Novel Treatment of Sugar Mill Wastewater in a Coupled System of Aged Refuse Filled Bioreactors (ARFB): Full-Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Methods (Wastewater Characterization)
2.2. Extraction, Characterization and Preparation of Aged Refuse
2.3. Construction, Start-Up, and Operation of the (ARFB1-ARFB2) Serial System
- 1 to 8 weeks contemplated the stabilization of the system.
- 9 to 14 weeks, the system was operating at a HL of 50 L/m3·d.
- 15 to 20 weeks, the system was operating at a HL of 100 L/m3·d.
- 21 to 28 weeks, the system was operating at a HL of 150 L/m3·d.
2.4. Analysis of Experimental Data
3. Results and Discussion
3.1. SMW Characterization
3.2. Extraction, Characterization and Preparation of Aged Refuse
3.3. Start-Up and Operation of the (ARFB1-ARFB2) Serial System
3.4. Physicochemical Quality of Final Effluent (E2)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bustos, G.; Carrizales, M.A.; Cervantes, E.; Vecino, X.; Moldes, A.B. Treatment of wastewater from sugarcane using entrapped activated carbón. CyTA J. Food 2014, 12, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Statistical Report of the Sugarcane Agribusiness Sector in Mexico, Zafra 2018–2019, 6th ed.; Ministry of Agriculture and Rural Development–CONADESUCA: Mexico City, Mexico, 2019. (In Spanish)
- Hampannavar, U.S.; Shivayogimath, C.B. Anaerobic treatment of sugar industry wastewater by upflow anaerobic sludge blanket reactor at ambient temperature. Int. J. Environ. Sci. 2010, 1, 631–639. [Google Scholar]
- Fito, J.; Tefera, N.; Kloos, H.; Van Hulle, S.W. Physicochemical Properties of the Sugar Industry and Ethanol Distillery Wastewater and Their Impact on the Environment. Sugar Tech. 2018, 21, 265–277. [Google Scholar] [CrossRef]
- Cruz-Salomón, A.; Ríos-Valdovinos, E.; Pola-Albores, F.; Lagunas-Rivera, S.; Meza-Gordillo, R.; Ruíz-Valdiviezo, V.M.; Cruz-Salomón, K.C. Expanded granular sludge bed bioreactor in wastewater treatment. Glob. J. Environ. Sci. Manag. 2019, 5, 119–138. [Google Scholar]
- Atashi, H.; Ajamein, H.; Ghasemian, S. Effect of operational and design parameters on removal efficiency of a pilot-scale UASB reactor in a sugar factory. World Appl. Sci. J. 2010, 11, 451–456. [Google Scholar]
- Sahu, O.P.; Chaudhari, P.K. The characteristics, effects, and treatment of wastewater in sugarcane industry. Water Qual. Exp. Health 2015, 7, 435–444. [Google Scholar] [CrossRef]
- Singh, P.K.; Tripathi, M.; Singh, R.P.; Singh, P. Treatment and Recycling of Wastewater from Sugar Mill. In Advances in Biological Treatment of Industrial Waste Water and their Recycling for a Sustainable Future; Singh, R., Singh, R., Eds.; Springer: Singapore, 2019; pp. 199–223. [Google Scholar] [CrossRef]
- Pradeep, N.V.; Anupama, S.; Arun Kumar, J.M.; Vidyashree, K.G.; Lakshmi, P.; Ankitha, K.; Pooja, J. Treatment of Sugar Industry Wastewater in Anaerobic Downflow Stationary Fixed Film (DSFF) Reactor. Sugar Tech. 2014, 16, 9–14. [Google Scholar] [CrossRef]
- Cruz-Salomón, A.; Ríos-Valdovinos, E.; Pola-Albores, F.; Meza-Gordillo, R.; Lagunas-Rivera, S.; Ruíz-Valdiviezo, V.M. Anaerobic treatment of agro-industrial wastewater for COD removal in expanded granular sludge bed bioreactor. Biofuel Res. J. 2017, 16, 715–720. [Google Scholar] [CrossRef]
- Hamoda, M.F.; Al-Sharekh, H.A. Sugar wastewater treatment with aerated fixed-film biological systems. Water Sci. Technol. 1999, 40, 313–321. [Google Scholar] [CrossRef]
- Sahu, O.; Rao, D.G.; Thangavel, A.; Ponnappan, S. Treatment of sugar industry wastewater using a combination of thermal and electrocoagulation processes. Int. J. Sustain. Eng. 2018, 11, 16–25. [Google Scholar] [CrossRef]
- Gondudey, S.; Chaudhari, P.K. Treatment of sugar industry effluent through SBR followed by electrocoagulation. Sugar Tech 2020, 22, 303–310. [Google Scholar] [CrossRef]
- Bautista-Ramírez, J.; Gutiérrez-Hernández, R.; Nájera-Aguilar, H.; Martínez-Salinas, R.; Vera-Toledo, P.; Araiza-Aguilar, J.; Méndez-Novelo, R.; Rojas-Valencia, M. Biorreactor Empacado con Materiales Estabilizados (BEME), como pretratamiento para lixiviados de rellenos sanitarios. Rev. Mex. Ing. Quím. 2018, 17, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Youcai, Z.; Hua, L.; Jun, W.; Guowei, G. Treatment of leachate by aged-refuse-based biofilter. J. Environ. Eng. 2002, 128, 662–668. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.; Xie, B. Use of aged refuse-based bioreactor/biofilter for landfill leachate treatment. Appl. Microbiol. Biotechnol. 2014, 98, 6543–6553. [Google Scholar] [CrossRef]
- Erabee, I.K.; Ethaib, S. Treatment of contaminated Landfill Leachate using Aged Refuse Biofilter Medium. Orient. J. Chem. 2018, 34, 1441. [Google Scholar] [CrossRef]
- Zhang, H.H.; Tian, J.S.; Zhang, Y.M.; Wu, Z.L.; Kong, X.J.; Chao, J.; Hu, Y.; Li, D.L. Removal of phosphorus and nitrogen from domestic wastewater using a mineralized refuse-based bioreactor. Environ. Technol. 2012, 33, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Nájera-Aguilar, H.A.; Mayorga-Santis, R.; Gutiérrez-Hernández, R.F.; Araiza-Aguilar, J.A.; Martínez-Salinas, R.I.; García-Lara, C.M.; Rojas-Valencia, M.N. Aged Refuse Filled Bioreactor Using Like a Biological Treatment for Sugar Mill Wastewater. Sugar Tech 2021, 23, 201–208. [Google Scholar] [CrossRef]
- Xie, B.; Xiong, S.; Liang, S.; Hu, C.; Zhang, X.; Lu, J. Performance and bacterial compositions of aged refuse reactors treating mature landfill leachate. Bioresour. Technol. 2012, 103, 71–77. [Google Scholar] [CrossRef]
- Nájera-Aguilar, H.A.; Gutiérrez-Hernández, R.F.; Bautista-Ramírez, J.; Martínez-Salinas, R.I.; Escobar-Castillejos, D.; Borraz-Garzón, R.; Rojas-Valencia, M.N.; Giácoman-Vallejos, G. Treatment of Low Biodegradability Leachates in a Serial System of Aged Refuse-Filled Bioreactors. Sustainability 2019, 11, 3193. [Google Scholar] [CrossRef] [Green Version]
- Artsupho, L.; Jutakridsada, P.; Laungphairojana, A.; Rodriguez, J.F.; Kamwilaisak, K. Effect of temperature on increasing biogas production from sugar industrial wastewater treatment by UASB process in pilot scale. Energy Procedia 2016, 100, 30–33. [Google Scholar] [CrossRef] [Green Version]
- Hongjiang, L.I.; Youcai, Z.; Lei, S.H.I.; Yingying, G.U. Three-stage aged refuse biofilter for the treatment of landfill leachate. J. Environ. Sci. 2009, 21, 70–75. [Google Scholar] [CrossRef]
- He, Y.; Zhao, Y.; Zhou, G.; Huang, M. Field assessment of stratified aged-refuse-based reactor for landfill leachate treatment. Waste Manag. Res. 2011, 29, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, USA, 2012. [Google Scholar]
- Cruz-Salomón, A.; Ríos-Valdovinos, E.; Pola-Albores, F.; Lagunas-Rivera, S.; Cruz-Rodríguez, R.I.; Cruz-Salomón, K.d.C.; Hernández-Méndez, J.M.E.; Domínguez-Espinosa, M.E. Treatment of Cheese Whey Wastewater Using an Expanded Granular Sludge Bed (EGSB) Bioreactor with Biomethane Production. Processes 2020, 8, 931. [Google Scholar] [CrossRef]
- Mexican regulations NOM-001-SEMARNAT-1996, that establishes the maximum allowable pollutant in wastewater discharges in national waters. In Official Journal of the Federation; SEMARNAT: Mexico City, Mexico, 2003. (In Spanish)
- Municipal Statistical Notebook. National Institute of Statistics, Geography and Informatics; INEGI: Mexico City, Mexico, 2000. (In Spanish) [Google Scholar]
- Cruz-Salomón, A.; Ríos-Valdovinos, E.; Pola-Albores, F.; Lagunas-Rivera, S.; Meza-Gordillo, R.; Ruíz-Valdiviezo, V.M. Evaluation of Hydraulic Retention Time on Treatment of Coffee Processing Wastewater (CPWW) in EGSB Bioreactor. Sustainability 2018, 10, 83. [Google Scholar] [CrossRef] [Green Version]
- Kushwaha, J.P. A review on sugar industry wastewater: Sources, treatment technologies, and reuse. Desalination Water Treat. 2013, 53, 309–318. [Google Scholar] [CrossRef]
- Nacheva, P.M.; Chavez, G.M.; Chacon, J.M.; Chuil, A.C. Treatment of cane sugar mill wastewater in an upflow anaerobic sludge bed reactor. Water Sci. Technol. 2009, 60, 1347–1352. [Google Scholar] [CrossRef] [PubMed]
- Melidis, P.; Vaiopoulou, E.; Athanasoulia, E.; Aivasidis, A. Anaerobic treatment of domestic wastewater using an anaerobic fixed-bed loop reactor. Desalination 2009, 248, 716–722. [Google Scholar] [CrossRef]
- Fito, J.; Tefera, N.; Kloos, H.; Van Hulle, S.W. An Integrated Treatment Technology for Blended Wastewater of the Sugar Industry and Ethanol Distillery. Environ. Process. 2019, 6, 475. [Google Scholar] [CrossRef]
- Xie, B.; Lv, Z.; Lv, B.Y.; Gu, Y.X. Treatment of mature landfill leachate by biofilters and Fenton oxidation. Waste Manag. 2010, 30, 2108–2112. [Google Scholar] [CrossRef]
- Ding, W.C.; Zeng, X.L.; Hu, X.B.; Deng, Y.; Hossain, M.N.; Chen, L. Characterization of Dissolved Organic Matter in Mature Leachate during Ammonia Stripping and Two-Stage Aged-Refuse Bioreactor Treatment. J. Environ. Eng. 2018, 144, 04017082. [Google Scholar] [CrossRef]
- World Bank. Pollution Prevention and Abatement Handbook, Sugar Manufacturing; The World Bank: Washington, DC, USA, 1999. [Google Scholar]
- World Health Organization (WHO). Guideline for Discharge of Industrial Effluent Characteristics; WHO: Geneva, Switzerland, 1995; Volume 3, pp. 231–236. [Google Scholar]
- Samuel, S.; Muthukkaruppan, S.M. Physico-chemical analysis of sugar mill effluent, contaminated soil and its effect on seed germination of paddy (Oryza sativa L.). Int. J. Pharm. Biol. Arch. 2011, 2, 1469–1472. [Google Scholar]
- Vera, I.; Sáez, K.; Vidal, G. Performance of 14 full-scale sewage treatment plants: Comparison between four aerobic technologies regarding effluent quality, sludge production and energy consumption. Environ. Technol. 2013, 34, 2267–2275. [Google Scholar] [CrossRef]
- Lu, X.; He, Y.; Zhang, L.; Huang, M.; Zhu, Y.; Wang, G.; Zou, W.; Wang, P. Nationwide assessment of sludge production of wastewater treatment plants in China. Environ. Eng. Sci. 2019, 36, 249–256. [Google Scholar] [CrossRef]
Parameters | Values * |
---|---|
pH | 5.51 ± 0.47 |
Temperature (°C) | 28.3 ± 0.70 |
Turbidity (UTN) | 223 ± 26 |
Color (Pt-Co) | 748 ± 107 |
Chlorides (mg/L) | 23.82 ± 7.05 |
Acidity (mg CaCO3/L) | 702 ± 38 |
Total solids (TS) (mg/L) | 3018 ± 364 |
Total suspended soils (TSS) (mg/L) | 292 ± 75 |
Total dissolved solids (TDS) (mg/L) | 2726 ± 381 |
Settleable solids (mL/L) | <1 |
Chemical oxygen demand (COD) (mg/L) | 4730 ± 790 |
BOD5 (mg/L) | 1875 ± 329 |
Total nitrogen (TN) (mg/L) | 40.9 ± 5.2 |
Biodegradability index (BI) | 0.40 ± 0.09 |
Aged Refuse | Composition of Aged Refuse (%) | ||||
---|---|---|---|---|---|
Rigid Plastics | Soft Plastics (Nylon) | Others | Fine Materials | Total | |
WB | 11.3 | 13.1 | 12.5 | 63.1 | 100 |
DB | 10.1 | 10.6 | 23.6 | 55.7 | 100 |
Particle Size Distribution (%) | ||||||
---|---|---|---|---|---|---|
>50 mm | 15–50 mm | >40 mm | 15–40 mm | <15 mm | Total | Reference |
--- | --- | 15.05 | 24.14 | 60.82 | 100 | [19] |
8.96 | 32.13 | --- | --- | 58.91 | 100 | This study |
Parameter | Final Effluent (E2) Values | Mexican Regulations [27] | World Bank Guideline [36] | World Health Organization [37] |
---|---|---|---|---|
pH | 7.6 | 5–10 | 6–9 | 6.5–8.5 |
Temperature (°C) | 27 | 40 | - | - |
Floating matter | Absent | Absent | - | - |
BOD5 (mg/L) | 19.20 | 60 | 50 | 100 |
TSS (mg/L) | 51 | 60 | 50 | 125 |
COD (mg/L) | 119.4 | - | 250 | 300 |
FOG (mg/L) | <6.09 | 25 | 10 | - |
Settleable solids (mL/L) | <0.1 | 2 | - | - |
TN (mg/L) | 13.18 | 25 | 10 | 30 |
TP (mg/L) | 1.35 | 10 | 2 | - |
Cyanides (mg/L) | <0.2 | 2 | --- | - |
Fecal coliforms (MPN/100 mL) | 70 | 1000 | 400 | - |
Parameter | Final Effluent (E2) Values | Mexican Regulations [27] |
---|---|---|
Arsenic (mg/L) | <0.002 | 0.1–0.2 |
Cadmium (mg/L) | <0.05 | 0.1–0.2 |
Copper (mg/L) | <0.10 | 4.0–6.0 |
Total chromium (mg/L) | <0.30 | 0.5–1.0 |
Mercury (mg/L) | <0.005 | 0.005–0.01 |
Nickel (mg/L) | <1.00 | 2.0–4.0 |
Zinc (mg/L) | 0.5871 | 10–20 |
Lead (mg/L) | <0.15 | 0.2–0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Hernández, R.F.; Nájera-Aguilar, H.A.; Araiza-Aguilar, J.A.; Martínez-Salinas, R.I.; García-Lara, C.M.; González-Vázquez, U.; Cruz-Salomón, A. Novel Treatment of Sugar Mill Wastewater in a Coupled System of Aged Refuse Filled Bioreactors (ARFB): Full-Scale. Processes 2021, 9, 516. https://doi.org/10.3390/pr9030516
Gutiérrez-Hernández RF, Nájera-Aguilar HA, Araiza-Aguilar JA, Martínez-Salinas RI, García-Lara CM, González-Vázquez U, Cruz-Salomón A. Novel Treatment of Sugar Mill Wastewater in a Coupled System of Aged Refuse Filled Bioreactors (ARFB): Full-Scale. Processes. 2021; 9(3):516. https://doi.org/10.3390/pr9030516
Chicago/Turabian StyleGutiérrez-Hernández, Rubén Fernando, Hugo Alejandro Nájera-Aguilar, Juan Antonio Araiza-Aguilar, Rebeca Isabel Martínez-Salinas, Carlos Manuel García-Lara, Ulises González-Vázquez, and Abumalé Cruz-Salomón. 2021. "Novel Treatment of Sugar Mill Wastewater in a Coupled System of Aged Refuse Filled Bioreactors (ARFB): Full-Scale" Processes 9, no. 3: 516. https://doi.org/10.3390/pr9030516
APA StyleGutiérrez-Hernández, R. F., Nájera-Aguilar, H. A., Araiza-Aguilar, J. A., Martínez-Salinas, R. I., García-Lara, C. M., González-Vázquez, U., & Cruz-Salomón, A. (2021). Novel Treatment of Sugar Mill Wastewater in a Coupled System of Aged Refuse Filled Bioreactors (ARFB): Full-Scale. Processes, 9(3), 516. https://doi.org/10.3390/pr9030516