Hyperthermophilic Composting Technology for Organic Solid Waste Treatment: Recent Research Advances and Trends
Abstract
:1. Introduction
2. Classical Organic Solid Waste Treatment Technologies
3. Hyperthermophilic Composting Mechanisms
3.1. Comparison between Hyperthermophilic Composting and Thermophilic Composting
3.2. Hyperthermophilic Inoculants and Microbial Community Structure
3.3. Operation Parameters and Process Flow
4. Hyperthermophilic Composting Research and Application
4.1. Compost Formation from Various Organic Solid Wastes
4.2. Decreasing Greenhouse Gas Emission
4.3. In Situ Biodegradation of Microplastics
4.4. Remediation of Heavy-Metal-Polluted Soils
4.5. Removal of Antibiotic Residues and Antibiotic Resistance Genes
5. Implication and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wainaina, S.; Awasthi, M.K.; Sarsaiya, S.; Chen, H.Y.; Singh, E.; Kumar, A.; Ravindran, B.; Awasthi, S.K.; Liua, T.; Duan, Y.M.; et al. Resource Recovery and Circular Economy from Organic Solid Waste Using Aerobic and Anaerobic Digestion Technologies. Bioresour. Technol. 2020, 301, 122778. [Google Scholar] [CrossRef]
- Soobhany, N. Insight into the Recovery of Nutrients from Organic Solid Waste through Biochemical Conversion Processes for Fertilizer Production: A review. J. Clean. Prod. 2019, 241, 118413. [Google Scholar] [CrossRef]
- Peng, W.; Pivato, A. Sustainable Management of Digestate from the Organic Fraction of Municipal Solid Waste and Food Waste Under the Concepts of Back to Earth Alternatives and Circular Economy. Waste Biomass Valor. 2019, 10, 465–481. [Google Scholar] [CrossRef]
- Speier, C.J.; Mondal, M.M.; Weichgrebe, D. Evaluation of Compositional Characteristics of Organic Waste Shares in Municipal Solid Waste in Fast-growing Metropolitan Cities of India. J. Mater. Cycles Waste 2018, 20, 2150–2162. [Google Scholar] [CrossRef]
- Zhen, G.Y.; Lu, X.Q.; Kato, H.; Zhao, Y.C.; Li, Y.Y. Overview of Pretreatment Strategies for Enhancing Sewage Sludge Disintegration and Subsequent Anaerobic Digestion: Current Advances, Full-scale Application and Future Perspectives. Renew. Sust. Energy Rev. 2017, 69, 559–577. [Google Scholar] [CrossRef]
- Ma, Y.Q.; Liu, Y. Turning Food Waste to Energy and Resources towards a Great Environmental and Economic Sustainability: An Innovative Integrated Biological Approach. Biotechnol. Adv. 2019, 37, 107414. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Samadder, S.R. Performance Evaluation of Anaerobic Digestion Technology for Energy Recovery from Organic Fraction of Municipal Solid Waste: A Review. Energy 2020, 197, 117253. [Google Scholar] [CrossRef]
- Gurmessa, B.; Pedretti, E.F.; Cocco, S.; Cardelli, V.; Corti, G. Manure Anaerobic Digestion Effects and the Role of Pre- and Post-treatments on Veterinary Antibiotics and Antibiotic Resistance Genes Removal Efficiency. Sci. Total Environ. 2020, 721, 137532. [Google Scholar] [CrossRef]
- Zhao, X.F.; Li, L.; Wu, D.; Xiao, T.H.; Ma, Y.; Peng, X.Y. Modified Anaerobic Digestion Model No. 1 for Modeling Methane Production from Food Waste in Batch and Semi-continuous Anaerobic Digestions. Bioresour. Technol. 2019, 271, 109–117. [Google Scholar] [CrossRef]
- Choe, U.; Mustafa, A.M.; Lin, H.J.; Xu, J.; Sheng, K.C. Effect of Bamboo Hydrochar on Anaerobic Digestion of Fish Processing Waste for Biogas Production. Bioresour. Technol. 2019, 283, 340–349. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.G.; Wu, J. Enhancement of Methane Production in Anaerobic Digestion Process: A review. Appl. Energy 2019, 240, 120–137. [Google Scholar] [CrossRef]
- Sarpong, D.; Oduro-Kwarteng, S.; Gyasi, S.F.; Buamah, R.; Donkor, E.; Awuah, E.; Baah, M.K. Biodegradation by Composting of Municipal Organic Solid Waste into Organic Fertilizer Using the Black Soldier Fly (Hermetia illucens) (Diptera: Stratiomyidae) Larvae. Int. J. Recycl. Org. Waste Agric. 2019, 8, S45–S54. [Google Scholar] [CrossRef] [Green Version]
- Salehiyoun, A.R.; Sharif, M.; Maria, F.D.; Zilouei, H.; Aghbashlo, M. Effect of Substituting Organic Fraction of Municipal Solid Waste with Fruit and Vegetable Wastes on Anaerobic Digestion. J. Mater. Cycles Waste 2019, 21, 1321–1331. [Google Scholar] [CrossRef]
- Ossa-Arias, M.M.; González-Martínez, S. Methane Production from the Organic Fraction of Municipal Solid Waste Under Psychrophilic, Mesophilic, and Thermophilic Temperatures at Different Organic Loading Rates. Waste Biomass Valor. 2021. [Google Scholar] [CrossRef]
- Khiari, Z.; Kaluthota, S.; Savidov, N. Aerobic Bioconversion of Aquaculture Solid Waste into Liquid Fertilizer: Effects of Bioprocess Parameters on Kinetics of Nitrogen Mineralization. Aquaculture 2019, 500, 492–499. [Google Scholar] [CrossRef]
- Mo, W.Y.; Man, Y.B.; Wong, M.H. Use of Food Waste, Fish Waste and Food Processing Waste for China’s Aquaculture Industry: Needs and Challenge. Sci. Total Environ. 2018, 613–614, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Zhi, S.L.; Li, Q.; Yang, F.X.; Yang, Z.J.; Zhang, K.Q. How Methane Yield, Crucial Parameters and Microbial Communities Respond to the Stimulating Effect of Antibiotics During High Solid Anaerobic Digestion. Bioresour. Technol. 2019, 283, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Pleissner, D.; Peinemann, J.C. The Challenges of Using Organic Municipal Solid Waste as Source of Secondary Raw Materials. Waste Biomass Valor. 2020, 11, 435–446. [Google Scholar] [CrossRef]
- De la Cruz, F.B.; Cheng, Q.W.; Call, D.F.; Barlaz, M.A. Evidence of Thermophilic Waste Decomposition at a Landfill Exhibiting Elevated Temperature Regions. Waste Manag. 2021, 124, 26–35. [Google Scholar] [CrossRef]
- Tyagi, V.K.; Bhatia, A.; Kubota, K.; Rajpal, A.; Ahmed, B.; Khan, A.A.; Kazmi, A.A.; Kumar, M. Microbial Community Dynamics in Anaerobic Digest. Environ. Technol. Innov. 2021, 21, 101303. [Google Scholar] [CrossRef]
- Vlaskin, M.S.; Vladimirov, G.N. Hydrothermal Carbonization of Organic Components from Municipal Solid Waste. Theor. Found. Chem. Eng. 2018, 52, 996–1003. [Google Scholar] [CrossRef]
- Elalami, D.; Carrere, H.; Monlau, F.; Abdelouahdi, K.; Oukarroum, A.; Barakat, A. Pretreatment and Co-digestion of Wastewater Sludge for Biogas Production: Recent Research Advances and Trends. Renew. Sustain. Energy Rev. 2019, 114, 109287. [Google Scholar] [CrossRef]
- Huang, Y.; Dan, Y.L.; Shah, G.M.; Chen, W.; Wang, W.; Xu, Y.D.; Huang, H.Y. Hyperthermophilic Pretreatment Composting Significantly Accelerates Humic Substances Formation by Regulating Precursors Production and Microbial Communities. Waste Manag. 2019, 92, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Liu, X.M.; Chen, C.Y.; Liao, H.P.; Chen, Z.; Zhou, S.G. Molecular Insights into the Transformation of Dissolved Organic Matter during Hyperthermophilic Composting using ESI FT-ICR MS. Bioresour. Technol. 2019, 292, 122007. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Liu, X.M.; Zhao, M.H.; Zhao, W.Q.; Liu, J.; Tang, J.; Liao, H.P.; Chen, Z.; Zhou, S.G. Hyperthermophilic Composting Accelerates the Humification Process of Sewage Sludge: Molecular Characterization of Dissolved Organic Matter Using EEM-PARAFAC and Two-dimensional Correlation Spectroscopy. Bioresour. Technol. 2019, 274, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.M.; Hou, Y.; Li, Z.; Yu, Z.; Tang, J.; Wang, Y.Q.; Zhou, S.G. Hyperthermophilic Composting of Sewage Sludge Accelerates Humic Acid Formation: Elemental and Spectroscopic Evidence. Waste Manag. 2020, 103, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Cui, P.; Liao, H.P.; Bai, Y.D.; Li, X.; Zhao, Q.; Chen, Z.; Yu, Z.; Yi, Z.G.; Zhou, S.G. Hyperthermophilic Composting Reduces Nitrogen Loss via Inhibiting Ammonifiers and Enhancing Nitrogenous Humic Substance Formation. Sci. Total Environ. 2019, 692, 98–106. [Google Scholar] [CrossRef]
- Huang, W.F.; Li, Y.M.; Liu, X.M.; Wang, W.W.; Wen, P.; Yu, Z.; Zhou, S.G. Linking the Electron Transfer Capacity with the Compositional Characteristics of Dissolved Organic Matter during Hyperthermophilic Composting. Sci. Total Environ. 2021, 755, 142687. [Google Scholar] [CrossRef]
- Photographs. Available online: https://image.baidu.com/ (accessed on 1 June 2020).
- Kim, Y.M.; Park, M.H.; Jeong, S.; Lee, K.H.; Kim, J.Y. Evaluation of Error Inducing Factors in Unmanned Aerial Vehicle Mounted Detector to Measure Fugitive Methane from Solid Waste Landfill. Waste Manag. 2021, 124, 368–376. [Google Scholar] [CrossRef]
- Sohoo, I.; Ritzkowski, M.; Kuchta, K. Influence of Moisture Content and Leachate Recirculation on Oxygen Consumption and Waste Stabilization in Post Aeration Phase of Landfill Operation. Sci. Total Environ. 2021, 773, 145584. [Google Scholar] [CrossRef]
- Propp, V.R.; De Silva, A.O.; Spencer, C.; Brown, S.J.; Catingan, S.D.; Smith, J.E.; Roy, J.W. Organic Contaminants of Eemerging Concern in Leachate of Historic Municipal Landfills. Environ. Pollut. 2021, 276, 116474. [Google Scholar] [CrossRef]
- Peng, W.; Pivato, A.; Cerminara, G.; Garbo, F.; Raga, R. Denitrifcation of Mature Landfill Leachate with High Nitrite in Simulated Landfill Columns Packed with Solid Digestate from Organic Fraction of Municipal Solid Waste. Waste Biomass Valori. 2020, 11, 411–421. [Google Scholar] [CrossRef]
- Cheah, Y.K.; Vidal-Antich, C.; Dosta, J.; Mata-Álvarez, J. Volatile Fatty Acid Production from Mesophilic Acidogenic Fermentation of Organic Fraction of Municipal Solid Waste and Food Waste under Acidic and Alkaline pH. Environ. Sci. Pollut. Res. 2019, 26, 35509–35522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deepesh, V.; Verma, V.K.; Suma, K.; Ajay, S.; Gnanavelu, A.; Madhusudanan, M. Evaluation of an organic soil amendment generated from municipal solid waste seeded with activated sewage sludge. J. Mater. Cycles Waste Manag. 2016, 18, 273–286. [Google Scholar] [CrossRef]
- Cudjoe, D.; Acquah, P.M. Environmental Impact Analysis of Municipal Solid Waste Incineration in African Countries. Chemosphere 2020, 265, 129186. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, N.; Amano, T.; Nagai, Y.; Hagiwara, K.; Honda, T.; Koike, Y.Y. Water Repellents for the Leaching Control of Heavy Metals in Municipal Solid Waste Incineration Fly Ash. Waste Manag. 2021, 124, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Kremser, K.; Thallner, S.; Strbik, D.; Spiess, S.; Kucera, J.; Vaculovic, T.; Vsiansky, D.; Haberbauer, M.; Mandl, M.; Guebitz, G.M. Leachability of Metals from Waste Incineration Residues by Iron- and Sulfur-oxidizing Bacteria. J. Environ. Manag. 2021, 280, 111734. [Google Scholar] [CrossRef]
- Munir, M.T.; Mansouri, S.S.; Udugama, I.A.; Baroutian, S.; Gernaey, K.V.; Young, B.R. Resource Recovery from Organic Solid Waste using Hydrothermal Processing: Opportunities and Challenges. Renew. Sustain. Energy Rev. 2018, 96, 64–75. [Google Scholar] [CrossRef]
- Cesaro, A. The Valorization of the Anaerobic Digestate from the Organic Fractions of Municipal Solid Waste: Challenges and Perspectives. J. Environ. Manag. 2021, 280, 111742. [Google Scholar] [CrossRef]
- Zamri, M.F.M.A.; Hasmady, S.; Akhiar, A.; Ideris, F.; Shamsuddin, A.H.; Mofijur, M.; Rizwanul Fattah, I.M.; Mahlia, T.M.I. A Comprehensive Review on Anaerobic Digestion of Organic Fraction of Municipal Solid Waste. Renew. Sustain. Energy Rev. 2021, 137, 110637. [Google Scholar] [CrossRef]
- Kainthola, J.; Kalamdhad, A.S.; Goud, V.V. Enhanced Methane Production from Anaerobic co-digestion of Rice Straw and Hydrilla Verticillata and its Kinetic Analysis. Biomass Bioenergy 2019, 125, 8–16. [Google Scholar] [CrossRef]
- Ryue, J.; Lin, L.; Liu, Y.; Lu, W.J.; McCartney, D.; Dhar, B.R. Comparative Effects of GAC Addition on Methane Productivity and Microbial Community in Mesophilic and Thermophilic Anaerobic Digestion of Food Waste. Biochem. Eng. J. 2019, 146, 79–87. [Google Scholar] [CrossRef]
- Zhang, L.G.; Duan, H.R.; Ye, L.; Liu, L.; Batstone, D.J.; Yuan, Z.G. Increasing Capacity of an Anaerobic Sludge Digester through FNA Pre-treatment of Thickened Waste Activated Sludge. Water Res. 2019, 149, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Wang, Y.Y.; Ma, C.X.; White, J.C.; Zhao, Z.Q.; Duan, C.; Zhang, Y.L.; Adeel, M.; Rui, Y.K.; Li, G.X.; et al. Carbon Nanomaterials Induce Residue Degradation and Increase Methane Production from Livestock Manure in an Anaerobic Digestion System. J. Clean. Prod. 2019, 240, 118257. [Google Scholar] [CrossRef]
- Bucker, F.; Marder, M.; Peiter, M.R.; Lehn, D.N.; Esquerdo, V.M.; de Almeida Pinto, L.A.; Konrad, O. Fish Waste: An Efficient Alternative to Biogas and Methane Production in an Anaerobic Mono-digestion System. Renew. Energy 2020, 147, 798–805. [Google Scholar] [CrossRef]
- Syafiuddin, A.; Boopathy, R. Role of Anaerobic Sludge Digestion in Handling Antibiotic Resistant Bacteria and Antibiotic Resistance Genes–A review. Bioresour. Technol. 2021, 330, 124970. [Google Scholar] [CrossRef]
- Andriamanohiarisoamananaa, F.J.; Iharaa, I.; Yoshidaa, G.; Umetsub, K. Tackling antibiotic inhibition in anaerobic digestion: The roles of Fe3+ and Fe3O4 on process performance and volatile fatty acids utilization pattern. Bioresour. Technol. Rep. 2020, 11, 110460. [Google Scholar]
- Azizi, S.M.M.; Hai, F.I.; Lu, W.J.; Al-Mamun, A.; Dhar, B.R. A Review of Mechanisms Underlying the Impacts of (nano)Microplastics on Anaerobic Digestion. Bioresour. Technol. 2021, 329, 124894. [Google Scholar]
- Huang, Y.; Li, D.Y.; Wang, L.; Yong, C.; Sun, E.H.; Jin, H.M.; Huang, H.Y. Decreased Enzyme Activities, Ammonification Rate and Ammonifiers Contribute to Higher Nitrogen Retention in Hyperthermophilic Pretreatment Composting. Bioresour. Technol. 2019, 272, 521–528. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, J.D.; Huang, H.Y.; Sun, E.H.; Butterly, C.; Xu, Y.D.; He, H.; Zhang, J.; Chang, Z.Z. Spectroscopic Evidence for Hyperthermophilic Pretreatment Intensifying Humification During Pig Manure and Rice Straw Composting. Bioresour. Technol. 2019, 294, 122131. [Google Scholar] [CrossRef]
- Ren, X.N.; Wang, Q.; Zhang, Y.; Awasthi, M.K.; He, Y.F.; Li, R.H.; Zhang, Z.Q. Improvement of Humification and Mechanism of Nitrogen Transformation during Pig Manure Composting with Black Tourmaline. Bioresour. Technol. 2020, 307, 123236. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.; López-González, J.A.; Arcos-Nievas, M.A.; Suárez-Estrella, F.; Jurado, M.M.; Estrella-González, M.J.; López, M.J. Revisiting the Succession of Microbial Populations throughout Composting: A Matter of Thermotolerance. Sci. Total Environ. 2021, 773, 145587. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.A.M.; Costa, M.S.S.M.; Damaceno, F.M.; Chiarelotto, M.; Bofinger, J.; Gazzola, W. Bioaugmentation as A Strategy to Improve the Compost Quality in the Composting Process of Agro-industrial Wastes. Environ. Technol. Innov. 2021, 22, 101478. [Google Scholar] [CrossRef]
- Lin, C.; Cheruiyot, N.K.; Hoang, H.G.; Le, T.H.; Tran, H.T.; Bui, X.T. Benzophenone Biodegradation and Characterization of Malodorous Gas Emissions During Co-composting of Food Waste with Sawdust and Mature Compost. Environ. Technol. Innov. 2021, 21, 101351. [Google Scholar] [CrossRef]
- Panigrahi, S.; Dubey, B.K. A Critical Review on Operating Parameters and Strategies to Improve the Biogas Yield from Anaerobic Digestion of Organic Fraction of Municipal Solid Waste. Renew. Energy 2019, 143, 779–797. [Google Scholar] [CrossRef]
- Yu, Z.; Tang, J.; Liao, H.P.; Liu, X.M.; Zhou, P.X.; Chen, Z.; Rensing, C.; Zhou, S.G. The Distinctive Microbial Community Improves Composting Efficiency in a full-scale Hyperthermophilic Composting Plant. Bioresour. Technol. 2018, 265, 146–154. [Google Scholar] [CrossRef]
- Afonso, S.; Arrobas, M.; Pereira, E.L.; Rodrigues, M.A. Recycling Nutrient-rich Hop Leaves by Composting with Wheat Straw and Farmyard Manure in Suitable Mixtures. J. Environ. Manag. 2021, 284, 112105. [Google Scholar] [CrossRef]
- Kanazawa, S.; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.; Space Agriculture Task Force. Space Agriculture for Habitation on Mars with Hyper-thermophilic Aerobic Composting Bacteria. Adv. Space Res. 2008, 41, 696–700. [Google Scholar] [CrossRef]
- Liao, H.P.; Chen, Z.; Yu, Z.; Lu, X.M.; Wang, Y.; Zhou, S.G. Development of Hyperthermophilic Aerobic Composting and its Engineering Application in Organic Solid Wastes. J. Fujian Agric. For. Univ. Nat. Sci. Ed. 2017, 46, 439–444. (In Chinese) [Google Scholar]
- Xue, Z.J.; Zhou, G.Y.; Yu, X.F.; Wang, H.C.; Wang, Y.Y.; Zheng, D.W.; Jia, F.X.; Huang, Y.; Wang, S.Y.; Peng, Y.Z. Ultra High Temperature Aerobic Composting Process in Treating Municipal Sludge. China Environ. Sci. 2017, 37, 3399–3406. (In Chinese) [Google Scholar]
- Cui, P.; Chen, Z.; Zhao, Q.; Yu, Z.; Yi, Z.G.; Liao, H.P.; Zhou, S.G. Hyperthermophilic Composting Significantly Decreases N2O Emissions by Regulating N2O-related Functional Genes. Bioresour. Technol. 2019, 272, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Research and Application of Ultra-High Temperature Aerobic Fermentation Technology for Sludge Treatment. Available online: http://www.water8848.com/news/201911/01/121574.html (accessed on 6 May 2020). (In Chinese).
- Oshima, T.; Moriya, T. A Preliminary Analysis of Microbial and Biochemical Properties of High-temperature Compost. Ann. N. Y. Acad. Sci. 2008, 1125, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Gurusamy, N.N.; Puffer, N.; Jongh, C.; Gil, C.R.; Aspray, T.J. Effect of Initial Moisture Content and Sample Storage Duration on Compost Stability Using the ORG0020 Dynamic Respiration Test. Waste Manag. 2021, 125, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Graça, J.; Murphy, B.; Pentlavalli, P.; Allen, C.C.R.; Bird, E.; Gaffney, M.; Duggan, T.; Kelleher, B. Bacterium Consortium Drives Compost Stability and Degradation of Organic Contaminants in in-vessel Composting Process of the Mechanically Separated Organic Fraction of Municipal Solid Waste (MS-OFMSW). Bioresour. Technol. Rep. 2021, 13, 100621. [Google Scholar] [CrossRef]
- Photographs. Available online: https://so.youku.com/ (accessed on 1 May 2020).
- Chen, Z.; Zhao, W.Q.; Xing, R.Z.; Xie, S.J.; Yang, X.G.; Cui, P.; Lu, J.; Liao, H.P.; Yu, Z.; Wang, S.H.; et al. Enhanced in situ Biodegradation of Microplastics in Sewage Sludge Using Hyperthermophilic Composting Technology. J. Hazard. Mater. 2020, 384, 121271. [Google Scholar] [CrossRef]
- Tang, J.; Zhuang, L.; Yu, Z.; Liu, X.M.; Wang, Y.Q.; Wen, P.; Zhou, S.G. Insight into Complexation of Cu(II) to Hyperthermophilic compost-derived Humic Acids by EEM-PARAFAC Combined with Heterospectral Two Dimensional Correlation Analyses. Sci. Total Environ. 2019, 656, 29–38. [Google Scholar] [CrossRef]
- Chen, Z.; Xing, R.Z.; Yang, X.G.; Zhao, Z.Q.; Liao, H.P.; Zhou, S.G. Enhanced in situ Pb(II) Passivation by Biotransformation into Chloropyromorphite During Sludge Composting. J. Hazard. Mater. 2021, 408, 124973. [Google Scholar] [CrossRef]
- Liao, H.P.; Zhao, Q.; Cui, P.; Chen, Z.; Yu, Z.; Geisen, S.; Friman, V.P.; Zhou, S.G. Efficient Reduction of Antibiotic Residues and Associated Resistance Genes in Tylosin Antibiotic Fermentation Waste using Hyperthermophilic Composting. Environ. Int. 2019, 133, 105203. [Google Scholar] [CrossRef]
- Liao, H.P.; Lu, X.M.; Rensing, C.; Friman, V.P.; Geisen, S.; Chen, Z.; Yu, Z.; Wei, Z.; Zhou, S.G.; Zhu, Y.G. Hyperthermophilic Composting Accelerates the Removal of Antibiotic Resistance Genes and Mobile Genetic Elements in Sewage Sludge. Environ. Sci. Technol. 2018, 52, 266–276. [Google Scholar] [CrossRef] [Green Version]
Characteristic | HTC | TC | Ref. |
---|---|---|---|
Maximum temperature (°C) | >80 | 50–70 | [59,60] |
Average temperature (°C) | 70 | 40 | [59,60] |
Thermophilic period (d) | ≥80 °C, 5–7 d | ≥50 °C, 5–7 d | [60] |
Composting period (d) | 15–25 | 30–50 | [60] |
Low C/N (<10) for start-up | Easy | Hard | [57] |
Compost maturity | GI a ≥ 95% | GI ≥ 65% | [60] |
Pathogens inactivation rate | High | Low | [60] |
Waste weight reduction (%) | 52.4 | 45.9 | [57] |
Moisture loss (%) | 58.9 | 53.4 | [57] |
Organic matter loss (%) | 66.8 | 63.8 | [57] |
Nitrogen loss (%) | 26.2 | 31.0 | [57] |
26.1 | 44.2 | [27] | |
Odor | NH3, less | NH3, H2S, SO2, more | [60] |
Operation cost | Low | High | [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wu, Y. Hyperthermophilic Composting Technology for Organic Solid Waste Treatment: Recent Research Advances and Trends. Processes 2021, 9, 675. https://doi.org/10.3390/pr9040675
Wang S, Wu Y. Hyperthermophilic Composting Technology for Organic Solid Waste Treatment: Recent Research Advances and Trends. Processes. 2021; 9(4):675. https://doi.org/10.3390/pr9040675
Chicago/Turabian StyleWang, Shaofeng, and Yuqi Wu. 2021. "Hyperthermophilic Composting Technology for Organic Solid Waste Treatment: Recent Research Advances and Trends" Processes 9, no. 4: 675. https://doi.org/10.3390/pr9040675
APA StyleWang, S., & Wu, Y. (2021). Hyperthermophilic Composting Technology for Organic Solid Waste Treatment: Recent Research Advances and Trends. Processes, 9(4), 675. https://doi.org/10.3390/pr9040675