Forecasting Quantitative Risk Indicators of Investors in Projects of Biohydrogen Production from Agricultural Raw Materials
Abstract
:1. Introduction
2. Analysis of Literature Data and Problem Statement
3. The Aim and Objectives of the Research
- -
- to propose an approach to forecasting the value of projects dedicated to biohydrogen production from agricultural raw materials;
- -
- to perform forecasting and establish trends in quantitative indicators of the investor’s profit risk in projects dedicated to biohydrogen production from agricultural raw materials using the proposed approach.
4. Materials and Methods
5. Results
6. Discussion of Research Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- A European Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal (accessed on 8 October 2020).
- The Future of Hydrogen. Available online: https://www.iea.org/reports/the-future-of-hydrogen (accessed on 8 October 2020).
- International Energy Agency. Available online: https://www.iea.org/data-and-statistics/charts/current-policy-support-for-hydrogen-deployment-2018 (accessed on 8 October 2020).
- Hydrogen Europe. Available online: https://hydrogeneurope.eu (accessed on 8 October 2020).
- National Energy and Climate Plans (NECPs). Available online: https://ec.europa.eu/energy/topics/energy-strategy/national-energy-climate-plans_en (accessed on 8 October 2020).
- EBA. European Biogas Association. Available online: https://www.europeanbiogas.eu/2020-gas-decarbonisation-pathways-study/ (accessed on 8 October 2020).
- Gas Decarbonisation Pathways 2020–2050-Gas for Climate. Available online: https://www.gasforclimate2050.eu (accessed on 8 October 2020).
- Szelag-Sikora, A.; Sikora, J.; Niemiec, M.; Gródek-Szostak, Z.; Kapusta-Duch, J.; Kubon, M.; Komorowska, M.; Karcz, J. Impact of Integrated and Conventional Plant Production on Selected Soil Parameters in Carrot Production. Sustainability 2019, 11, 5612. [Google Scholar] [CrossRef] [Green Version]
- Sikora, J.; Niemiec, M.; Szelag-Sikora, A.; Kubon, M.; Olech, E.; Marczuk, A. Biogasification of wastes from industrial processing of carps. Przem. Chem. 2017, 96, 2275–2278. [Google Scholar] [CrossRef]
- Gródek-Szostak, Z.; Malik, G.; Kajrunajtys, D.; Szeląg-Sikora, A.; Sikora, J.; Kuboń, M.; Niemiec, M.; Kapusta-Duch, J. Modeling the Dependency between Extreme Prices of Selected Agricultural Products on the Derivatives Market Using the Linkage Function. Sustainability 2019, 11, 4144. [Google Scholar] [CrossRef] [Green Version]
- Kargbo, H.; Harris, J.S.; Phan, A.N. “Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability. Renew. Sustain. Energy Rev. 2021, 135, 110168. [Google Scholar] [CrossRef]
- Yermakov, S.; Hutsol, T.; Mudryk, K.; Dziedzic, K.; Mykhailova, L. The analysis of stochastic processes in unloading the energy willow cuttings from the hopper. Environment, Technology, Resources. In Proceedings of the 12th International Scientific and Practical Conference, Rezekne, Latvia, 20–22 June 2019; pp. 249–252. [Google Scholar] [CrossRef]
- Krzysztof, D.; Krzysztof, M.; Taras, H.; Barbara, D. Impact of Grinding Coconut Shell and Agglomeration Pressure on Quality Parameters of Briquette; Engineering for Rural Development: Jelgava, Latvia, 2018; pp. 1884–1889. [Google Scholar] [CrossRef]
- Kubon, M.; Kocira, S.; Kocira, A.; Leszczyńska, D. Use of Straw as Energy Source in View of Organic Matter Balance in Family Farms. In Renewable Energy Sources: Engineering, Technology, Innovation; Book Series; Springer Proceedings in Energy; Springer: Cham, Germany, 2018. [Google Scholar] [CrossRef]
- Hydrogen Economy Outlook Key Messages. Blooomberg NEF. 30 March 2020. Available online: https://data.bloomberglp.com/professional/sites/24/BNEF-Hydrogen-Economy-Outlook-Key-Messages-30-Mar-2020.pdf (accessed on 29 January 2021).
- Practice Standard for Project Configuration Management; Project Management Institute, Four Campus Boulevard: Newton Square, PA, USA, 2007.
- ISO 21500. Guidance on Project Management. 2012. Available online: http://www.projectprofy.ru/ (accessed on 10 January 2014).
- Tryhuba, A.; Boyarchuk, V.; Tryhuba, I.; Ftoma, O.; Padyuka, R.; Rudynets, M. Forecasting the risk of the resource demand for dairy farms basing on machine learning. In Proceedings of the 2nd International Workshop on Modern Machine Learning Technologies and Data Science, MoMLeT+DS 2020, Shatsk, Ukraine, 10 May 2020; Volume I, pp. 327–340. Available online: http://ceur-ws.org/Vol-2631/paper25.pdf (accessed on 26 September 2020).
- Tryhuba, A.; Boyarchuk, V.; Tryhuba, I.; Ftoma, O. Forecasting of a Lifecycle of the Projects of Production of Biofuel Raw Materials With Consideration of Risks. In Proceedings of the International Conference on Advanced Trends in Information Theory (ATIT), Kyiv, Ukraine, 18–20 December 2019; pp. 420–425. [Google Scholar] [CrossRef]
- Tryhuba, A.; Ftoma, O.; Tryhuba, I.; Boyarchuk, O. Method of quantitative evaluation of the risk of benefits for investors of fodder-producing cooperatives. In Proceedings of the 14th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), Lviv, Ukraine, 17–20 September 2019; Volume 3, pp. 55–58. [Google Scholar] [CrossRef]
- Tryhuba, A.; Hutsol, T.; Tryhuba, I.; Pokotylska, N.; Kovalenko, N.; Tabor, S.; Kwasniewski, D. Risk Assessment of Investments in Projects of Production of Raw Materials for Bioethanol. Processes 2021, 9, 12. [Google Scholar] [CrossRef]
- Hutsol, T.; Yermakov, S.; Firman, J.; Duganets, V.; Bodnar, A. Analysis of technical solutions of planting machines, which can be used in planting energy willow. In Renewable Energy Sources: Engineering, Technology, Innovation; Springer: Cham, Germany, 2018; pp. 99–111. [Google Scholar] [CrossRef]
- Tryhuba, A.; Bashynsky, O.; Hutsol, T.; Rozkosz, A.; Prokopova, O. Justification of Parameters of the Energy Supply System of Agricultural Enterprises with Using Wind Power Installations. In Proceedings of the 6th International Conference–Renewable Energy Sources (ICoRES 2019), E3S WebConf, Krynica, Poland, 12–14 June 2019; Volume 154, p. 06001. [Google Scholar] [CrossRef] [Green Version]
- Tryhuba, A.; Boyarchuk, V.; Tryhuba, I.; Boyarchuk, O.; Ftoma, O. Evaluation of Risk Value of Investors of Projects for the Creation of Crop Protection of Family Dairy Farms. Acta Univ. Agric. Et Silvic. Mendel. Brun. 2019, 67, 1357–1367. [Google Scholar] [CrossRef] [Green Version]
- Ovcharuk, O.; Hutsol, T.; Ovcharuk, O.; Rudskyi, V.; Mudryk, K.; Jewiarz, M.; Wróbel, M.; Styks, M. Prospects of Use of Nutrient Remains of Corn Plants on Biofuels and Production Technology of Pellets. Renew. Energy Sources Eng. Technol. Innov. 2020, 293–300. [Google Scholar] [CrossRef]
- Kasprzak, K.; Wojtunik-Kulesza, K.; Oniszczuk, T.; Kuboń, M.; Oniszczuk, A. Secondary Metabolites, Dietary Fiber and Conjugated Fatty Acids as Functional Food Ingredients against Overweight and Obesity. Nat. Prod. Commun. 2018, 13, 1073–1082. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, T.A.; Aqsha, A.; Mariam, A.; Ain, S.; Hellgardt, K.; Sumaiya, Z.A.; Farooq, S. Catalytic reforming of oxygenated hydrocarbons for the hydrogen production: An outlook. Biomass Conv. Bioref. 2020, 127, 109852. [Google Scholar] [CrossRef]
- Huber, G.W.; Dumesic, J.A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catal. Today 2006, 111, 119–132. [Google Scholar] [CrossRef]
- Zhou, C.; Xia, X.; Lin, C.; Tong, D.; Beltramini, J. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 2011, 40, 5588–5617. [Google Scholar] [CrossRef] [PubMed]
- Kayfeci, M.; Keçebaş, A.; Bayat, M. Hydrogen production. Solar Hydrog. Prod. Process. Syst. Technol. 2019, 45–83. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Ishaq, H.; Dincer, I. Comparative assessment of renewable energy-based hydrogen production methods. Renew. Sustain. Energy Rev. 2021, 135, 110192. [Google Scholar] [CrossRef]
- Golub, G.; Skydan, O.; Kukharets, V.; Yarosh, Y.; Kukharets, S. The estimation of energetically self-sufficient agroecosystem’s model. J. Cent. Eur. Agric. 2020, 21, 168–175. [Google Scholar] [CrossRef]
- Ni, M.; Leung, D.Y.; Leung, M.K.; Sumathy, K. An overview of hydrogen production from biomass. Fuel Process. Technol. 2006, 87, 461–472. [Google Scholar] [CrossRef]
- Diachuk, O.; Chepeliev, M.; Podolets, R.; Trypolska, G.; Venger, V.; Saprykina, T.; Yukhymets, R. Transition of Ukraine to the Renewable Energy by 2050. In Heinrich Boell Foundation Regional Office in Ukraine; Publishing house “Art Book” Ltd.: Kyiv, Ukraine, 2017; Volume 88, Available online: https://ua.boell.org/sites/default/files/transition_of_ukraine_to_the_renewable_energy_by_2050_1.pdf (accessed on 1 November 2017).
Indicator | Period | ||
---|---|---|---|
2019 | 2030 | 2050 | |
Mathematical expectation of the market value of biohydrogen | 3.55 | 1.95 | 1.15 |
The standard deviation of the market value of biohydrogen | 1.05 | 0.75 | 0.45 |
Mathematical expectation of the market value of natural gas | 2.4 | 2.4 | 2.15 |
The standard deviation of the market value of natural gas | 1 | 1 | 0.85 |
Indicator | Options for the Implementation of the Biohydrogen Production Project | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Minimum profit from biohydrogen production, $/kg | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
2019 | ||||||||||
Probability of profit in a biohydrogen production project | 0.1 | 0.09 | 0.08 | 0.07 | 0.05 | 0.03 | 0.0 | 0.0 | 0.0 | 0.0 |
Probability of loss in a biohydrogen production project | 0.9 | 0.91 | 0.92 | 0.93 | 0.95 | 0.97 | 1.0 | 1.0 | 1.0 | 1.0 |
Profit risk in a biohydrogen production project | critical | critical | critical | critical | critical | critical | critical | critical | critical | critical |
2030 | ||||||||||
Probability of profit in a biohydrogen production project | 0.78 | 0.73 | 0.57 | 0.53 | 0.51 | 0.44 | 0.4 | 0.3 | 0.26 | 0.23 |
Probability of loss in a biohydrogen production project | 0.22 | 0.27 | 0.43 | 0.47 | 0.49 | 0.56 | 0.6 | 0.7 | 0.74 | 0.77 |
Profit risk in a biohydrogen production project | admissible | admissible | average | average | average | high | high | high | critical | critical |
2050 | ||||||||||
Probability of profit in a biohydrogen production project | 0.97 | 0.93 | 0.89 | 0.85 | 0.8 | 0.78 | 0.7 | 0.64 | 0.62 | 0.57 |
Probability of loss in a biohydrogen production project | 0.03 | 0.07 | 0.11 | 0.15 | 0.2 | 0.22 | 0.3 | 0.36 | 0.38 | 0.43 |
Profit risk in a biohydrogen production project | minimal | minimal | admissible | admissible | admissible | admissible | admissible | average | average | average |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tryhuba, A.; Hutsol, T.; Glowacki, S.; Tryhuba, I.; Tabor, S.; Kwasniewski, D.; Sorokin, D.; Yermakov, S. Forecasting Quantitative Risk Indicators of Investors in Projects of Biohydrogen Production from Agricultural Raw Materials. Processes 2021, 9, 258. https://doi.org/10.3390/pr9020258
Tryhuba A, Hutsol T, Glowacki S, Tryhuba I, Tabor S, Kwasniewski D, Sorokin D, Yermakov S. Forecasting Quantitative Risk Indicators of Investors in Projects of Biohydrogen Production from Agricultural Raw Materials. Processes. 2021; 9(2):258. https://doi.org/10.3390/pr9020258
Chicago/Turabian StyleTryhuba, Anatoliy, Taras Hutsol, Szymon Glowacki, Inna Tryhuba, Sylwester Tabor, Dariusz Kwasniewski, Dmytro Sorokin, and Serhii Yermakov. 2021. "Forecasting Quantitative Risk Indicators of Investors in Projects of Biohydrogen Production from Agricultural Raw Materials" Processes 9, no. 2: 258. https://doi.org/10.3390/pr9020258
APA StyleTryhuba, A., Hutsol, T., Glowacki, S., Tryhuba, I., Tabor, S., Kwasniewski, D., Sorokin, D., & Yermakov, S. (2021). Forecasting Quantitative Risk Indicators of Investors in Projects of Biohydrogen Production from Agricultural Raw Materials. Processes, 9(2), 258. https://doi.org/10.3390/pr9020258