6.6 ± 0.5 | 1.1 ± 0.2 | 83.0 ± 2.4 |
C29 | 19.4 ± 1.0 | 7.3 ± 0.7 | 62.2 ± 5.3 | 5.9 ± 0.8 | 1.1 ± 0.2 | 81.9 ± 3.7 |
C30 | 13.8 ± 0.8 | 5.4 ± 0.5 | 60.9 ± 6.3 | 4.4 ± 0.9 | 0.8 ± 0.2 | 80.9 ± 9.2 |
C31 | 12.6 ± 0.8 | 4.8 ± 0.5 | 61.5 ± 4.4 | 4.1 ± 0.6 | 0.7 ± 0.1 | 81.9 ± 6.2 |
C32 | 7.8 ± 0.7 | 2.9 ± 0.4 | 63.2 ± 2.3 | 2.6 ± 0.4 | 0.5 ± 0.3 | 83.0 ± 7.1 |
C33 | 5.9 ± 0.6 | 2.3 ± 0.3 | 61.1 ± 3.3 | 2.2 ± 10.1 | 0.4 ± 0.1 | 82.0 ± 6.3 |
C34 | 5.0 ± 0.4 | 1.9 ± 0.4 | 62.9 ± 4.4 | 2.1 ± 0.4 | 0.4 ± 0.1 | 82.6 ± 4.8 |
C35 | 3.2 ± 0.5 | 1.1 ± 0.2 | 65.3 ± 1.0 | 1.6 ± 0.4 | 0.3 ± 0.1 | 82.9 ± 3.7 |
PAHs | Bacterial Consortia Degradation | Laccase-Bacterial Consortia Degradation | ||||
---|---|---|---|---|---|---|
Initial Abundance | Residual Abundance | Degradation Efficiency (%) | Initial Abundance | Residual Abundance | Degradation Efficiency (%) | |
Nap | 0.1 ± 0.03 | ND | 96.6 ± 4.8 | ND | ND | ND |
C1-Nap | 0.80 ± 0.1 | 0.2 ± 0.1 | 77.2 ± 7.0 | ND | ND | ND |
C2-Nap | 1.11 ± 0.2 | 0.3 ± 0.1 | 76.2 ± 7.2 | 0.14 | ND | 100 |
C3-Nap | 4.0 ± 0.4 | 1.0 ± 0.2 | 74.0 ± 5.2 | 1.7 ± 0.04 | ND | 100 |
C4-Nap | 3.6 ± 0.5 | 1.0 ± 0.2 | 72.7 ± 3.6 | 2.1 ± 0.1 | ND | 100 |
C5-Nap | 0.44 ± 0.1 | 0.1 ± 0.01 | 74.8 ± 2.9 | 1.2 ± 0.2 | ND | 100 |
Phe | 2.66 ± 0.3 | 0.7 ± 0.1 | 74.9 ± 3.6 | 1.8 ± 0.1 | 0.1 ± 0.002 | 95.5 ± 0.2 |
C1-Phe | 6.6 ± 0.6 | 2.8 ± 0.6 | 57.1 ± 9.0 | 5.4 ± 0.2 | 1.1 ± 0.1 | 78.6 ± 2.6 |
C2-Phe | 7.66 ± 0.6 | 3.5 ± 0.5 | 54.3 ± 5.5 | 6.4 ± 0.3 | 1.7 ± 0.1 | 74.0 ± 1.1 |
C3-Phe | 4.4 ± 0.5 | 2.0 ± 0.3 | 54.6 ± 3.3 | 3.8 ± 0.2 | 1.3 ± 0.04 | 65.4 ± 1.6 |
Flu | 0.2 ± 0.04 | 0.03 ± 0.02 | 86.2 ± 6.5 | 0.1 ± 0.011 | ND | 100 |
C1-Flu | 1.19 ± 0.25 | 0.2 ± 0.04 | 87.5 ± 1.2 | 0.7 ± 0.1 | ND | 100 |
C2-Flu | 2.1 ± 0.4 | 0.6 ± 0.1 | 70.1 ± 1.9 | 1.6 ± 0.1 | 0.1 ± 0.007 | 94.8 ± 0.4 |
B[b]F | 0.3 ± 0.1 | 0.1 ± 0.03 | 50.2 ± 2.0 | 0.2 ± 0.02 | 0.1 ± 0.01 | 61.9 ± 0.3 |
Chr | 0.5 ± 0.2 | 0.2 ± 0.1 | 54.9 ± 3.0 | 0.6 ± 0.04 | 0.3 ± 0.02 | 55.6 ± 7.7 |
C1-Chr | 1.2 ± 0.2 | 0.5 ± 0.1 | 55.9 ± 3.8 | 1.2 ± 0.1 | 0.5 ± 0.02 | 56.3 ± 3.3 |
C2-Chr | 1.2 ± 0.3 | 0.6 ± 0.1 | 53.7 ± 5.9 | 1.8 ± 0.2 | 0.8 ± 0.1 | 55.4 ± 1.0 |
Pyr | 0.4 ± 0.1 | 0.2 ± 0.1 | 57.3 ± 6.9 | 0.4 ± 0.01 | 0.2 ± 0.03 | 57.3 ± 3.4 |
C1-Pyr | 1.0 ± 0.2 | 0.5 ± 0.1 | 51.1 ± 1.3 | 0.9 ± 0.1 | 0.4 ± 0.01 | 52.4 ± 8.5 |
B[e]P | 0.3 ± 0.1 | 0.2 ± 0.04 | 40.8 ± 1.0 | 0.3 ± 0.02 | 0.2 ± 0.01 | 49.9 ± 3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, X.; Lv, J.; Wei, W.; Guo, S. Effects of Adding Laccase to Bacterial Consortia Degrading Heavy Oil. Processes 2021, 9, 2025. https://doi.org/10.3390/pr9112025
Dai X, Lv J, Wei W, Guo S. Effects of Adding Laccase to Bacterial Consortia Degrading Heavy Oil. Processes. 2021; 9(11):2025. https://doi.org/10.3390/pr9112025
Chicago/Turabian StyleDai, Xiaoli, Jing Lv, Wenxia Wei, and Shaohui Guo. 2021. "Effects of Adding Laccase to Bacterial Consortia Degrading Heavy Oil" Processes 9, no. 11: 2025. https://doi.org/10.3390/pr9112025
APA StyleDai, X., Lv, J., Wei, W., & Guo, S. (2021). Effects of Adding Laccase to Bacterial Consortia Degrading Heavy Oil. Processes, 9(11), 2025. https://doi.org/10.3390/pr9112025