Evaluation of the Adsorption Efficiency on the Removal of Lead(II) Ions from Aqueous Solutions Using Azadirachta indica Leaves as an Adsorbent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Adsorption Processes
2.2. Batch Adsorption Experiment
2.3. Characterization of AILP
2.4. Reusability of AILP
3. Results
3.1. Characterization of AILP
3.1.1. Surface Area of AILP
3.1.2. IR Spectrum
3.1.3. Scanning Electron Microscope (SEM)
3.2. Effect of the Adsorbent Particle Size
3.3. Effect of the pH
3.4. Effect of the Adsorbent Dosage
3.5. Effect of the Agitation Time
3.6. Adsorption Kinetics
3.6.1. Pseudo-First-Order Kinetic Model
3.6.2. Pseudo-Second-Order Kinetic Model
3.6.3. Intra-Particle Diffusion Kinetic Model
3.7. Effect of the Initial Pb(II) Concentration
3.8. Adsorption Isotherm
3.8.1. Langmuir Isotherm
3.8.2. Freundlich Isotherm
3.8.3. Temkin Isotherm
3.8.4. Dubinin–Radushkevich (D-R) Isotherm
3.9. Effect of the Temperature
3.10. Thermodynamic Parameters
3.11. Reusability of AILP
3.12. Possible Adsorption Mechanism
3.13. Comparison of AILP with Other Sorbents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, I.H.; Al Mesfer, M.K.; Khan, M.I.; Mohd, M.; Alghamdi, M.M. Exploring Adsorption Process of Lead (II) and Chromium (VI) Ions from Aqueous Solutions on Acid Activated Carbon Prepared from Juniperus procera Leaves. Processes 2019, 7, 217. [Google Scholar] [CrossRef] [Green Version]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Morosanu, I.; Teodosiu, C.; Paduraru, C.; Ibanescu, D.; Tofan, L. Biosorption of lead ions from aqueous effluents by rapeseed biomass. New Biotechnol. 2017, 39, 110–124. [Google Scholar] [CrossRef]
- Gupta, V.K.; Rastogi, A. Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies. J. Hazard. Mater. 2008, 152, 407–414. [Google Scholar] [CrossRef]
- Amer, M.W.; Ahmad, R.A.; Awwad, A.M. Biosorption of Cu(II), Ni(II), Zn(II) and Pb(II) ions from aqueoussolution by Sophora japonica pods powder. Int. J. Ind. Chem. 2015, 6, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Das, D.; Chakraborty, S.; Bhattacharjee, C.; Chowdhury, R. Biosorption of lead ions (Pb2+) from simulated wastewater using residual biomass of microalgae. Desalination Water Treat. 2016, 57, 4576–4586. [Google Scholar] [CrossRef]
- Papirio, S.; Frunzo, L.; Mattei, M.R.; Ferraro, A.; Race, M.; D’Acunto, B.; Esposito, G. Heavy metal removal from wastewaters by biosorption: Mechanisms and modeling. In Sustainable Heavy Metal Remediation, 1st ed.; Rene, E.R., Sahinkaya, E., Lewis, A., Lens, P.N.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 8, pp. 25–63. [Google Scholar]
- Xuan, Z. Study on the equilibrium, kinetics and isotherm of biosorption of lead ions onto pretreated chemically modified orange peel. Biochem. Eng. J. 2006, 31, 160–164. [Google Scholar] [CrossRef]
- Mungasavalli, P.D.; Viraraghavan, T.; Jin, Y. Biosorption of chromium from aqueous solutions by pr treated Aspergillus niger: Batch and column studies. Colloids Surf. A Physicochem. Eng. Asp. 2007, 301, 214–223. [Google Scholar] [CrossRef]
- Ucun, H.; Kemal, B.Y.; Kaya, Y.; Cakici, A.; Algur, O.F. Biosorption of lead (II) from aqueous solution by cone biomass of Pinus sylvestris. Desalination 2003, 154, 233–238. [Google Scholar] [CrossRef]
- Singanan, M. Removal of lead (II) and cadmium (II) ions from wastewater using activated biocarbon. Sci. Asia 2011, 37, 115–119. [Google Scholar] [CrossRef]
- Sulaymon, A.H.; Mohammed, A.A.; Al-Musawi, T.J. Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae. Environ. Sci. Pollut. Res. 2013, 20, 3011–3023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, A.; Kumar, S.; Kumar, S. Biosorption of lead ions from the aqueous solution by Sargassum filipendula: Equilibrium and kinetic studies. J. Environ. Chem. Eng. 2016, 4, 4587–4599. [Google Scholar] [CrossRef]
- Barka, N.; Abdennouri, M.; El Makhfouk, M.; Qourzal, S. Biosorption characteristics of cadmium and lead onto eco-friendly dried cactus (Opuntia ficus indica) cladodes. J. Environ. Chem. Eng. 2013, 1, 144–149. [Google Scholar] [CrossRef]
- Iram, S.; Shabbir, R.; Zafar, H.; Javaid, M. Biosorption and bioaccumulation of copper and lead by heavy metal-resistant fungal isolates. Arab. J. Sci. Eng. 2015, 40, 1867–1873. [Google Scholar] [CrossRef]
- Okoye, A.; Ejikeme, P.; Onukwuli, O. Lead removal from wastewater using fluted pumpkin seed shell activated carbon: Adsorption modeling and kinetics. Int. J. Environ. Sci. Technol. 2010, 7, 793–800. [Google Scholar] [CrossRef] [Green Version]
- Senthil, K.P. Adsorption of lead (II) ions from simulated wastewater using natural waste: A kinetic, thermodynamic and equilibrium study. Environ. Prog. Sustain. Energy 2014, 33, 55–64. [Google Scholar] [CrossRef]
- Abadian, S.; Rahbar-Kelishami, A.; Norouzbeigi, R.; Peydayesh, M. Cu(II) adsorption onto Platanus orientalis leaf powder: Kinetic, isotherm, and thermodynamic studies. Res. Chem. Intermed. 2015, 41, 7669–7681. [Google Scholar] [CrossRef]
- Peydayesh, M.; Isanejad, M.; Mohammadi, T.; Jafari, S.M.R.S. Assessment of Urtica as a low-cost adsorbent for methylene blue removal: Kinetic, equilibrium, and thermodynamic studies. Chem. Pap. 2015, 69, 930–937. [Google Scholar] [CrossRef]
- Al-Hashemi, Z.S.S.; Hossain, M.A. Biological activities of different neem leaf crude extracts used locally in Ayurvedic medicine. Pac. Sci. Rev. A Nat. Sci. Eng. 2016, 18, 128–131. [Google Scholar] [CrossRef] [Green Version]
- Elkhaleefa, A.; Ali, I.H.; Brima, E.I.; Elhag, A.B.; Karama, B. Efficient Removal of Ni(II) from Aqueous Solution by Date Seeds Powder Biosorbent: Adsorption Kinetics, Isotherm and Thermodynamics. Processes 2020, 8, 1001. [Google Scholar] [CrossRef]
- El-Zahhar, A.A.; Idris, A.M. Mercury(II) decontamination using a newly synthesized poly(acrylonitrile-acrylic acid)/ammonium molybdophosphate composite exchanger. Toxin Rev. 2020, 39, 1–13. [Google Scholar] [CrossRef]
- Khan, M.I.; Al Mesfer, M.K.; Danish, M.; Ali, I.H.; Shoukry, H.; Patel, R.; Gardy, J.; Rehan, M. Potential of Saudi natural clay as an effective adsorbent in heavy metals removal from wastewater. Desalination Water Treat. 2019, 15, 140–151. [Google Scholar] [CrossRef]
- Eleryan, A.; El Nemr, A.; Abubakr, M.; Idris, A.M.; Alghamdi, M.M.; El-Zahhar, A.A.; Tarek, O.; Said, T.O.; Sahlabji, T. Feasible and eco-friendly removal of hexavalent chromium toxicant from aqueous solutions using chemically modified sugarcane bagasse cellulose. Toxin Rev. 2020, 39, 1–12. [Google Scholar] [CrossRef]
- Kavitha, G.; Sridevi, V.; Venkateswarlu, P.; Babu, N.C. Biosorption of chromium from aqueous solution by Gracilaria corticata (Red Algae) and its statistical analysis using response surface methodology. Open Access Libr. J. 2016, 3, 1–32. [Google Scholar] [CrossRef]
- Taha, M.F.; Kiat, C.F.; Shaharun, M.S.; Ramli, A. Removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution using activated carbon prepared from rice husk. Int. J. Environ. Ecol. Eng. 2011, 5, 855–860. [Google Scholar]
- Xiong, C.; Yao, C. Synthesis, characterization and application of triethylenetetraamine modified polystyrene resin in removal of mercury, cadmium and lead from aqueous solutions. Chem. Eng. J. 2009, 155, 844–850. [Google Scholar] [CrossRef]
- Xiong, C.; Yao, C. Preparation and application of acrylic acid grafted polytetraflouroethylene fiber as a weak acid cation exchanger for adsorption of Er(III). J. Hazard. Mater. 2009, 170, 1125–1132. [Google Scholar] [CrossRef]
- Abdulaziz Ali Alghamdi, A.A.; Al-Odayni, A.; Saeed, W.S.; Al-Kahtani, A.; Alharthi, F.A.; Aouak, T. Efficient Adsorption of Lead (II) from Aqueous Phase Solutions Using Polypyrrole-Based Activated Carbon. Materials 2019, 12, 1–16. [Google Scholar]
- Wang, L.; Zhang, J.; Zhao, R.; Li, Y.; Li, C.; Zhang, C. Adsorption of Pb (II) on activated carbon prepared from Polygonum orientale Linn.: Kinetics, isotherms, pH, and ionic strength studies. Bioresour. Technol. 2010, 101, 5808–5814. [Google Scholar] [CrossRef] [PubMed]
Kinetic Model | Parameters | |
---|---|---|
Pseudo-second-order model | qe (mg/g) | 3.00 |
k2 (g/mg min(1/2)) | 0.21 | |
R2 | 0.9976 | |
Intraparticle diffusion model | kid mg/g min(1/2) | 0.0014 |
I | 0.328 | |
R2 | 0.07 |
Adsorption Model | Isotherm Constants | Value |
---|---|---|
Langmuir | qmax (mg/g) | 39.7 |
KL (L/g) | 0.021 | |
R2 | 0.9756 | |
Freundlich | n | 0.6 |
Kf (mg/g)/(mg/L) | 1.0 | |
R2 | 0.9997 | |
Temkin | A (L/g) | 1.3 |
B | 7.8 | |
R2 | 0.9703 | |
D-R | Β | 1 × 10–7 |
qmax (mg/g) | 4.05 | |
R2 | 0.9997 |
T, K | KD | ∆G, kJ/mol | ∆S, J/mol K | ∆H, kJ/mol |
---|---|---|---|---|
298 | 24.70 | −8.0 | 40 | −18.6 |
308 | 19.99 | −7.6 | ||
318 | 15.40 | −7.0 |
Adsorbent | qmax | Kinetics | Isotherm | References |
---|---|---|---|---|
AILP | 39.7 | 2nd order | Frendluich | This study |
Juniperus procera | 30.3 | 2nd order | Langmuir | [1] |
Coconut shell | 22.6 | 1st order | Langmuir | [26] |
Pumpkin seed shell | 14.3 | 2nd order | Langmuir | [27] |
Cashew nut shell | 17.8 | 2nd order | Frendluich | [28] |
Polypyrrole-based AC | 50.0 | 2nd order | Frendluich | [29] |
Polygonum orientale Linn | 98.4 | 2nd order | Langmuir | [30] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkhaleefa, A.; Ali, I.H.; Brima, E.I.; Shigidi, I.; Elhag, A.B.; Karama, B. Evaluation of the Adsorption Efficiency on the Removal of Lead(II) Ions from Aqueous Solutions Using Azadirachta indica Leaves as an Adsorbent. Processes 2021, 9, 559. https://doi.org/10.3390/pr9030559
Elkhaleefa A, Ali IH, Brima EI, Shigidi I, Elhag AB, Karama B. Evaluation of the Adsorption Efficiency on the Removal of Lead(II) Ions from Aqueous Solutions Using Azadirachta indica Leaves as an Adsorbent. Processes. 2021; 9(3):559. https://doi.org/10.3390/pr9030559
Chicago/Turabian StyleElkhaleefa, Abubakr, Ismat H. Ali, Eid I. Brima, Ihab Shigidi, Ahmed. B. Elhag, and Babiker Karama. 2021. "Evaluation of the Adsorption Efficiency on the Removal of Lead(II) Ions from Aqueous Solutions Using Azadirachta indica Leaves as an Adsorbent" Processes 9, no. 3: 559. https://doi.org/10.3390/pr9030559
APA StyleElkhaleefa, A., Ali, I. H., Brima, E. I., Shigidi, I., Elhag, A. B., & Karama, B. (2021). Evaluation of the Adsorption Efficiency on the Removal of Lead(II) Ions from Aqueous Solutions Using Azadirachta indica Leaves as an Adsorbent. Processes, 9(3), 559. https://doi.org/10.3390/pr9030559