Markers for the Comparison of the Performances of Anoxic Biotrickling Filters in Biogas Desulphurisation: A Critical Review
Abstract
:1. Introduction
2. Biotrickling Filters
3. Traditional Biofiltration Efficiency Parameters
4. BTF Microbiological Study
4.1. SOB Molecular Characterization in an Anoxic Desulphurisation BTF
4.1.1. Denaturing Gradient Gel Electrophoresis (DGGE)
4.1.2. DGGE Protocol
4.1.3. DGGE Interpretation
4.1.4. DNA Pyrosequencing
4.1.5. TEFAP Protocol
4.1.6. TEFAP Interpretation
4.2. Determination of the Biomass Attached to the Support Material (Biofilms)
Other BTF Biofilm Quantification Methods Proposed
5. Anoxic BTF Packing Materials for Biogas Desulphurisation
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koonaphapdeelert, S.; Aggarangsi, P.; Moran, J. (Eds.) Biomethane. Green Energy and Technology; Springer: Singapore, 2020; pp. 1–179. [Google Scholar] [CrossRef]
- Langeveld, J.; Peterson, E. Feedstocks for Biogas Production: Biogas and Electricity Generation Potentials. In Biogas Fundamentals; Process; and Operation; Tabatabaei, M., Ghanavati, H., Eds.; Springer: Cham, Switzerland, 2018; pp. 35–49. [Google Scholar]
- Khoshnevisan, B.; Tsapekos, P.; Alfaro, N.; Díaz, I.; Fernández-Polanco, M.; Rafiee, S.; Angelidaki, I. A review on prospects and challenges of biological H2S removal from biogas with focus on biotrickling filtration and microaerobic desulfurization. Biofuel Res. J. 2017, 16, 741–750. [Google Scholar] [CrossRef] [Green Version]
- Guidotti, T. Hydrogen sulfide intoxication. Handb. Clin. Neurol. 2015, 131, 111–133. [Google Scholar] [CrossRef]
- Fabian-Wheeler, E.; Hile, M.; Murphy, D.; Hill, D.; Meinen, R.; Brandt, R.; Elliott, H.; Hofstetter, D. Operator Exposure to Hydrogen Sulfide from Dairy Manure Storages Containing Gypsum Bedding. J. Agric. Saf. Health 2017, 23, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Merico, E.; Grasso, F.; Cesari, D.; Decesari, S.; Belosi, F.; Manarini, F.; De Nuntiis, P.; Rinaldi, M.; Gambaro, A.; Morabito, E.; et al. Characterisation of atmospheric pollution near an industrial site with a biogas production and combustion plant in southern Italy. Sci. Total Environ. 2020, 717, 137220. [Google Scholar] [CrossRef] [PubMed]
- Awe, O.; Zhao, Y.; Nzihou, A.; Pham Minh, D.; Lyczko, N. A Review of Biogas Utilisation; Purification and Upgrading Technologies. Waste Biomass Valorization 2017, 8, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, D.; Colón, J.; Ramírez, M. Life cycle assessment of biofiltration. In From Biofiltration to Promising Options in Gaseous Fluxes Biotreatment. Recent Developments; New Trends; Advances; and Opportunities; Soreanu, G., Dumont, E., Eds.; Elsevier: Cambridge, MA, USA, 2020; pp. 89–108. [Google Scholar] [CrossRef]
- Torres, R.; Maríun, D.; Rodero, M.; Pascual, C.; González-Sánchez, A.; de Godos Crespo, I.; Lebrero, R.; Muñoz Torre, R. Biogas treatment for H2S, CO2, and other contaminants removal. Life cycle assessment of biofiltration. In From Biofiltration to Promising Options in Gaseous Fluxes Biotreatment. Recent Developments; New Trends; Advances; and Opportunities; Soreanu, G., Dumont, E., Eds.; Elsevier: Cambridge, MA, USA, 2020; pp. 89–108. [Google Scholar] [CrossRef]
- Rodríguez, G.; Dorado, A.; Fortuny, M.; Gabriel, D.; Gamisans, X. Biotrickling filters for biogas sweetening: Oxygen transfer improvement for a reliable operation. Process. Saf. Environ. Prot. 2014, 92, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Papurello, D.; Lanzini, A. SOFC single cells fed by biogas: Experimental tests with trace contaminants. Waste Manag. 2018, 72, 306–312. [Google Scholar] [CrossRef]
- Saadabadi, S.; Thattai, A.; Fan, L.; Lindeboom, R.; Spanjers, H.; Aravind, P. Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints. Renew. Energy 2019, 134, 194–214. [Google Scholar] [CrossRef]
- Muñoz, R.; Meier, L.; Diaz, I.; Jeison, D. A review on the state of the art of physical/chemical and biological technologies for biogas upgrading. Rev. Environ. Sci. Biotechnol. 2015, 14, 727–759. [Google Scholar] [CrossRef] [Green Version]
- Toledo-Cervantes, A.; Estrada, J.; Lebrero, R.; Muñoz, R. A comparative analysis of biogas upgrading technologies: Photosynthetic vs physical/chemical processes. Algal Res. 2017, 25, 237–243. [Google Scholar] [CrossRef]
- Shareefdeen, Z. High-performance biofilters for air treatment applications. In From Biofiltration to Promising Options in Gaseous Fluxes Biotreatment. Recent Developments; New Trends; Advances; and Opportunities; Soreanu, G., Dumont, E., Eds.; Elsevier: Cambridge, MA, USA, 2020; pp. 111–127. [Google Scholar] [CrossRef]
- Barbusiński, K.; Urbaniec, K.; Kasperczyk, D.; Thomas, M. Biofilters versus bioscrubbers and biotrickling filters: State-of-the-art biological air treatment. In From Biofiltration to Promising Options in Gaseous Fluxes Biotreatment. Recent Developments; New Trends; Advances; and Opportunities; Soreanu, G., Dumont, E., Eds.; Elsevier: Cambridge, MA, USA, 2020; pp. 29–51. [Google Scholar]
- Leson, G.; Winer, A. Biofiltration: An innovative air pollution control technology for VOC emissions. J. Air Waste Manag. Assoc. 1991, 41, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Le Borgne, S.; Baquerizo, G. Microbial Ecology of Biofiltration Units Used for the Desulfurization of Biogas. Chem. Eng. 2019, 3, 72. [Google Scholar] [CrossRef] [Green Version]
- Gabaldón, C.; San-Valero, P.; Quijano, G. Current challenges and perspectives in gas fluxes biotreatment. In From Biofiltration to Promising Options in Gaseous Fluxes Biotreatment. Recent Developments; New Trends; Advances; and Opportunities; Soreanu, G., Dumont, E., Eds.; Elsevier: Cambridge, MA, USA, 2020; pp. 53–69. [Google Scholar]
- Raboni, M.; Torretta, V. A modified biotrickling filter for nitrification-denitrification in the treatment of an ammonia-contaminated air stream. Environ. Sci. Pollut. Res. Int. 2016, 23, 24256–24264. [Google Scholar] [CrossRef] [PubMed]
- López, L.; Mora, M.; Van der Heyden, C.; Baeza, J.A.; Volcke, E.; Gabriel, D. Model-Based Analysis of Feedback Control Strategies in Aerobic Biotrickling Filters for Biogas Desulfurization. Processes 2021, 9, 208. [Google Scholar] [CrossRef]
- Wu, Y.; Ren, H.; Ding, L. Performance of an innovative polyethylene carrier biotrickling filter treating hydrogen sulphide gas. Huan Jing Ke Xue 2010, 31, 1451–1456. [Google Scholar] [PubMed]
- Brito, J.; Valle, A.; Almenglo, F.; Ramírez, M.; Cantero, D. Progressive change from nitrate to nitrite as the electron acceptor for the oxidation of H2S under feedback control in an anoxic biotrickling filter. Biochem. Eng. J. 2018, 139, 154–161. [Google Scholar] [CrossRef]
- Dumont, E. Determination of biofilter performances. In From Biofiltration to Promising Options in Gaseous Fluxes Biotreatment. Recent Developments; New Trends; Advances; and Opportunities; Soreanu, G., Dumont, E., Eds.; Elsevier: Cambridge, MA, USA, 2020; pp. 53–69. [Google Scholar]
- Valle, A.; Fernández, M.; Ramírez, M.; Rovira, R.; Gabriel, D.; Cantero, D. A comparative study of eubacterial communities by PCR-DGGE fingerprints in anoxic and aerobic biotrickling filters used for biogas desulfurization. Bioprocess. Biosyst. Eng. 2018, 41, 1165–1175. [Google Scholar] [CrossRef]
- Almenglo, F.; Ramírez, M.; Gómez, J.; Cantero, D. Operational conditions for start-up and nitrate-feeding in an anoxic biotrickling filtration process at pilot scale. Chem. Eng. J. 2016, 285, 83–91. [Google Scholar] [CrossRef]
- Ben Jaber, M.; Couvert, A.; Amrane, A.; Rouxel, F.; Le Cloirec, P.; Dumont, E. Biofiltration of high concentration of H2S in waste air under extreme acidic conditions. New Biotechnol. 2017, 33, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Cruz-García, B.; Geronimo-Meza, A.; Martínez-Lievana, C.; Arriaga, S.; Huante-González, Y.; Aizpuru, A. Biofiltration of high concentrations of methanol vapors: Removal performance; carbon balance and microbial and fly populations. J. Chem. Technol. Biotechnol. 2019, 94, 1925–1936. [Google Scholar] [CrossRef]
- Fernández, M.; Ramírez, M.; Pérez, R.; Gómez, J.; Cantero, D. Biofiltration of H2S in biogas with Thiobacillus denitrificans under anoxic conditions. EcoSTP. EcoTechnologies for Wastewater Treatment. In Proceedings of the IWA International Conference, Santiago de Compostela, Spain, 27–28 June 2012; p. 53. [Google Scholar]
- Tayar, S.; Guerrero, R.; Hidalgo, L.; Bevilaqua, D. Evaluation of Biogas Biodesulfurization Using Different Packing Materials. ChemEngineering 2019, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Montebello, A.; Fernández, M.; Almenglo, F.; Ramírez, M.; Cantero, D.; Baeza, M.; Gabriel, D. Simultaneous methylmercaptan and hydrogen sulfide removal in the desulfurization of biogas in aerobic and anoxic biotrickling filters. Chem. Eng. J. 2012, 200, 237–246. [Google Scholar] [CrossRef]
- Fernández, M.; Ramírez, M.; Pérez, R.; Gómez, J.; Cantero, D. Hydrogen sulphide removal from biogas by an anoxic biotrickling filter packed with Pall rings. Chem. Eng. J. 2013, 225, 456–463. [Google Scholar] [CrossRef]
- Romero, A.; Rodríguez, M.; Andrès, Y.; Dumont, E. Steady- and transient-state H2S biofiltration using expanded schist as packing material. New Biotechnol. 2013, 30, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Fernández, M.; Ramírez, M.; Gómez, J.; Cantero, D. Biogas biodesulfurization in an anoxic biotrickling filter packed with open-pore polyurethane foam. J. Hazard. Mater. 2014, 264, 529–535. [Google Scholar] [CrossRef]
- Almenglo, F.; Bezerra, T.; Lafuente, J.; Gabriel, D.; Ramirez, M.; Cantero, D. Effect of gas-liquid flow pattern and microbial diversity analysis of a pilot-scale biotrickling filter for anoxic biogas desulfurization. Chemosphere 2016, 157, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Lebrero, R.; Toledo-Cervantes, A.; Muñoz, R.; del Nery, V.; Foresti, E. Biogas upgrading from vinasse digesters: A comparison between an anoxic biotrickling filter and an algal-bacterial photobioreactor. J. Chem. Technol. Biotechnol. 2016, 91, 2488–2495. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Jiang, X.; Zhou, Q. Effect of S/N Ratio on the Removal of Hydrogen Sulfide from Biogas in Anoxic Bioreactors. Appl. Biochem. Biotechnol. 2016, 180, 930–944. [Google Scholar] [CrossRef]
- Pirolli, M.; da Silva, M.; Mezzari, M.; Michelon, W.; Prandini, J.; Moreira-Soares, H. Methane production from a field-scale biofilter designed for desulfurization of biogas stream. J. Environ. Manag. 2016, 177, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Ziemiński, K.; Kopycki, W. Impact of Different Packing Materials on Hydrogen Sulfide Biooxidation in Biofilters Installed in the Industrial Environment. Energy Fuel 2016, 30, 9386–9395. [Google Scholar] [CrossRef]
- Ben Jaber, M.; Couvert, A.; Amrane, A.; Le Cloirec, P.; Dumont, E. Hydrogen sulfide removal from a biogas mimic by biofiltration under anoxic conditions. J. Environ. Chem. Eng. 2017, 5, 5617–5623. [Google Scholar] [CrossRef]
- Brito, J.; Almenglo, F.; Ramírez, M.; Gómez, J.; Cantero, D. PID control system for biogas desulfurization under anoxic conditions. J. Chem. Technol. Biotechnol. 2017, 92, 2369–2375. [Google Scholar] [CrossRef]
- López, L.; Brito, J.; Mora, M.; Almenglo, F.; Baeza, J.; Ramírez, M.; Lafuente, J.; Cantero, D.; Gabriel, D. Feedforward control application in aerobic and anoxic biotrickling filters for H2S removal from biogas. J. Chem. Technol. Biotechnol. 2018, 93, 2307–2315. [Google Scholar] [CrossRef]
- Khanongnuch, R.; Di Capua, F.; Lakaniemi, A.; Rene, E.; Lens, P. H2S removal and microbial community composition in an anoxic biotrickling filter under autotrophic and mixotrophic conditions. J. Hazard. Mater. 2019, 367, 397–406. [Google Scholar] [CrossRef]
- Flemming, H.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The Microbial “Protective Clothing” in Extreme Environments. Int. J. Mol. Sci. 2019, 20, 3423. [Google Scholar] [CrossRef] [Green Version]
- Karygianni, L.; Ren, Z.; Koo, H.; Thurnheer, T. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol. 2020, 28, 668–681. [Google Scholar] [CrossRef] [PubMed]
- Omri, I.; Bouallagui, H.; Aouidi, F.; Godon, J.; Hamdi, M. H2S gas biological removal efficiency and bacterial community diversity in biofilter treating wastewater odor. Bioresour. Technol. 2011, 102, 10202–10209. [Google Scholar] [CrossRef]
- Ramírez, M.; Fernández, M.; Granada, C.; Le Borgne, S.; Gómez, J.; Cantero, D. Biofiltration of reduced sulphur compounds and community analysis of sulphur-oxidizing bacteria. Bioresour. Technol. 2011, 102, 4047–4053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López, L.; Bezerra, T.; Mora, M.; Lafuente, J.; Gabriel, D. Influence of trickling liquid velocity and flow pattern in the improvement of oxygen transport in aerobic biotrickling filters for biogas desulfurization. J. Chem. Technol. Biotechnol. 2016, 91, 1031–1039. [Google Scholar] [CrossRef]
- Pu, S.; Liu, Z.; Yang, F.; Long, D.; Liu, W.; Wang, H.; Huang, K.; Huang, X. Comparative study on the removal efficiency of hydrogen sulfide (H2S) using three different packings. J. Air Waste Manag. Assoc. 2018, 68, 900–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, R. Biogeochemical cycling. In Environmental Microbiology, 3rd ed.; Pepper, I., Gerba, C., Gentry, T., Eds.; Elsevier: San Diego, CA, USA, 2015; pp. 339–373. [Google Scholar]
- Valdebenito-Rolack, E.; Ruiz-Tagle, N.; Abarzúa, L.; Aroca, G.; Urrutia, H. Characterization of a hyperthermophilic sulphur-oxidizing biofilm produced by archaea isolated from a hot spring. Electron. J. Biotechnol. 2017, 25, 58–63. [Google Scholar] [CrossRef]
- Valdebenito-Rolack, E.; Araya, T.; Abarzua, L.; Ruiz-Tagle, N.; Sossa, K.; Aroca, G.; Urrutia, H. Thiosulphate oxidation by Thiobacillus thioparus and Halothiobacillus neapolitanus strains isolated from the petrochemical industry. Electron. J. Biotechnol. 2011, 14, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Almenglo, F.; Ramírez, M.; Cantero, D. Application of Response Surface Methodology for H2S Removal from Biogas by a Pilot Anoxic Biotrickling Filter. ChemEngineering 2019, 3, 66. [Google Scholar] [CrossRef] [Green Version]
- Rodero, M.; Ángeles, R.; Marín, D.; Díaz, I.; Colzi, A.; Posadas, E.; Lebrero, R.; Muñoz, R. Biogas Purification and Upgrading Technologies. In Biogas Fundamentals; Process; and Operation; Tabatabaei, M., Ghanavati, H., Eds.; Springer: Cham, Switzerland, 2018; pp. 239–276. [Google Scholar]
- Vikrant, K.; Kailasa, S.; Tsang, D.; Lee, S.; Kumar, P.; Giri, B.; Singh, R.; Kim, K. Biofiltration of hydrogen sulfide: Trends and challenges. J. Clean. Prod. 2018, 187, 131–147. [Google Scholar] [CrossRef]
- Muyzer, G.; de Waal, E.; Uittierlinden, A. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700. [Google Scholar] [CrossRef] [Green Version]
- Ralebitso-Senior, T.; Senior, E.; Di Felice, R.; Jarvis, K. Waste gas biofiltration: Advances and limitations of current approaches in microbiology. Environ. Sci. Technol. 2012, 46, 8542–8573. [Google Scholar] [CrossRef]
- Spohr, G.; Mirault, M.; Imaizumi, T.; Scherrer, K. Molecular-weight determination of animal-cell RNA by electrophoresis in formamide under fully denaturing conditions on exponential polyacrylamide gels. Eur. J. Biochem. 1976, 62, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Muyzer, G.; Teske, A.; Wirsen, C.; Jannasch, H. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 1995, 164, 164–172. [Google Scholar] [CrossRef]
- Khanongnuch, R.; Di Capua, F.; Lakaniemi, A.; Rene, E.; Lens, P. Effect of N/S ratio on anoxic thiosulfate oxidation in a fluidized bed reactor: Experimental and artificial neural network model analysis. Process. Biochem. 2018, 68, 171–181. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, G.; Deng, Y.; Dong, J.; Van Stappen, G.; Sui, L. Bacterial Diversity in Bohai Bay Solar Saltworks; China. Curr. Microbiol. 2016, 72, 55–63. [Google Scholar] [CrossRef]
- Beck, J.; Benson, D.; Coleman, J.; Hoeppner, M.; Johnson, M.; Maglott, D.; Mizrachi, I.; Morris, R.; Ostell, J.; Pruitt, K.; et al. (Eds.) The NCBI Handbook, 2nd ed.; National Center for Biotechnology Information: Bethesda, MD, USA, 2019; pp. 1–434. Available online: https://www.ncbi.nlm.nih.gov/books/NBK143764/ (accessed on 16 March 2021).
- Altschul, S.; Madden, T.; Schaffer, A.; Zhang, J.; Zhang, Z.; Miller, W. Gapped Blast and PSI BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margulies, M.; Egholm, M.; Altman, W.; Attiya, S.; Bader, J.; Bemben, L.; Berka, J.; Braverman, M.; Chen, Y.; Chen, Z.; et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef] [Green Version]
- Elías, A.; Barona, A.; Gallastegi, G.; Rojo, N.; Gurtubay, L.; Ibarra-Berastegi, G. Preliminary acclimation strategies for successful startup in conventional biofilters. J. Air Waste Manag. Assoc. 2010, 60, 959–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, X.; Guo, J.; Yang, Y.; Feng, R.; Sun, G.; Li, J. Biofilms formed within the acidic and the neutral biotrickling filters for treating H2S-containing waste gases. RSC Adv. 2017, 7, 25475–25482. [Google Scholar] [CrossRef] [Green Version]
- Herigstad, B.; Hamilton, M.; Heersink, J. How to optimize the drop plate method for enumerating bacteria. J. Microbiol. Methods 2001, 44, 121–129. [Google Scholar] [CrossRef]
- Baron, F.; Cochet, M.; Ablain, W.; Grosset, N.; Madec, M.; Gonnet, F.; Jan, S.; Gautier, M. Rapid and cost-effective method for micro-organism enumeration based on miniaturization of the conventional plate-counting technique. Le Lait 2006, 86, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Vergara-Fernández, A.; Scott, F.; Moreno-Casas, P. Biofiltration of volatile organic compounds and polycyclic aromatic hydrocarbons. In From Biofiltration to Promising Options in Gaseous Fluxes Biotreatment. Recent Developments; New Trends; Advances; and Opportunities; Soreanu, G., Dumont, E., Eds.; Elsevier: Cambridge, MA, USA, 2020; pp. 53–69. [Google Scholar]
- Rahul; Mathur, A.K.; Bala, S.; Majumder, C. Modelling and computational fluid dynamic behaviour of a biofilter treating benzene. Bioresour. Technol. 2012, 125, 200–207. [Google Scholar] [CrossRef]
- Ramirez-Lopez, E.; Corona-Hernandez, J.; Avelar-Gonzalez, F.; Omil, F.; Thalasso, F. Biofiltration of methanol in an organic biofilter using peanut shells as medium. Bioresour. Technol. 2010, 101, 87–91. [Google Scholar] [CrossRef]
- Nikiema, J.; Heitz, M. The Use of Inorganic Packing Materials during Methane Biofiltration. Int. J. Chem. Eng. 2010, 2010. [Google Scholar] [CrossRef] [Green Version]
- Zhu, R.; Li, S.; Bao, X.; Dumont, É. Comparison of biological H2S removal characteristics between a composite packing material with and without functional microorganisms. Sci. Rep. 2017, 7, 42241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rattanapan, C.; Ounsaneha, W. Removal of Hydrogen Sulfide Gas using Biofiltration—A Review. Walailak J. Sci. Tech. 2012, 9, 9–18. [Google Scholar]
- Okoro, O.; Sun, Z. Desulphurisation of Biogas: A Systematic Qualitative and Economic-Based Quantitative Review of Alternative Strategies. ChemEngineering 2019, 3, 76. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, M. Special Issue “Advances in Biogas Desulfurization”. ChemEngineering 2020, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- López, L.; Dorado, A.; Mora, M.; Gamisans, X.; Lafuente, J.; Gabriel, D. Modeling an aerobic biotrickling filter for biogas desulfurization through a multi-step oxidation mechanism. ChemEngineering 2016, 294, 447–457. [Google Scholar] [CrossRef] [Green Version]
- Almenglo, F.; Ramírez, M.; Gómez, J.; Cantero, D.; Gamisans, X.; Dorado, A. Modeling and control strategies for anoxic biotrickling filtration in biogas purification. J. Chem. Technol. Biotechnol. 2016, 91, 1782–1793. [Google Scholar] [CrossRef]
H2S Concentration (ppmv) | Effect on Human Health |
---|---|
0.01–0.3 | Olfactory threshold. Rotten egg smell. |
20 | Strong odour. Eye irritation may occur. |
20–50 | Eye and lung irritation. |
100 | Eye and lung irritation, olfactory paralysis, apparent disappearance of odour. |
>150 | Severe eye and lung irritation. Sensation of olfactory loss. |
>250 | Pulmonary edema and risk of death. |
>500 | Highly dangerous, risk of death. Evacuation is mandatory. |
>1000 | Loss of consciousness, apnoea, immediate collapse. Death. |
BTF Scale | (H2S) (ppmv) | LRcrit (g m−3 h−1) | ECcrit (g m−3 h−1) | REcrit (%) | EBRT for ECcrit (min) | ECmax (g m−3 h−1) | REmax (%) | EBRT for ECmax (min) | pH | T (°C) | [NO3−] (g L−1) | TLF/TLV at ECcrit (L min−1/ m h−1) | Inoculum/Packing Material | Microbial Analysis | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) Lab scale | 60–4000 | 22 | 22 | 99 | ND | ND | ND | ND | 7.3–7.5 | ND | ND | ND | Thiobacillus denitrificans DSM 12475/OPUF | DGGE | [29] |
(2) Lab scale | 426–2144 | 60 | 60 | 100 | 2 | ~130 | 80 | 2 | 7.4–7.5 | ND | ~0.1–0.2 | 0.004/7 | Sludge from a WWTP/OPUF cubes | ND | [31] |
(3) Lab scale | 1400–14,600 | 120 | 120 | 99 | 3 | 170 | ~95 | 17 | 7–4 | 28–30 | 5–10 | 2.2/15 | Community of microorganisms from WWTP sludge, selected in the BTF/PPR | DGGE | [32] |
(4) Lab scale | 133–301 | ~35 | ~35 | 100 | 35 | 42 | 88 | 35 | ND | 14–22 | ND | ND | Activated sludge from a WWTP/shist and UP20 | ND | [33] |
(5) Lab scale | 850–8500 | 130 | 130 | 99 | 2.4 | 170 | 85 | 2.4 | 7.3–7.5 | 30 | 5 | ND/>4.6 | Consortium from a stirred tank reactor of an WWTP/OPUF cubes | ND | [34] |
(6) Pilot scale | 4100–7100 | 56 | 56 | 98 | 2 | 140 | 84 | 10 | 6.8–7.5 | ND | 1.6–4 | 32.7/10 | Community of microorganisms from wastewater from the degritter–degreasing, selected in the BTF/OPUF | 16S rDNA Pyrosequencing (TEFAP) | [35] |
(7) Pilot scale | 4100–7900 | 94.7 | 94.7 | >99 | 4.6 | 127.3 | 92.6 | 10 | 6.8–7.4 | ND | 2.3 | 25/7.63 | Community of microorganisms from wastewater from the degritter–degreasing, selected in the BTF/OPUF | ND | [26] |
(8) Lab scale | 4400–8000 | 26.2 | 26.2 | 99.1 | 30 | ND | ND | ND | 7 | 25 | 3 | ND | Microbial consortia from sludge of an upflow anaerobic sludge blanket reactor from poultry slaughterhouse/PU foam | ND | [36] |
(9) Lab scale | 1500–1600 | 16.3 | 54.5 | 99 | 2–5 | ND | ND | ND | 6–7.5 | 25 | 0.2–0.7 | 0.005–0.010/ND | Microbial enrichment from anaerobic sludge from a WWTP/PP rings | ND | [37] |
(10) Field scale | ND | 438 | 438 | ND | ND | 1509 | 99.8 | 54–107 | 3–6.9 | 21 | 0.7 | 1.17/ND | Community of microorganisms from swine wastewater selected in the BTF/PP bioballs | RT-PCR for relevant methanogens detection not for SOB | [38] |
(11) Pilot scale | 265–1245 | 1.79 | 1.79 | 99.3 | 12.3 | 8.45 | 96.4 | 12.3 | 6.2–6.9 | 23–27 | 0.42–1.26 | ND/1.02 | Microbial consortium isolated from a mix of sludge from anaerobic fermentation chambers and from chemical desulfurization units/PE K1 rings | CFU count in nutrient agar plates | [39] |
(12) Lab scale | 900–1100 | 25.2 | 25.2 | 100 | 2 | 30.3 | ~95 | 4, 5 | 9, 7 | ND | ND | ND | Microorganisms of activated sludge from a domestic WWTP, selected in the BTF/expanded schist and cellular concrete | ND | [40] |
(13) Lab scale | 1900 | 79.8 | 79.8 | ND | 117 | 141.1 | ND | 117 | 7.4 | 33–80 | 0.13–0.3 | 0.67/10 | ND/PPR | ND | [41] |
(14) Lab scale | 710–3564 | ND | ND | 94.7 | 2 | 141 | 94.7 | 2 | 7.4–7.5 | 30 | 1.98 | 1/15 | Community of microorganisms from a sample of WWTP, selected in the BTF/PP rings | DGGE | [23] |
(15) Lab scale | 2848 | 80 | 80 | 96.5 | 1.96 | 141.1 | 92.9 | 1.96 | 7.4–7.5 | ND | 0.38–0.418 | ND/10 | ND/PP rings | ND | [42] |
(16) Lab scale | 2000 | 51.48 | ND | 98 | 2.2 | ND | ND | ND | 7.3–7.5 | ND | 5 | 8.4–60/2.28–20.6 | Community of microorganisms from a stirred tank reactor of a WWTP, selected in the BTF/OPUF and PP rings | DGGE | [25] |
(17) Lab scale | 100–500 | ~16.4 | ~16.4 | 91.9 | ND | 19.2 | 99 | 3.5 | 7 | 24 | 0.012–0.062 | 0.04/0.22 | Thiobacillus dominated culture from a moving bed biofilm reactor/PU foam | DGGE | [43] |
(18) Lab scale | 1537–2127 | 84.4 | 84.4 | 95.7 | 1.6 | ND | ND | ND | 7 | 35 | 0.25–8 | 0.5/11 | Community of microorganisms from a sample of anaerobic sludge of a STP, selected in the BTF/strips of PVC, PET, PTFE (Teflon), OPU | Biomass was determined as weight of protein by weight of dry support material | [30] |
Parameter | Equation | Variables |
---|---|---|
Elimination capacity of H2S (EC) | Cin = H2S input concentration | |
Removal efficiency of H2S (RE) | Cout = H2S output concentration | |
Empty bed retention time (EBRT) | V = Empty bed volume of the BTF bed | |
Loading rate (LR) | Q = Biogas flow |
Method | Technique | Advantage | Disadvantage | Ref. |
---|---|---|---|---|
Microorganisms cell count by weight or area of dry packing material (quantitative). | Direct count of cells in a Neubauer chamber through optical microscopy. | Fast, easy, and inexpensive. | No information about the viable cells. It cannot made if the cells are too little. | [26,34] |
Colony forming units (CFU) count by weight or area of dry packing material (quantitative). | Biofilm resuspension spreading in agar plate dishes and anoxic incubation for 14 d. | Easy and relatively inexpensive. Reports the viable biomass. | Long period of time to obtain results (~14 d). | [39] |
DNA sequences copies (quantitative). | rDNA 16S pyrosequencing (TEFAP). | Reports the microorganisms identity and their relative abundance. | No information about the viable cells. | [35] |
Relative intensity of a DNA amplification product (quantitative). | rDNA 16S PCR, DGGE, and calculation of the relative abundance by band intensity. | Relative abundance by taxa previously selected as control microorganisms. An easy way to measure microbial community changes. | It is restricted to the previous selection of control cultures (e.g., ATCC, DSM) and specific primers. | [25,42] |
Gene copies by cDNA sample (mRNA copies) (quantitative). | RT-qPCR. | Relatively fast and easy. It reports the number of mRNA in the sample, proportional to the number of viable bacteria in the specific taxonomic group previously selected. | It is restricted to the previous selection of specific primers and it needs cloning to make the calibration curve. | [38] |
Protein weight by weight or area of dry packing material (quantitative). | Quantification of total proteins by Lowry technique | Relatively inexpensive, fast, and easy. Total proteins are proportional to viable biomass. | Restricted to the detection limits of the protein determination kit or the preparation of reactants. | [30] |
Observation of the microorganisms on the surface of packing material (qualitative). | Scanning electron microscopy (SEM). | Reports the cells morphology, size, and the formation of EPS filaments and fimbriae. It shows the topology of the biofilm. Coupled to material analysis, it reports the chemical elements that surrounds the biofilm cells. | No information about the viable cells. A relative quantification is only possible when the biofilm has a single layer of cells. | [32,37] |
Method | Technic | Advantage | Disadvantage | Ref. |
---|---|---|---|---|
Microorganisms cells count by weight or area of dry packing material (quantitative and qualitative). | Direct count of cells by optical epifluorescence microscopy with live–death stain (Baclight, Thermofischer, Waltham, MA, USA). | Relatively fast and easy. Reports the viable and not viable cells. If observed in a confocal laser scanning microscope (CSLM), biofilm topology and thickness is reported. | Relatively expensive and low capacity of sample processing quantity. | [68,69] |
Colony forming units (CFU) count by weight or area of dry packing material (quantitative). | Drops of serial dilutions of biofilm resuspension spreading in agar plate dishes or 24-well agar microplates and anoxic incubation for 14 d. | Cost-effective and allows many replicates producing better statistical data. Reports the viable CFU. | Long period of time to obtain results (~14 d). | [47,70,71] |
Parameter | Description |
---|---|
Traditional Markers of Efficiency in BTFs for Biogas Desulphurisation | |
ECcrit (g m−3 h−1) | Elimination capacity at 90–100% of RE. |
LRcrit (g m−3 h−1) | Loading rate of pollutant at 90–100% of RE, theoretically its value is equal to ECcrit. |
EBRT for ECcrit (min) | Empty bed retention time at the ECcrit, sometimes is equivalent to EBRT for ECmax. |
ECmax | Maximum elimination capacity (EC). Corresponds to the inflexion point or the first value of the asymptotic part of the EC versus LR curve. |
LRmax (g m−3 h−1) | Loading rate (LR) at the ECmax. |
RE for ECmax | Removing efficiency at ECmax. |
EBRT for ECmax | Empty bed retention time at the ECmax, sometimes equivalent to the EBRT for ECcrit. |
Microbiological markers | |
Inoculum description | Detail of the sample, culture, or strain for the inoculum. |
Quantification of biomass | Bacterial cell count by packing material surface, through microscopic cell counting in Neubauer chamber or Baclight stain. CFU by packing material surface, through the drop plate method. |
Initial microbial ecology (after start-up) | DGGE or TEFAP for the biofilm in the packing material of the BTF and the liquid culture in the bioreactor. |
Final microbial ecology (at ECcrit and ECmax times) | DGGE or TEFAP for the biofilm in the packing material of the BTF and the liquid culture in the bioreactor. |
Microbial ecology under perturbation | DGGE or TEFAP for the biofilm in the packing material of the BTF and the liquid culture in the bioreactor. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valdebenito-Rolack, E.; Díaz, R.; Marín, F.; Gómez, D.; Hansen, F. Markers for the Comparison of the Performances of Anoxic Biotrickling Filters in Biogas Desulphurisation: A Critical Review. Processes 2021, 9, 567. https://doi.org/10.3390/pr9030567
Valdebenito-Rolack E, Díaz R, Marín F, Gómez D, Hansen F. Markers for the Comparison of the Performances of Anoxic Biotrickling Filters in Biogas Desulphurisation: A Critical Review. Processes. 2021; 9(3):567. https://doi.org/10.3390/pr9030567
Chicago/Turabian StyleValdebenito-Rolack, Emky, Rosario Díaz, Felipe Marín, Daniel Gómez, and Felipe Hansen. 2021. "Markers for the Comparison of the Performances of Anoxic Biotrickling Filters in Biogas Desulphurisation: A Critical Review" Processes 9, no. 3: 567. https://doi.org/10.3390/pr9030567
APA StyleValdebenito-Rolack, E., Díaz, R., Marín, F., Gómez, D., & Hansen, F. (2021). Markers for the Comparison of the Performances of Anoxic Biotrickling Filters in Biogas Desulphurisation: A Critical Review. Processes, 9(3), 567. https://doi.org/10.3390/pr9030567