Removal of Anionic and Cationic Dyes from Wastewater Using Activated Carbon from Palm Tree Fiber Waste
Abstract
:1. Introduction
2. Materials and Experimental Procedures
2.1. Instruments
2.2. Materials and Chemical Reagent
2.3. Chemical and Thermal Activation of Carbon from Palm Tree Fiber
2.4. Characterization of AC
2.5. Adsorption Processing
2.6. Desorption Studies and Regeneration
2.7. Application of Real Water Samples
3. Results and Discussion
3.1. Physical Properties, Characterization, and Morphology of Synthesized PTFAC
3.2. Optimization of Preparation Conditions for PTFAC
3.3. Influence of Parameters on the Adsorption Process (pH, Duration, Initial Concentration, Adsorbent Dosage)
3.4. Adsorption Isotherms
3.5. Adsorption Kinetics
3.6. Desorption and Regeneration Studies
3.7. Environmental Water Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, C.; Feng, C.; Wei, M.; Wu, Y. Enhanced adsorption of anionic toxic contaminant Congo Red by activated carbon with electropositive amine modification. Chemosphere 2018, 208, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Moussavi, G.; Mahmoudi, M. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. J. Hazard. Mater. 2009, 168, 2–3. [Google Scholar] [CrossRef]
- Chen, Y.; Hermens, J.L.; Jonker, M.T.; Arnot, J.A.; Armitage, J.M.; Brown, T.; Nichols, J.W.; Fay, K.A.; Droge, S.T. Which Molecular Features Affect the Intrinsic Hepatic Clearance Rate of Ionizable Organic Chemicals in Fish? Env. Sci. Technol. 2016, 50, 12722–12731. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.; Raja, A.S.M. Natural Dyes: Sources, Chemistry, Application and Sustainability Issues. In Roadmap to Sustainable Textiles and Clothing; Textile Science and Clothing Technology (Springer Singap.); Muthu, S., Ed.; Spring: Berlin/Heidelberg, Germany, 2014; pp. 37–80. [Google Scholar] [CrossRef]
- Freundlich. Uber die Adsorption in Lösungen. J. Phys. Chem. 1906, 57, 385.
- Aly, Z.; Graulet, A.; Scales, N.; Hanley, T. Removal of Aluminium from Aqueous Solutions Using PAN-Based Adsorbents: Characterisation, Kinetics, Equilibrium and Thermodynamic Studies. Environ. Sci. Pollut. Res. 2014, 21, 3972–3986. [Google Scholar] [CrossRef]
- Suhas, V.K.; Gupta, P.J.M.; Carrott, R.; Singh, M.; Chaudhary, S.K. Cellulose: A review as natural, modified and activated carbon adsorbent. Bioresour. Technol. 2016, 216, 1066–1076. [Google Scholar] [CrossRef]
- Danish, M.; Khanday, W.A.; Hashim, R.; Sulaiman, N.S.B.; Akhtar, M.N.; Nizami, M. Application of optimized large surface area date stone (Phoenix dactylifera ) activated carbon for rhodamin B removal from aqueous solution: Box-Behnken design approach. Ecotoxicol. Environ. Saf. 2017, 139, 280–290. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Y.; He, T.; You, L.; Shen, X. Assessment of Potential Capability of Water Bamboo Leaves on the Adsorption Removal Efficiency of Cationic Dye from Aqueous Solutions. Polym. Environ. 2016, 24, 148–158. [Google Scholar] [CrossRef]
- Yao, T.; Guo, S.; Zeng, C.; Wang, C.; Zhang, L. Investigation on efficient adsorption of cationic dyes on porous magnetic polyacrylamide microspheres. J. Hazard. Mater. 2015, 292, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Bousba, S.; Meniai, A.H. Adsorption of 2-chlorophenol onto sewage sludge based adsorbent: Equilibrium and kinetic study. Chem. Eng. Trans. 2013, 35, 859–864. [Google Scholar]
- Tian, H.; Peng, J.; Lv, T.; Sun, C.; He, H. Preparation and performance study of MgFe2O4/metal-organic framework composite for rapid removal of organic dyes from water. J. Solid State Chem. 2018, 257, 40–48. [Google Scholar] [CrossRef]
- Fu, K.; Yue, Q.; Gao, B.; Wang, Y.; Li, Q. Activated carbon from tomato stem by chemical activation with FeCl2, COLSUA Colloids and Surfaces. Phys. Eng. Asp. 2017, 529, 842–849. [Google Scholar] [CrossRef]
- Vohra, M.S. Adsorption-Based Removal of Gas-Phase Benzene Using Granular Activated Carbon (GAC) Produced from Date Palm Pits. Arabian J. Sci Eng. 2015, 40, 3007–3017. [Google Scholar] [CrossRef]
- Somaia, G.M.; Sahar, M.A. Preparation of environmentally friendly activated carbon for removal of pesticide from aqueous media. Int. J. Indust. Chem. 2017, 8, 121–132. [Google Scholar]
- Silva, T.L.; Cazetta, A.L.; Souza, P.S.C.; Zhang, T.; Asefa, T.; Almeida, V.C. Mesoporous activated carbon fibers synthesized from denim fabric waste: Efficient adsorbents for removal of textile dye from aqueous solutions. J. Clean. Prod. 2018, 171, 482–490. [Google Scholar] [CrossRef]
- Mosbah, M.b.; Mechi, L.; Khiari, R.; Moussaoui, Y. Current State of Porous Carbon for Wastewater Treatment. Processes 2020, 8, 1651. [Google Scholar] [CrossRef]
- Abdel-Ghani, N.T.; El-Chaghaby, G.A.; Rawash, E.S.A.; Lima, E.C. Adsorption of Coomassie Brilliant Blue R-250 dye onto novel activated carbon prepared from Nigella sativa L. waste: Equilibrium, kinetics and thermodynamics running. J. Chil. Chem. Soc. 2017, 62, 3505–3511. [Google Scholar] [CrossRef]
- Choong, C.E.; Kim, M.; Yoon, S.; Lee, G.; Park, C.M. Mesoporous La/Mg/Si-incorporated palm shell activated carbon for the highly efficient removal of aluminum and fluoride from water. J. Taiwan Inst. Chem. Eng. 2018, 93, 306–314. [Google Scholar] [CrossRef]
- Kaveeshwar, A.R.; Ponnusamy, S.K.; Revellame, E.D.; Gang, D.D.; Zappi, M.E.; Subramaniam, R. Pecan shell based activated carbon for removal of iron(II) from fracking wastewater: Adsorption kinetics, isotherm and thermodynamic studies. Process. Saf. Environ. Prot. 2018, 114, 107–122. [Google Scholar] [CrossRef]
- Bhomick, P.C.; Supong, A.; Baruah, M.; Pongener, C.; Sinha, D. Pine Cone biomass as an efficient precursor for the synthesis of activated biocarbon for adsorption of anionic dye from aqueous solution: Isotherm, kinetic, thermodynamic and regeneration studies. Sustainable Chem. Pharm. 2018, 10, 41–49. [Google Scholar] [CrossRef]
- Getu, A.; Sahu, Q. Removal of Reactive Dye using Activated Carbon from Agricul-tural Waste. J. Eng. Geol. Hydrogeol. 2014, 2, 23. [Google Scholar] [CrossRef]
- Wongcharee, S.; Aravinthan, V.; Erdei, L. Mesoporous activated carbon-zeolite composite prepared from waste macadamia nut shell and synthetic faujasite. Chin. J. Chem. Eng. 2019, 27, 226–236. [Google Scholar] [CrossRef]
- Pongener, C.; Bhomick, S.P.; Upasana Bora, R.L.; Goswamee, A.; Supong, D.S. Sand-supported bio-adsorbent column of activated carbon for removal of coliform bacteria and Escherichia coli from water. Int. J. Environ. Sci. Technol. 2017, 14, 1897–1904. [Google Scholar] [CrossRef]
- Gumus, R.H.; Okpeku, I. Production of Activated Carbon and Characterization from Snail Shell Waste ( Helix pomatia ). Adv. Chem. Eng. Sci. 2015, 5, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Goswami, M.; Phukan, P. Enhanced adsorption of cationic dyes using sulfonic acid modified activated carbon. J. Environ. Chem. Eng. 2017, 5, 3508–3517. [Google Scholar] [CrossRef]
- Shamsuddin, M.S.; Yusoff, N.R.N.; Sulaiman, M.A. Synthesis and Characterization of Activated Carbon Produced from Kenaf Core Fiber Using H3PO4 Activation. Procedia Chem. 2016, 19, 558–565. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Pan, S.; Balasubramanian, R.; Das, P. Date Palm Based Activated Carbon for the Efficient Removal of Organic Dyes from Aqueous Environment. Sustain. Agric. Rev. 2019, 34, 247–263. [Google Scholar]
- Kumar, A.; Jena, H.M. Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results Phys. 2016, 6, 651–658. [Google Scholar] [CrossRef] [Green Version]
- Thitame, P.V.; Shukla, S.R. Adsorptive removal of reactive dyes from aqueous solution using activated carbon synthesized from waste biomass materials. Int. J. Environ. Sci Technol. 2016, 13, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.L.; Wu, Z.; Li, Q.; Xu, W.; Tian, R.W. Preparation and characterization of high surface area activated carbon from pine wood sawdust by fast activation with H3PO4 in a spouted bed, J Mater Cycles Waste Manag Journal of Material Cycles and Waste Management. J. Mater. Cycles Waste Manag. 2018, 20, 925–936. [Google Scholar] [CrossRef]
- Al-Oqla, F.M.; Alothman, O.Y.; Jawaid, M.; Sapuan, S.M.; Es-Saheb, M.H. Processing and Properties of Date Palm Fibers and Its Composites. Biomass Bioenergy 2014, 1–25. [Google Scholar] [CrossRef]
- Alhogbi, B.G.; Salam, M.A.; Ibrahim, O. Environmental Remediation of Toxic Lead Ions from Aqueous Solution Using Palm Tree Waste Fibers Biosorbent. Desal. Water Treat. 2019, 145, 179–188. [Google Scholar] [CrossRef]
- Chahinez, H.O.; Abdelkader, O.; Leila, Y.; Tran, H.N. One-stage preparation of palm petiole-derived biochar: Characterization and application for adsorption of crystal violet dye in water. Env. Technol. Innov. 2020, 19, 100872. [Google Scholar] [CrossRef]
- Salazar-Rabago, J.; Leyva-Ramos, R. Novel Biosorbent with High Adsorption Capacity Prepared by Chemical Modification of White Pine (Pinus Durangensis) Sawdust. Adsorption of Pb (II) from Aqueous Solutions. J. Environ. Manag. 2016, 169, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhu, Z.; Coomes, A.; Haghseresht, F.; Lu, G. The Physical and Surface Chemical Characteristics of Activated Carbons and the Adsorption of Methylene Blue from Wastewate. J. Colloid Interface Sci. 2005, 284, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Jabar, J.M.; Odusote, Y.A.; Alabi, K.A.; Ahmed, I.B. Kinetics and mechanisms of congo-red dye removal from aqueous solution using activated Moringa oleifera seed coat as adsorbent. Appl. Water Sci. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Deng, J.; Xiong, T.; Wang, H.; Zheng, A.; Wang, Y. Effects of Cellulose, Hemicellulose, and Lignin on the Structure and Morphology of Porous Carbons. Sustain. Chem. Eng. 2016, 4, 3750–3756. [Google Scholar] [CrossRef]
- Ojedokun, A.T.; Bello, O.S. Kinetic modeling of liquid-phase adsorption of Congo red dye using guava leaf-based activated carbon. Appl. Water Sci. 2017, 7, 1965–1977. [Google Scholar] [CrossRef] [Green Version]
- Yakout, S.M.; El-Deen, G.S. Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arabian J. Chem. 2016, 9, S1155–S1162. [Google Scholar] [CrossRef] [Green Version]
- Nasser, R.A.; Salem, S.M.Z.; Hiziroglu, H.A.; Al-Mefarrej, A.S.; Mohareb, M.; Alam, I.M.A. Chemical Analysis of Different Parts of Date Palm (Phoenix Dactylifera L.) Using Ultimate, Proximate and Thermo-Gravimetric Techniques for Energy Production. Energies 2016, 9, 374. [Google Scholar] [CrossRef] [Green Version]
- Daoud, M.; Benturki, O.; Kecira, Z.; Daoud, M.; Girods, P.; Donnot, A. Removal of Reactive dye (BEZAKTIV Red S-MAX) from Aqueous Solution by Adsorption onto Activated Carbons Prepared from Date Palm Rachis and Jujube Stones. J. Mol. Liq. 2017, 243, 799–809. [Google Scholar] [CrossRef]
- Buhani1, S.; Aditiya, I.; Al Kausar, R.; Sumadi; Rinawati. Production of a Spirulina sp. Algae Hybrid with a Silica Matrix as an Effective Adsorbent to Absorb Crystal Violet and Methylene Blue in a Solution. Sustain. Environ. Res. 2019, 29, 27. [Google Scholar]
- Marsh, H.; Rodríguez-Reinoso, F. Activated Carbon, Activation Processes (Chemical). Elsevire (Lond. UK) 2006, 6, 322–365. [Google Scholar]
- Yorgun, S.; Yildiz, D. Preparation and Characterization of Activated Carbons from Paulownia Wood by Chemical Activation with H3PO4. J. Taiwan Inst. Chem. Eng. 2015, 53, 122–131. [Google Scholar] [CrossRef]
- Pego, M.F.F.; Veiga, T.R.L.A.; Bianchi, M.; Carvalho, L. Surface modification of activated carbon by corona treatment. J. Ann. Braz. Acad. Sci. 2019, 91, 1678–2690. [Google Scholar] [CrossRef] [PubMed]
- Inyinbor, A.A.; Adekola, F.A.; Olatunji, G.A. Kinetics and isothermal modeling of liquid phase adsorption of rhodamine B onto urea modified Raphia hookerie epicarp. App. Water Sci. 2017, 7, 3257–3266. [Google Scholar] [CrossRef] [Green Version]
- Sivarajan, A.; Shanmugapriya, V. Determination of isotherm parameters for the adsorption of Rhodamine B dye onto activated carbon prepared from Ziziphus jujuba seeds. Asian J. Res. Chem. 2017, 10, 362. [Google Scholar] [CrossRef]
- Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. Am. Chem. Soc. 1968, 40, 1361–1402. [Google Scholar] [CrossRef] [Green Version]
- Urano, K.; Koichi, Y.; Nakazawa, Y. Equilibria for adsorption of organic compounds on activated carbons in aqueous solutions I. Modified Freundlich isotherm equation and adsorption potentials of organic compounds. J. Colloid Interface Sci. 1981, 81, 477–485. [Google Scholar] [CrossRef]
- Zamri, T.K.; Abdul Munaim, M.S.; Abdul Wahid, Z. Regression analysis for the adsorption isotherms of natural dyes onto bamboo yarn. Int. Res. J. Eng. Technol. 2017, 4, 1699–1703. [Google Scholar]
- Tor, A.; Cengeloglu, Y. Removal of Congo Red from Aqueous Solution by Adsorption onto Acid Activated Red Mud. J. Hazard. Mater. 2006, 138, 409–415. [Google Scholar] [CrossRef]
- Pathak, U.; Jhunjhunwala, A.; Roy, A.; Das, P.; Kumar, T.; Mandal, T. Efficacy of spent tea waste as chemically impregnated adsorbent involving ortho-phosphoric and sulphuric acid for abatement of aqueous phenol—Isotherm, kinetics and artificial neural network modelling. Environ. Sci. Pollut. Res. 2020, 27, 20629–20647. [Google Scholar] [CrossRef] [PubMed]
- Auta, M.; Hameed, B. Coalesced Chitosan Activated Carbon Composite for Batch and Fixed-Bed Adsorption of Cationic and Anionic Dyes. Colloids Surf. B Biointerfaces 2013, 105, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Kumar, R. Adsorptive Removal of Congo Red Dye from Aqueous Solution Using Bael Shell Carbon. Appl. Surf. Sci. 2010, 257, 1628–1633. [Google Scholar] [CrossRef]
- Hu, L.; Guang, C.; Liu, Y.; Su, Z.; Gong, S.; Yao, Y.; Wang, Y. Adsorption behavior of dyes from an aqueous solution onto composite magnetic lignin adsorbent. Chemosphere 2020, 246, 125757. [Google Scholar] [CrossRef] [PubMed]
Dyes | Rhodamine B (RhB) | Congo Red (CR) |
---|---|---|
Molecular formula | C28H31N2O3Cl | C32H22N6Na2O6S2 |
Molecular structure | ||
Molecular weight (g/mol) | 479.02 | 696.66 |
Chemical/Dye class | Xanthene dye | Diazo dye |
λmax (nm) | 554 nm | 496 nm |
Adsorption Isotherm | Parameters | CR | RhB |
---|---|---|---|
Langmuir | qmax (mg g−1)/Co (25 mg L−1) | 10.4 | 26.5 |
Kl (L mg−1) | 81.91 | 1264.5 | |
Rl | 0.04 | 0.034 | |
R2 | 0.996 | 0.980 | |
χ2 | 0.013 | 1 × 10−3 | |
Freundlich | Kf (mg g−1) (mg L−1) | 0.24 | 3.07 × 102 |
1/n | −1.43 | 1.357 | |
R2 | 0.857 | 0.854 | |
χ2 | 4.131 | 3 × 10−3 |
Kinetic Models | Parameters | CR | RhB |
---|---|---|---|
Pseudo first order | qe,cal (mg g−1) | 0.408 | 0.006 |
k1 (1/min) | −0.031 | −0.023 | |
R2 | 0.90 | 0.72 | |
χ2 | 51.05 | 3732.3 | |
Pseudo second order | qe,cal (mg g−1) | 4.992 | 4.998 |
k2 (g mg−1 min−1) | 1.35 × 10−3 | 9.75 × 10−3 | |
R2 | 0.999 | 1 | |
χ2 | 7.744 × 10−5 | 2.011 × 10−8 | |
qe,exp | 4.972 | 4.999 |
Desorption Reagent | Desorption, % | |
---|---|---|
CR | RhB | |
CH3;COOH (0.1 M) | 90.78 | 99.69 |
CH3;COOH (0.5 M) | 92.10 | 99.73 |
CH3;COOH(1 M) | 89.47 | 99.65 |
NaOH (0.1 M) | 93.42 | 99.77 |
NaOH (0.5 M) | 92.10 | 99.81 |
NaOH (1 M) | 92.10 | 99.84 |
H2O (pH 2.5) | 98.68 | 99.88 |
H2O (pH 4.5) | 97.36 | 99.84 |
H2O (pH 6.5) | 96.05 | 99.84 |
H2O (pH 8.5) | 93.42 | 99.81 |
H2O (pH 10.5) | 93.42 | 99.77 |
Tap Water | Well Water | Seawater | Sewage Water Treatment Plant | ||
---|---|---|---|---|---|
Dyes | |||||
% Removal of RhB | 99.8 | 99.3 | 99.4 | 98.3 | |
% Removal of CR | 99.8 | 94.4 | 93.3 | 92.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhogbi, B.G.; Altayeb, S.; Bahaidarah, E.A.; Zawrah, M.F. Removal of Anionic and Cationic Dyes from Wastewater Using Activated Carbon from Palm Tree Fiber Waste. Processes 2021, 9, 416. https://doi.org/10.3390/pr9030416
Alhogbi BG, Altayeb S, Bahaidarah EA, Zawrah MF. Removal of Anionic and Cationic Dyes from Wastewater Using Activated Carbon from Palm Tree Fiber Waste. Processes. 2021; 9(3):416. https://doi.org/10.3390/pr9030416
Chicago/Turabian StyleAlhogbi, Basma G., Shoruq Altayeb, Effat. A. Bahaidarah, and Mahmoud F. Zawrah. 2021. "Removal of Anionic and Cationic Dyes from Wastewater Using Activated Carbon from Palm Tree Fiber Waste" Processes 9, no. 3: 416. https://doi.org/10.3390/pr9030416
APA StyleAlhogbi, B. G., Altayeb, S., Bahaidarah, E. A., & Zawrah, M. F. (2021). Removal of Anionic and Cationic Dyes from Wastewater Using Activated Carbon from Palm Tree Fiber Waste. Processes, 9(3), 416. https://doi.org/10.3390/pr9030416