The Effect of PVA Binder Solvent Composition on the Microstructure and Electrical Properties of 0.98BaTiO3-0.02(Ba0.5Ca0.5)SiO3 Doped with Dy2O3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Binder Solution Preparation
2.2. Preparation of Sample
2.3. Evaluation of Physical and Electrical Properties
3. Results and Discussion
3.1. Physical and Electrical Properties of the 0.98BaTiO3-0.02(Ba0.5Ca0.5)SiO3 Ceramics Doped with Dy2O3
3.1.1. Physical Properties
3.1.2. Electrical Properties
3.2. The Effect of the PVA Binder Solvent Composition on the Physical and Electrical Properties of the Ceramics
3.2.1. Physical Properties
3.2.2. Electrical properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pu, Y.; Chen, W.; Chen, S.; Langhammer, H.T. Microstructure and dielectric properties of dysprosium-doped barium titanate ceramics. Ceramica 2005, 51, 214. [Google Scholar] [CrossRef] [Green Version]
- Kishi, H.; Kohzu, N.; Sugino, J.; Oshato, H.; Iguchi, Y.; Okuda, T. The effect of rare-earth (La, Sm, Dy, Ho and Er) and Mg on the microstructure in BaTiO3. J. Eur. Ceram. Soc. 1999, 19, 1043. [Google Scholar] [CrossRef]
- Mizuno, Y.; Kishi, H.; Ohnuma, K.; Ishikawa, T.; Oshato, H. Effect of site occupancies of rare earth ions on electrical properties in Ni-MLCC based on BaTiO3. J. Eur. Ceram. Soc. 2007, 27, 4017. [Google Scholar] [CrossRef]
- Han, Y.; Appleby, J.B.; Smith, D.M. Defects chemistry of BaTiO3 with additions of CaTiO3. J. Am. Ceram. Soc. 1987, 70, 100. [Google Scholar]
- Chan, H.M.; Harmer, M.R.; Smith, D.M.L. Compensating defects in highly donor-doped BaTiO3. J. Am. Ceram. Soc. 1986, 69, 507–510. [Google Scholar] [CrossRef]
- Sato, T.; Shimada, M. Transformation of yttria-doped tetragonal ZrO2 polycrystals by annealing in water. J. Am. Ceram. Soc. 1985, 68, 356. [Google Scholar] [CrossRef]
- Zhao, Q.; Gong, H.; Wang, X.; Luo, B.; Li, L. Influence of BaO-CaO-SiO2 on dielectric properties and reliability of BaTiO3-based ceramics. Phys. Status Solidi A 2016, 213, 1077–1081. [Google Scholar] [CrossRef]
- Miao, H.; Dong, M.; Tan, G.; Pu, Y. Doping effects Dy and Mg on BaTiO11 ceramics prepared by hydrothermal method. J. Electroceram. 2006, 16, 297–300. [Google Scholar] [CrossRef]
- Yamaji, A.; Enomoto, Y.; Kinoshita, K.; Murakami, T. Preparation, characterization, and properties of Dy-doped small grained BaTiO3 ceramics. J. Am. Ceram. Soc. 1977, 60, 97–101. [Google Scholar] [CrossRef]
- Iwata, N.; Mori, T. Effect of binder addition on optimum additive amount of dispersant for aqueous BaTiO3 slurry. Ceram. Int. 2019, 45, 19644–19649. [Google Scholar] [CrossRef]
- de Laat, A.W.M.; Derks, W.P.T. Colloidal stabilization of BaTiO3 with poly(vinyl alcohol) in water. Colloids Surf. A Physicochem. Eng. Asp. 1993, 71, 147–153. [Google Scholar] [CrossRef]
- Li, C.C.; Lee, Y.C.; Cheng, Y.M. Effects of interactions among BaTiO3, PVA, and B2O3 on the rheology of aqueous BaTiO3 suspensions. J. Am. Ceram. Soc. 2010, 93, 3049–3051. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Yin, X.; Xing, C.; Li, J.; Qiao, H.; Shi, F. Hydrothermal synthesis of BaTiO3 nanoparticles and role of PVA concentration in preparation. Mater. Res. Express 2019, 6, 055028. [Google Scholar] [CrossRef]
- Paik, U.; Hackley, V.A.; Lee, J.; Lee, S. Effect of poly(acrylic acid) and poly(vinyl alcohol) on the solubility of colloidal BaTiO3 in an aqueous medium. J. Mater. Res. 2003, 18, 5. [Google Scholar] [CrossRef]
- Iijima, M.; Sato, N.; Lenggoro, I.W.; Kamiya, H. Surface modification of BaTiO3 particle by silane coupling agents in different solvent and their effect on dielectric properties of BaTiO3/epoxy composites. Colloids Surf. A Physicochem. Eng. Asp. 2009, 352, 88–93. [Google Scholar] [CrossRef]
- Khattab, I.S.; Bandarker, F.; Fakhree, M.A.A.; Jouyban, A. Density, viscosity, and surface tension of water+ethanol mixture from 293 to 323K. Kor. J. Chem. Eng. 2012, 29, 812–817. [Google Scholar] [CrossRef]
- Hassan, C.M.; Trakampan, P.; Peppas, N.A. Water solubility characteristics of poly(vinyl alcohol) and gel prepared by freezing/thawing process. In Water Soluble Polymers; Springer: Boston, MA, USA, 2002; pp. 31–40. [Google Scholar]
- DeVries, R.C.; Roy, R. Phase Equilibria in the System BaTiO3-CaTiO3. J. Am. Ceram. Soc. 1955, 38, 142–146. [Google Scholar] [CrossRef]
- Makovec, D.; Samardzija, Z.; Drofenik, M. Solid solubility of holmium, yttrium, and dysprosium in BaTiO3. J. Am. Ceram. Soc. 2004, 87, 1324–1329. [Google Scholar] [CrossRef]
- Kingery, W.D.; Bowen, H.K.; Uhlmann, D.R. (Eds.) Introduction to Ceramics, 2nd ed.; Wiley: New York, NY, USA, 1976; pp. 913–974. [Google Scholar]
- Feng, T.T.; Hsieh, H.L.; Shiau, F.S. Effects of pore morphology and grain size on the dielectric properties and tetragonal-cubic phase transition of high-purity barium titanate. J. Am. Ceram. Soc. 1993, 76, 1205–1211. [Google Scholar] [CrossRef]
- Lee, E.J.; Jeong, J.; Han, Y.H. Defects and degradation of BaTiO3 codoped with Dy and Mn. Jpn. J. Appl. Phys. 2006, 45, 822–825. [Google Scholar] [CrossRef]
- Lee, E.J.; Jeong, J.; Han, Y.H. Electrical properties of Dy2O3-doped BaTiO3. Jpn. J. Appl. Phys. 2004, 43, 8126. [Google Scholar] [CrossRef]
- Barzic, A.I.; Stoica, I.; Brazic, R.F. Microstructure implications on surface features and dielectric properties of nanoceramics embedded in polystyrene. Rev. Roum. Chim. 2015, 60, 809–815. [Google Scholar]
- Maiwa, H. Dielectric and electromechanical properties of Ba(ZrxTi1-x)O3 (x = 0.1 and 0.2) ceramics prepared by spark plasma sintering. J. Appl. Phys. 2007, 46, 7013. [Google Scholar] [CrossRef]
- Hoshina, T.; Takizawa, K.; Li, J.; Kasama, T.; Kakemoto, H.; Tsurumi, T. Domain size effect on dielectric properties of barium titanate ceramics. J. Appl. Phys. 2008, 47, 7607. [Google Scholar] [CrossRef]
Compositions | Chemical Formula | Density (g/cm3) | Viscosity (Pa·s) | Surface Tension (N/m) | |
---|---|---|---|---|---|
PVA-111 | (R-CH4O4P)n(99.9%) | - | - | - | |
(1) | Water 100% | H2O (99.9%) | 0.9971 | 0.8914 | 71.97 |
(2) | Water 80 vol.% + ethyl alcohol 20 vol.% | - | 0.9548 | 2.1009 | 32.17 |
(3) | Water 60 vol.% + ethyl alcohol 40 vol.% | - | 0.9125 | 2.2208 | 29.63 |
(4) | Water 40 vol.% + ethyl alcohol 60 vol.% | - | 0.8702 | 1.9780 | 25.78 |
(5) | Water 20 vol.% + ethyl alcohol 80 vol.% | - | 0.8279 | 1.6345 | 24.10 |
(6) | Ethyl alcohol 100% | C2H5OH (99.9%) | 0.7858 | 1.0740 | 22.27 |
Type of Binder | Binder Solution Composition | Water Volume/ Ethyl Alcohol | Mixing Condition |
---|---|---|---|
Binder A | Water 80 vol.% + Ethanol 20 vol.% with 10 wt.% of PVA-111 | 4.00 | (Sonicator) 40 kHz 65 °C 1 h |
Binder B | Water 60 vol.% + Ethanol 40 vol.% with 10 wt.% of PVA-111 | 1.50 | |
Binder C | Water 40 vol.% + Ethanol 60 vol.% with 10 wt.% of PVA-111 | 0.67 | |
Binder D | Water 20 vol.% + Ethanol 80 vol.% with 10 wt.% of PVA-111 | 0.25 |
Composition | Sintering Condition | Density (g/cm3) | Theoretical Density (g/cm3) | Relative Density |
---|---|---|---|---|
0.02(Ba0.5Ca0.5)SiO3-0.98BaTiO3 | 1260 °C 1 h | 5.3418 | 6.0127 | 88.84% |
1320 °C 1 h | 5.4324 | 90.35% | ||
0.02(Ba0.5Ca0.5)SiO3-0.98BaTiO3 with 0.1wt.%Dy2O3 | 1260 °C 1 h | 5.3612 | 6.0133 | 89.16% |
1320 °C 1 h | 5.4853 | 91.22% | ||
0.02(Ba0.5Ca0.5)SiO3-0.98BaTiO3 with 0.2wt.%Dy2O3 | 1260 °C 1 h | 5.3739 | 6.0139 | 89.36% |
1320 °C 1 h | 5.4421 | 90.49% | ||
0.02(Ba0.5Ca0.5)SiO3-0.98BaTiO3 with 0.3wt.%Dy2O3 | 1260 °C 1 h | 5.3820 | 6.0144 | 89.49% |
1320 °C 1 h | 5.4415 | 90.47% |
Composition | a and b (Å) | c (Å) | Unit Cell Volume (Å3) | Tetragonality (c/a) | Goodness of Fit | Bragg R-Factor |
---|---|---|---|---|---|---|
No binder | 3.9946 | 4.0115 | 64.0108 | 1.00423071 | 1.2 | 2.41 |
Binder A added specimen | 3.9946 | 4.0116 | 64.0124 | 1.00425575 | 1.2 | 2.58 |
Binder B added specimen | 3.9948 | 4.0116 | 64.0188 | 1.00420547 | 1.2 | 2.83 |
Binder C added specimen | 3.9948 | 4.0116 | 64.0188 | 1.00420547 | 1.2 | 2.62 |
Binder D added specimen | 3.9949 | 4.0117 | 64.0236 | 1.00420536 | 1.2 | 2.62 |
Composition | Sintering Condition | Density (g/cm3) | Theoretical Density (g/cm3) | Relative Density |
---|---|---|---|---|
No binder | 1320 °C 1 h | 5.4853 | 6.0133 | 91.22% |
Binder A added specimens | 5.5514 | 6.0123 | 92.33% | |
Binder B added specimens | 5.5836 | 6.0128 | 92.86% | |
Binder C added specimens | 5.5421 | 6.0127 | 92.17% | |
Binder D added specimens | 5.5415 | 6.0137 | 92.15% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, N.-B.; Baek, J.-S.; Kim, E.-S. The Effect of PVA Binder Solvent Composition on the Microstructure and Electrical Properties of 0.98BaTiO3-0.02(Ba0.5Ca0.5)SiO3 Doped with Dy2O3. Processes 2021, 9, 2067. https://doi.org/10.3390/pr9112067
Jo N-B, Baek J-S, Kim E-S. The Effect of PVA Binder Solvent Composition on the Microstructure and Electrical Properties of 0.98BaTiO3-0.02(Ba0.5Ca0.5)SiO3 Doped with Dy2O3. Processes. 2021; 9(11):2067. https://doi.org/10.3390/pr9112067
Chicago/Turabian StyleJo, Nak-Beom, Jin-Seok Baek, and Eung-Soo Kim. 2021. "The Effect of PVA Binder Solvent Composition on the Microstructure and Electrical Properties of 0.98BaTiO3-0.02(Ba0.5Ca0.5)SiO3 Doped with Dy2O3" Processes 9, no. 11: 2067. https://doi.org/10.3390/pr9112067
APA StyleJo, N. -B., Baek, J. -S., & Kim, E. -S. (2021). The Effect of PVA Binder Solvent Composition on the Microstructure and Electrical Properties of 0.98BaTiO3-0.02(Ba0.5Ca0.5)SiO3 Doped with Dy2O3. Processes, 9(11), 2067. https://doi.org/10.3390/pr9112067