Laminar Burning Velocity of Lean Methane/Air Flames under Pulsed Microwave Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Burner Setup
2.2. Microwave Setup
2.3. Experimental Procedure and Data Analysis
3. Results
3.1. SL for Methane/Air at Standard Conditions
3.2. SL for Methane/Air with Microwaves
3.3. Effect of Varied Pulse Sequence and Power
4. Discussion and Conclusions
- -
- At the present conditions with a maximum average electrical power of 250 W, the increase in laminar burning velocity is in the range of 1.8–12.7%;
- -
- From the investigated pulse sequences, and at a constant E-field and average power, the largest effect on the flame is obtained for the longest pulse, namely 50 μs;
- -
- Increase in E-field in the range 350–380 kV/m results in a stronger enhancement of the laminar burning velocity.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ju, Y.; Sun, W. Plasma assisted combustion: Dynamics and chemistry. Prog. Energy Combust. Sci. 2015, 48, 21–83. [Google Scholar] [CrossRef]
- Ju, Y.; Sun, W. Plasma assisted combustion: Progress, challenges, and opportunities. Combust. Flame 2015, 162, 529–532. [Google Scholar] [CrossRef]
- Starikovskaia, S.M. Plasma-assisted ignition and combustion: Nanosecond discharges and development of kinetic mechanisms. J. Phys. D Appl. Phys. 2014, 47, 353001. [Google Scholar] [CrossRef]
- Starikovskiy, A.; Aleksandrov, N. Plasma-assisted ignition and combustion. Prog. Energy Combust. Sci. 2013, 39, 61–110. [Google Scholar] [CrossRef] [Green Version]
- Starik, A.M.; Loukhovitski, B.I.; Sharipov, A.S.; Titova, N.S. Physics and chemistry of the influence of excited molecules on combustion enhancement. Philos. Trans. R. Soc. 2015, 373, 20140341. [Google Scholar] [CrossRef] [Green Version]
- Calcote, H.F.; Pease, R.N. Electrical properties of flames—Burner flames in longitudinal electric fields. Ind. Eng. Chem. 1951, 43, 2726–2731. [Google Scholar] [CrossRef]
- Jaggers, H.C.; Vonengel, A. Effect of electric fields on burning velocity of various flames. Combust. Flame 1971, 16, 275–285. [Google Scholar] [CrossRef]
- Bowser, R.J.; Weinberg, F.J. Effect of direct electric-fields on normal burning velocity. Combust. Flame 1972, 18, 296–300. [Google Scholar] [CrossRef]
- Ward, M.A.V. Potential uses of microwaves to increase internal-combustion engine efficiency and reduce exhaust pollutants. Microwave Power Electromag. Energ. 1977, 12, 187–199. [Google Scholar] [CrossRef]
- Clements, R.M.; Smith, R.D.; Smy, P.R. Enhancement of flame speed by intense microwave-radiation. Combust. Sci. Technol. 1981, 26, 77–81. [Google Scholar] [CrossRef]
- Maclatchy, C.S.; Clements, R.M.; Smy, P.R. An experimental investigation of the effect of microwave-radiation on a propane-air flame. Combust. Flame 1982, 45, 161–169. [Google Scholar] [CrossRef]
- Stockman, E.S.; Zaidi, S.H.; Miles, R.B.; Carter, C.D.; Ryan, M.D. Measurements of combustion properties in a microwave enhanced flame. Combust. Flame 2009, 156, 1453–1461. [Google Scholar] [CrossRef]
- Chen, B.-S.; Garner, A.L.; Bane, S.P.M. Simulation of flame speed enhancement of a hydrocarbon flame with a microwave field. Combust. Flame 2019, 207, 250–264. [Google Scholar] [CrossRef]
- Pedersen, T.; Brown, R.C. Simulation of electric field effects in premixed methane flames. Combust. Flame 1993, 94, 433–448. [Google Scholar] [CrossRef]
- Groff, E.G.; Krage, M.K. Microwave effects on premixed flames. Combust. Flame 1984, 56, 293–306. [Google Scholar] [CrossRef]
- Zaidi, S.; Stockman, E.; Qin, X.; Zhao, Z.; Macheret, S.; Ju, Y.; Miles, R.; Sullivan, D.; Kline, J. Measurements of Hydrocarbon Flame Speed Enhancement in High-Q Microwave Cavity. Proceedings of 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006; AIAA: Reston, VA, USA, 2006; pp. 14792–14806. [Google Scholar]
- Zaidi, S.; Qin, X.; Macheret, S.; Ju, Y.; Miles, R.; Sullivan, D.; Evans, M. Microwave-assisted Hydrocarbon Flame Speed Enhancement. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005; AIAA: Reston, VA, USA, 2005; pp. 9629–9641. [Google Scholar]
- Zaidi, S.; Macheret, S.; Vasilyak, L.; Miles, R.; Ju, Y.; Sullivan, D. Increased Speed of Premixed Laminar Flames in a Microwave Resonator. In Proceedings of the 35th AIAA Plasmadynamics and Lasers Conference, Portland OR, USA, 28 June–1 July 2004; AIAA: Reston, VA, USA, 2004; pp. 2004–2721. [Google Scholar]
- Stockman, E.; Zaidi, S.; Miles, R. Pulsed Microwave Enhancement of Laminar and Turbulent Hydrocarbon Flames. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2007; AIAA: Reston, VA, USA, 2007; p. 1348. [Google Scholar]
- Stockman, E.S. Microwave Enhanced Combustion of Laminar Hydrocarbon Flame Fronts; Princeton University: Princeton, NJ, USA, 2009. [Google Scholar]
- Shinohara, K.; Takada, N.; Sasaki, K. Enhancement of burning velocity in premixed burner flame by irradiating microwave power. J. Phys. D Appl. Phys. 2009, 42, 182008. [Google Scholar] [CrossRef]
- Michael, J.B.; Chng, T.L.; Miles, R.B. Sustained propagation of ultra-lean methane/air flames with pulsed microwave energy deposition. Combust. Flame 2013, 160, 796–807. [Google Scholar] [CrossRef]
- Nilsson, E.J.K.; Hurtig, T.; Ehn, A.; Fureby, C. A setup for studies of laminar flame under microwave irradiation. Rev. Sci. Instrum. 2019, 90, 113502. [Google Scholar] [CrossRef]
- Degoey, L.P.H.; Vanmaaren, A.; Quax, R.M. Stabilization of adiabatic premixed laminar flames on a flat flame burner. Combust. Sci. Technol. 1993, 92, 201–207. [Google Scholar] [CrossRef]
- Alekseev, V.A.; Naucler, J.D.; Christensen, M.; Nilsson, E.J.K.; Volkov, E.N.; de Goey, L.P.H.; Konnov, A.A. Experimental Uncertainties of the Heat Flux Method for Measuring Burning Velocities. Combust. Sci. Technol. 2016, 188, 853–894. [Google Scholar] [CrossRef]
- Vanmaaren, A.; Thung, D.S.; Degoey, L.P.H. Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures. Combust. Sci. Technol. 1994, 96, 327–344. [Google Scholar] [CrossRef] [Green Version]
- Sileghem, L.; Alekseev, V.A.; Vancoillie, J.; van Geem, K.M.; Nilsson, E.J.K.; Verhelst, S.; Konnov, A.A. Laminar burning velocity of gasoline and the gasoline surrogate components iso-octane, n-heptane and toluene. Fuel 2013, 112, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Hermanns, R.T.E. Laminar Burning Velocities of Methane-Hydrogen-Air Mixtures; Eindhoven University of Technology: Eindhoven, The Netherlands, 2007. [Google Scholar]
- Coppens, F.H.V.; de Ruyck, J.; Konnov, A.A. The effects of composition on the burning velocity and nitric oxide formation in laminar premixed flames of CH4 + H2 + O2 + N2. Combust. Flame 2007, 149, 409–417. [Google Scholar] [CrossRef]
- Dirrenberger, P.; le Gall, H.; Bounaceur, R.; Herbinet, O.; Glaude, P.A.; Konnov, A.; Battin-Leclerc, F. Measurements of Laminar Flame Velocity for Components of Natural Gas. Energy Fuels 2011, 25, 3875–3884. [Google Scholar] [CrossRef] [Green Version]
- Bosschaart, K.J.; de Goey, L.P.H. The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method. Combust. Flame 2004, 136, 261–269. [Google Scholar] [CrossRef]
- Nilsson, E.J.K.; van Sprang, A.; Larfeldt, J.; Konnov, A.A. The comparative and combined effects of hydrogen addition on the laminar burning velocities of methane and its blends with ethane and propane. Fuel 2017, 189, 369–376. [Google Scholar] [CrossRef]
- Lowry, W.; de Vries, J.; Krejci, M.; Petersen, E.; Serinyel, Z.; Metcalfe, W.; Curran, H.; Bourque, G. Laminar Flame Speed Measurements and Modeling of Pure Alkanes and Alkane Blends at Elevated Pressures. J. Eng. Gas. Turbines Power 2011, 133, 91501. [Google Scholar] [CrossRef]
- Hu, E.J.; Li, X.T.; Meng, X.; Chen, Y.Z.; Cheng, Y.; Xie, Y.L.; Huang, Z.H. Laminar flame speeds and ignition delay times of methane-air mixtures at elevated temperatures and pressures. Fuel 2015, 158, 1–10. [Google Scholar] [CrossRef]
- Gu, X.J.; Haq, M.Z.; Lawes, M.; Woolley, R. Laminar burning velocity and Markstein lengths of methane-air mixtures. Combust. Flame 2000, 121, 41–58. [Google Scholar] [CrossRef]
Authors | Flame Config. and Diagnostics Tools | Power (W) | Microwave | E-Field Strength (kV/m) | ϕ | Flame Enhancement |
---|---|---|---|---|---|---|
Zaidi et al. [16,17,18] | SFF/PIV | 1000–2600 | Cont. | 200 (max) | 0.7 | 15–68% |
Zaidi et al. [16,17] | SFF/PIV | 400 | Cont. | 0.77 | 21% | |
Zaidi et al. [16] | SFF/PIV | 700, 1200 | Cont. | 0.74–0.78 | 8–35% | |
Stockman et al. [19] | SFF/PIV | 25 (average) 30,000 (peak) | Pulsed, 1 μs, 0.1–1 kHz | 0.78–0.84 | ~25% | |
Stockman et al. [12,20] | SFF/PIV | 1300 | Cont. | 500 | 0.6–0.8 | 5–21% |
Shinohara et al. [21] | Bunsen | 300 | Cont. | 30.2 | 19% | |
Michael et al. [22] | SPF/LS | <30 (average) 30,000 (peak) | Pulsed, 1 μs, 1 kHz | 0.63–0.95 | 10–25% | |
Present work | Heat flux | <250 (average) <5000 (peak) | Pulsed, 5–50 μs, 1–10 kHz | 350–380 | 0.65–0.75 | 2–13% |
Meas. | ϕ | ERMS (kV/m) | Pulse Length (μs) | Frequency (kHz) | Vg (cm/s) |
---|---|---|---|---|---|
1 | 0.65 | 350 | 50 | 1 | 11.5–13.0 |
2 | 0.7 | 350 | 50 | 1 | 16.0–18.0 |
3 | 0.75 | 350 | 50 | 1 | 21.5–23.5 |
4 | 0.7 | 350 | 25 | 2 | 15.5–17.0 |
5 | 0.7 | 350 | 10 | 5 | 15.5–17.0 |
6 | 0.7 | 350 | 5 | 10 | 17.0 |
7 | 0.7 | 370 | 25 | 2 | 15.5–17.0 |
8 | 0.7 | 370 | 10 | 5 | 17.0 |
9 | 0.7 | 380 | 10 | 5 | 17.0 |
Meas. | SL (cm/s) | ΔSL (cm/s) | Increase (%) |
---|---|---|---|
1 | 11.9 | 0.5 | 4.1 |
2 | 18.1 | 2.0 | 12.7 |
3 | 23.7 | 1.7 | 7.9 |
4 | 16.5 | 0.4 | 2.7 |
5 | 16.4 | 0.35 | 2.2 |
6 | - | 0.3 | 1.8 |
7 | 16.8 | 0.7 | 4.6 |
8 | - | 0.4 | 2.3 |
9 | - | 0.6 | 3.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nilsson, E.J.K.; Hurtig, T.; Ehn, A.; Fureby, C. Laminar Burning Velocity of Lean Methane/Air Flames under Pulsed Microwave Irradiation. Processes 2021, 9, 2076. https://doi.org/10.3390/pr9112076
Nilsson EJK, Hurtig T, Ehn A, Fureby C. Laminar Burning Velocity of Lean Methane/Air Flames under Pulsed Microwave Irradiation. Processes. 2021; 9(11):2076. https://doi.org/10.3390/pr9112076
Chicago/Turabian StyleNilsson, Elna J. K., Tomas Hurtig, Andreas Ehn, and Christer Fureby. 2021. "Laminar Burning Velocity of Lean Methane/Air Flames under Pulsed Microwave Irradiation" Processes 9, no. 11: 2076. https://doi.org/10.3390/pr9112076
APA StyleNilsson, E. J. K., Hurtig, T., Ehn, A., & Fureby, C. (2021). Laminar Burning Velocity of Lean Methane/Air Flames under Pulsed Microwave Irradiation. Processes, 9(11), 2076. https://doi.org/10.3390/pr9112076