Application of the HPLC Method in Parenteral Nutrition Assessment: Stability Studies of Ondansetron
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Development of Sample Preparation Procedure
2.3. Chromatografic Condition
2.4. Forced Degradation Study
- Acidic hydrolysis: 0.1 mol/L of hydrochloric acid;
- Basic hydrolysis: 0.1 mol/L of sodium hydroxide;
- Oxidative stress: 3% hydrogen peroxide;
- High temperature: OND heated to boiling point.
2.5. Method Validation
2.5.1. Linearity
2.5.2. Precision and Repeatability
2.5.3. Accuracy
2.5.4. Limit of Determination (LOD) and Limit of Quantification (LOQ)
2.6. Stability Study
2.7. Physicochemical Assessment of PN Admixture
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Verheij, M.H.P.; Thompson, A.J.; Van Muijlwijk-Koezen, J.E.; Lummis, S.C.R.; Leurs, R.; De Esch, I.J.P. Design, Synthesis, and Structure–Activity Relationships of Highly Potent 5-HT3Receptor Ligands. J. Med. Chem. 2012, 55, 8603–8614. [Google Scholar] [CrossRef]
- Gregory, R.E.; Ettinger, D.S. 5-HT3 Receptor Antagonists for the Prevention of Chemotherapy-Induced Nausea and Vomiting. Drugs 1998, 55, 173–189. [Google Scholar] [CrossRef]
- Gan, T.J. Selective serotonin 5-HT3 receptor antagonists for postoperative nausea and vomiting: Are they all the same? CNS Drugs 2005, 19, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Bozzetti, F.; Arends, J.; Lundholm, K.; Micklewright, A.; Zurcher, G.; Muscaritoli, M. ESPEN Guidelines on Parenteral Nutrition: Non-surgical oncology. Clin. Nutr. 2009, 28, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Goisser, S.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.C.; et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin. Nutr. 2019, 38, 10–47. [Google Scholar] [CrossRef] [Green Version]
- Fekadu, T.; Teweldemedhin, M.; Esrael, E.; Asgedom, S.W. Prevalence of intravenous medication administration errors: A cross-sectional study. Integr. Pharm. Res. Pr. 2017, 6, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Vazquez, R.; Rotival, R.; Calvez, S.; Hoang, M.-D.; Graffard, H.; Guyon, F.; Do, B. Stability Indicating Assay Method on Vitamins: Application to their Stability Study in Parenteral Nutrition Admixtures. Chromatographia 2009, 69, 629–635. [Google Scholar] [CrossRef]
- Ribeiro, D.O.; Pinto, D.C.; Lima, L.M.T.R.; Volpato, N.M.; Cabral, L.M.; De Sousa, V.P. Chemical stability study of vitamins thiamine, riboflavin, pyridoxine and ascorbic acid in parenteral nutrition for neonatal use. Nutr. J. 2011, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Allwood, M.; Martin, H. Stability of cocarboxylase in parenteral nutrition mixturesstored in multilayer bags. Clin. Nutr. 1998, 17, 231–234. [Google Scholar] [CrossRef]
- Allwood, M.; Martin, H. The photodegradation of vitamins A and E in parenteral nutrition mixtures during infusion. Clin. Nutr. 2000, 19, 339–342. [Google Scholar] [CrossRef]
- Gibbons, E.; Allwood, M.C.; Neal, T.; Hardy, G. Degradation of dehydroascorbic acid in parenteral nutrition mixtures. J. Pharm. Biomed. Anal. 2001, 25, 605–611. [Google Scholar] [CrossRef]
- Stawny, M.; Gostyńska, A.; Olijarczyk, R.; Jelińska, A.; Ogrodowczyk, M. Stability of high-dose thiamine in parenteral nutrition for treatment of patients with Wernicke’s encephalopathy. Clin. Nutr. 2020, 39, 2929–2932. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, T.G.; Henderson, G.N.; Fox, J.; Gondi, U. Stability of ranitidine and thiamine in parenteral nutrition solutions. Nutrition 1997, 13, 547–553. [Google Scholar] [CrossRef]
- Stawny, M.; Gostyńska, A.; Olijarczyk, R.; Dettlaff, K.; Jelińska, A.; Ogrodowczyk, M. Stability studies of parenteral nutrition with a high dose of vitamin C. J. Oncol. Pharm. Pr. 2020, 26, 1894–1902. [Google Scholar] [CrossRef]
- Tomczak, S.; Stawny, M.; Dettlaff, K.; Kieliszek, M.; Słomińska, D.; Jelińska, A. Physicochemical Compatibility and Stability of Linezolid with Parenteral Nutrition. Molecules 2019, 24, 1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, M.S.; Bahari, M.B.; Darwis, Y.; Venkatesh, G.; Gillani, S.W.; Khan, A.H.; Sheshala, R. A RP-HPLC-UV Method with Solid Phase Extraction for Determination of Cefepime in Total Nutrient Admixtures: Application to Stability Studies. Curr. Pharm. Anal. 2012, 8, 68–74. [Google Scholar] [CrossRef]
- Wade, C.S.; Lampasona, V.; Mullins, R.E.; Parks, R.B. Stability of ceftazidime and amino acids in parenteral nutrient solutions. Am. J. Heal. Pharm. 1991, 48, 1515–1519. [Google Scholar] [CrossRef]
- Stawny, M.; Gostyńska, A.; Dettlaff, K.; Jelińska, A.; Kościelniak, M.; Ogrodowczyk, M. Development, Validation, and Stability Assessment Application of RP-HPLC-DAD Method for Quantification of Ampicillin in Total Parenteral Nutrition Admixtures. Antibiotics 2019, 8, 268. [Google Scholar] [CrossRef] [Green Version]
- Gostyńska, A.; Stawny, M.; Dettlaff, K.; Jelińska, A. The Interactions between Ciprofloxacin and Parenteral Nutrition Admixtures. Pharmaceutics 2019, 12, 27. [Google Scholar] [CrossRef] [Green Version]
- Raza, A.; Ijaz, A.S.; Rehman, A.U.; Rasheed, U. Spectrophotometric Determination of Ondansetron Hydrochloride in Pharmaceutical Bulk and Dosage Forms. J. Chin. Chem. Soc. 2007, 54, 223–227. [Google Scholar] [CrossRef]
- Estan-Cerezo, G.; Matoses-Chirivella, C.; Soriano-Irigaray, L.; Murcia-López, A.C.; Rodríguez-Lucena, F.J.; Navarro-Ruiz, A. Stability and compatibility of ondansetron with haloperidol in parenteral admixtures. Eur. J. Hosp. Pharm. 2017, 25, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Chong, Y.E.; Chiang, M.; Deshpande, K.; Haroutounian, S.; Kagan, L.; Lee, J.B. Simultaneous quantification of ondansetron and tariquidar in rat and human plasma using a high performance liquid chromatography-ultraviolet method. Biomed. Chromatogr. 2019, 33, e4653. [Google Scholar] [CrossRef] [PubMed]
- Simar, J.; Godet, M.; Hecq, J.-D.; Closset, M.; Gillet, P.; Langhendries, C.; Bihin, B.; Jamart, J.; Galanti, L. Long-term stability of dexamethasone and alizapride or ondansetron in sodium chloride 0.9% polyolefin bag at 5 ± 3 °C. Ann. Pharm. Françaises 2017, 75, 30–39. [Google Scholar] [CrossRef]
- Chen, F.-C.; Wang, L.-H.; Guo, J.; Shi, X.-Y.; Fang, B.-X. Simultaneous Determination of Dexamethasone, Ondansetron, Granisetron, Tropisetron, and Azasetron in Infusion Samples by HPLC with DAD Detection. J. Anal. Methods Chem. 2017, 2017, 1–7. [Google Scholar] [CrossRef]
- Gaudette, F.; Bédard, D.; Kwan, C.; Frouni, I.; Hamadjida, A.; Beaudry, F.; Huot, P. Highly sensitive HPLC-MS/MS assay for the quantitation of ondansetron in rat plasma and rat brain tissue homogenate following administration of a very low subcutaneous dose. J. Pharm. Biomed. Anal. 2019, 175, 112766. [Google Scholar] [CrossRef]
- Al-Ghobashy, M.A.; Kamal, S.M.; El-Sayed, G.M.; Attia, A.K.; Nagy, M.; ElZeiny, A.; Elrakaiby, M.T.; Nooh, M.M.; Abbassi, M.; Aziz, R.K. Determination of voriconazole and co-administered drugs in plasma of pediatric cancer patients using UPLC-MS/MS: A key step towards personalized therapeutics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1092, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Quimby, J.M.; Lake, R.C.; Hansen, R.J.; Lunghofer, P.J.; Gustafson, D.L. Oral, subcutaneous, and intravenous pharmacokinetics of ondansetron in healthy cats. J. Vet. Pharmacol. Therap. 2014, 37, 348–353. [Google Scholar] [CrossRef] [Green Version]
- Belal, F.F.; Sharaf El-Din, M.K.; Eid, M.I.; El-Gamal, R.M. Micellar HPLC method using monolithic column for the simultaneous determination of linezolid and rifampicin in pharmaceuticals and biological fluids. Anal. Methods 2013, 5, 6165. [Google Scholar] [CrossRef]
- Dotsikas, Y.; Kousoulos, C.; Tsatsou, G.; Loukas, Y.L. Development and validation of a rapid 96-well format based liquid-liquid extraction and liquid chromatography-tandem mass spectrometry analysis method for ondansetron in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2006, 836, 79–82. [Google Scholar] [CrossRef]
- Kenward, H.; Elliott, J.; Lee, T.; Pelligand, L. Anti-nausea effects and pharmacokinetics of ondansetron, maropitant and metoclopramide in a low-dose cisplatin model of nausea and vomiting in the dog: A blinded crossover study. BMC Vet. Res. 2017, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Bosch, M.; Sanchez-Rojas, F.; Bosch-Ojeda, C. Stability of mixtures of ondansetron and haloperidol stored in infusors at different temperatures. Eur. J. Hosp. Pharm. 2018, 25, e134–e138. [Google Scholar] [CrossRef] [PubMed]
- Kirkham, J.C.; Rutherford, E.T.; Cunningham, G.N.; Daneshmand, K.A.; Falls, A.L. Stability of ondansetron hydrochloride in a total parenteral nutrient admixture. Am. J. Heal. Pharm. 1995, 52, 1557–1558. [Google Scholar] [CrossRef]
- Council of Europe European Pharmacopoeia 10th Edition|EDQM—European Directorate for the Quality of Medicines. Ondansetron Hydrochloride Dihydrate Monograph. Available online: https://www.edqm.eu/en/european-pharmacopoeia-ph-eur-10th-edition. (accessed on 10 October 2020).
- Tomczak, S.; Stawny, M.; Jelińska, A. Co-administration of drugs and parenteral nutrition: In vitro compatibility studies of loop diuretics for safer clinical practice. Pharmaceutics 2020, 12, 1092. [Google Scholar] [CrossRef] [PubMed]
- Stawny, M.; Nadolna, M.; Jelińska, A. In vitro compatibility studies of vancomycin with ready-to-use parenteral nutrition admixtures for safer clinical practice. Clin. Nutr. 2019, 39, 2539–2546. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. ICH Topic Q2(R1). In Validation of analytical procedures. In: Proceedings of the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use; European Medicines Agency: Geneva, Switzerland, 1994; Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf. (accessed on 12 October 2020).
- Casto, D.T. Stability of ondansetron stored in polypropylene syringes. Ann. Pharmacother. 1994, 28, 712–714. [Google Scholar] [CrossRef]
- Graham, C.L.; Dukes, G.E.; Kao, C.-F.; Bertch, J.M.; Hak, L.J. Stability of Ondansetron in Large-Volume Parenteral Solutions. Ann. Pharmacother. 1992, 26, 768–771. [Google Scholar] [CrossRef] [PubMed]
Parameter | Lipoflex Special | Lipoflex Special + OND | ||
---|---|---|---|---|
1 Day | 7 Days | 1 Day | 7 Days | |
Zeta Potential (mV) | −5.82 ± 0.27 | −5.90 ± 0.42 | −4.92 ± 0.10 | −5.57 ± 0.27 |
MDD (nm) | 247.2 ± 4.1 | 251.9 ± 4.3 | 246.6 ± 3.2 | 253.3 ± 5.8 |
pH | 5.50 ± 0.00 | 5.53 ± 0.00 | 5.50 ± 0.00 | 5.52 ± 0.01 |
Osmolality (mOsm/kg) | 1997 ± 3 | 1988 ± 1 | 1886 ± 33 | 1967 ± 13 |
No. | Separation Condition | Recovery (%) | |
---|---|---|---|
1 | n-hexane volume (mL) | 1.0 | 75.2 |
Shaking time (min) | 15 | ||
Centrifugation time (min) | 30 | ||
2 | n-hexane volume (mL) | 2.0 | 77.1 |
Shaking time (min) | 15 | ||
Centrifugation time (min) | 30 | ||
3 | n-hexane volume (mL) | 3.0 | 82.2 |
Shaking time (min) | 15 | ||
Centrifugation time (min) | 30 | ||
4 | n-hexane volume (mL) | 5.0 | 82.6 |
Shaking time (min) | 15 | ||
Centrifugation time (min) | 30 | ||
5 | n-hexane volume (mL) | 3.0 | 81.7 |
Shaking time (min) | 5 | ||
Centrifugation time (min) | 30 | ||
6 | n-hexane volume (mL) | 3.0 | 81.8 |
Shaking time (min) | 10 | ||
Centrifugation time (min) | 30 | ||
7 | n-hexane volume (mL) | 3.0 | 81.6 |
Shaking time (min) | 20 | ||
Centrifugation time (min) | 30 | ||
8 | n-hexane volume (mL) | 3.0 | 80.8 |
Shaking time (min) | 15 | ||
Centrifugation time (min) | 15 | ||
9 | n-hexane volume (mL) | 3.0 | 82.0 |
Shaking time (min) | 15 | ||
Centrifugation time (min) | 20 | ||
10 | n-hexane volume (mL) | 3.0 | 82.1 |
Shaking time (min) | 15 | ||
Centrifugation time (min) | 25 |
wi | a | b | r | ∑%RE | |
---|---|---|---|---|---|
Ordinary Least Squares | 1 | 70.412 | −29.11 | 0.9995 | −3.37 |
Weighted Least Squares | 70.226 | −24.70 | 0.99946 | −1.26 | |
70.011 | −20.29 | 0.99945 | 0.089 | ||
69.490 | −12.49 | 0.99936 | −1.01 | ||
70.222 | −24.35 | 0.99946 | −0.83 | ||
70.006 | −19.65 | 0.99945 | 0.98 | ||
69.503 | −11.46 | 0.99937 | 0.96 |
Concentration (mg/mL) | Accuracy (Expressed as εr) (n = 9) Acceptance Limit: %RE < 5% | Precision (Expressed as RSD) (n = 9) Acceptance Limit: RSD < 5% | |
---|---|---|---|
OLS | WLS | ||
Intra-day 2.0 | 1.87% | 0.84% | 0.42 |
Inter-day2.0 | 1.94% | 0.91% | 0.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomczak, S.; Radwan, V.; Jelińska, A.; Stawny, M. Application of the HPLC Method in Parenteral Nutrition Assessment: Stability Studies of Ondansetron. Processes 2021, 9, 453. https://doi.org/10.3390/pr9030453
Tomczak S, Radwan V, Jelińska A, Stawny M. Application of the HPLC Method in Parenteral Nutrition Assessment: Stability Studies of Ondansetron. Processes. 2021; 9(3):453. https://doi.org/10.3390/pr9030453
Chicago/Turabian StyleTomczak, Szymon, Vera Radwan, Anna Jelińska, and Maciej Stawny. 2021. "Application of the HPLC Method in Parenteral Nutrition Assessment: Stability Studies of Ondansetron" Processes 9, no. 3: 453. https://doi.org/10.3390/pr9030453
APA StyleTomczak, S., Radwan, V., Jelińska, A., & Stawny, M. (2021). Application of the HPLC Method in Parenteral Nutrition Assessment: Stability Studies of Ondansetron. Processes, 9(3), 453. https://doi.org/10.3390/pr9030453