Statistical Optimization of Biodiesel Production from Salmon Oil via Enzymatic Transesterification: Investigation of the Effects of Various Operational Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Salmon Oil Extraction
2.3. Enzymatic Transesterification of Salmon Oil
2.4. Fatty Acid Composition Analysis of Salmon Oil
- AX = area counts of individual methyl ester;
- AT = total area counts for chromatogram;
- AIS = area counts of the internal standard;
- The fatty acid composition of the salmon oil.
2.5. Fatty Acid Methyl Ester (FAME) Composition Analysis of Biodiesel
2.6. GC Settings for Analysis
2.7. Statistical Analysis
3. Results
3.1. Statistical Modeling of Biodiesel Production
3.2. Effect of Operating Parameters
3.2.1. Temperature
3.2.2. Reaction Time
3.2.3. Oil/Alcohol Molar Ratio
3.2.4. Enzyme Concentration
3.3. Optimization of Biodiesel Production
Step-Wise Addition of Methanol
3.4. Investigation of Glycerol as the By-Product
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ambat, I.; Srivastava, V.; Sillanpää, M. Recent advancement in biodiesel production methodologies using various feedstock: A review. Renew. Sustain. Energy Rev. 2018, 90, 356–369. [Google Scholar] [CrossRef]
- Manaf, I.S.A.; Embong, N.H.; Khazaai, S.N.M.; Rahim, M.H.A.; Yusoff, M.M.; Lee, K.T.; Maniam, G.P. A review for key challenges of the development of biodiesel industry. Energy Convers. Manag. 2019, 185, 508–517. [Google Scholar] [CrossRef]
- Thangaraj, B.; Solomon, P.R.; Muniyandi, B.; Ranganathan, S.; Lin, L. Catalysis in biodiesel production-A review. Clean Energy 2019, 3, 2–23. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Sharma, D.; Soni, S.L.; Sharma, S.; Sharma, P.K.; Jhalani, A. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 2020, 262, 116553. [Google Scholar] [CrossRef]
- Lv, L.; Dai, L.; Du, W.; Liu, D. Progress in enzymatic biodiesel production and commercialization. Processes 2021, 9, 355. [Google Scholar] [CrossRef]
- de Lima, A.L.; Mota, C.J.A. Biodiesel: A Survey on Production Methods and Catalysts. In Jatropha, Challenges for a New Energy Crop; Mulpuri, S., Carels, N., Bahadur, B., Eds.; Springer: Singapore, 2019; pp. 475–491. [Google Scholar]
- Sendzikiene, E.; Santaraite, M.; Makareviciene, V. Lipase-Catalysed In Situ Transesterification of Waste Rapeseed Oil to Produce Diesel-Biodiesel Blends. Processes 2020, 8, 1118. [Google Scholar] [CrossRef]
- Zhong, L.; Feng, Y.; Wang, G.; Wang, Z.; Bilal, M.; Lv, H.; Jia, S.; Cui, J. Production and use of immobilized lipases in/on nanomaterials: A review from the waste to biodiesel production. Int. J. Biol. Macromol. 2020, 152, 207–222. [Google Scholar] [CrossRef]
- Ching-Velasquez, J.; Fernandez-Lafuente, R.; Rodrigues, R.C.; Plata, V.; Rosales-Quintero, A.; Torrestiana-Sanchez, B.; Tacias-Pascacio, V.G. Production and characterization of biodiesel from oil of fi sh waste by enzymatic catalysis. Renew. Energy 2020, 153, 1346–1354. [Google Scholar] [CrossRef]
- Moazeni, F.; Chen, Y.C.; Zhang, G. Enzymatic transesterification for biodiesel production from used cooking oil, a review. J. Clean. Prod. 2019, 216, 117–128. [Google Scholar] [CrossRef]
- Ortiz, C.; Ferreira, M.L.; Barbosa, O.; Santos, J.C.S.; Rodrigues, R.C.; Berenguer-murcia, Á.; Briand, L.E.; Fernandez-lafuente, R. Novozym 435: The “perfect” lipase immobilized biocatalyst? Catal. Sci. Technol. 2019, 9, 2380–2420. [Google Scholar] [CrossRef] [Green Version]
- Vijayan, G. Enzymatic Transesterification of Fish Oil for the Biodiesel Production; Dalhousie University: Halifax, NS, Canada, 2013. [Google Scholar]
- Kumar, S. Enzymatic Transesterification of Waste Animal Fats for Production of Biodiesel; Dalhousie University: Halifax, NS, Canada, 2013. [Google Scholar]
- Kianimanesh, H.R.; Abbaspour-aghdam, F.; Derakhshan, M.V. Biodiesel production from vegetable oil: Process design, evaluation and optimization. Pol. J. Chem. Technol. 2017, 19, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Santaraite, M.; Sendzikiene, E.; Makareviciene, V.; Kazancev, K. Biodiesel Production by Lipase-Catalyzed In Situ Transesterification of Rapeseed Oil Containing a High Free Fatty Acid Content with Ethanol in Diesel Fuel Media. Energies 2020, 13, 2588. [Google Scholar] [CrossRef]
- Veljkovi, V.B.; Biberd, M.O.; Bankovi, I.B.; Djalovi, I.G.; Tasi, M.B.; Nje, Z.B.; Stamenkovi, O.S. Biodiesel production from corn oil: A review. Renew. Sustain. Energy Rev. 2018, 91, 531–548. [Google Scholar] [CrossRef]
- Kara, K.; Ouanji, F.; Lotfi, E.M.; El Mahi, M.; Kacimi, M.; Ziyad, M. Biodiesel production from waste fish oil with high free fatty acid content from Moroccan fish-processing industries. Egypt. J. Pet. 2018, 27, 249–255. [Google Scholar] [CrossRef]
- Yari, N.; Mostafaei, M.; Naderloo, L.; Ardebili, S.M.S. Energy indicators for microwave-assisted biodiesel production from waste fish oil. Energy Sources Part A Recover. Util. Environ. Eff. 2019, 1–12. [Google Scholar] [CrossRef]
- Makoure, D.; Arhaliass, A.; Echchelh, A.; Legrand, J. Valorization of Fish By-Products Using Reactive Extrusion for Biodiesel Production and Optimization. Waste Biomass Valoriz. 2020, 11, 6285–6293. [Google Scholar] [CrossRef]
- Samat, A.F.; Muhamad, N.A.S.; Rasib, N.A.A.; Hassan, S.A.M.; Sohaimi, K.S.A.; Iberahim, N.I. The Potential of Biodiesel Production derived from Fish Waste. IOP Conf. Ser. Mater. Sci. Eng. 2018, 318, 012017. [Google Scholar] [CrossRef]
- Fisheries and Land Resources Seafood Industry Year in Review. 2019. Available online: https://www.gov.nl.ca/ffa/files/2019-SIYIR-WEB.pdf (accessed on 22 January 2021).
- Liu, Y.; Ramakrishnan, V.V.; Dave, D. Lipid class and fatty acid composition of oil extracted from Atlantic salmon by-products under different optimization parameters of enzymatic hydrolysis. Biocatal. Agric. Biotechnol. 2020, 30, 101866. [Google Scholar] [CrossRef]
- Liu, Y.; Ramakrishnan, V.V.; Dave, D. Enzymatic hydrolysis of farmed Atlantic salmon by-products: Investigation of operational parameters on extracted oil yield and quality. Process. Biochem. 2021, 100, 10–19. [Google Scholar] [CrossRef]
- Dave, D.; Ramakrishnan, V.R.; Pohling, J.; Cheema, S.K.; Trenholm, S.; Manuel, H.; Murphy, W. Investigation on oil extraction methods and its influence on omega-3 content from cultured salmon. J. Food Process. Technol. 2014, 5, 1000401. [Google Scholar] [CrossRef] [Green Version]
- Routray, W.; Dave, D.; Ramakrishnan, V.V.; Murphy, W. Production of high quality fish oil by enzymatic protein hydrolysis from cultured Atlantic salmon by-products: Investigation on effect of various extraction parameters using central composite rotatable design. Waste Biomass Valoriz. 2018, 9, 2003–2014. [Google Scholar] [CrossRef]
- Rubio-Rodríguez, N.; Sara, M.; Beltrán, S.; Jaime, I.; Sanz, M.T.; Rovira, J. Supercritical fluid extraction of fish oil from fish by-products: A comparison with other extraction methods. J. Food Eng. 2012, 109, 238–248. [Google Scholar] [CrossRef] [Green Version]
- Głowacz-Różyńska, A.; Tynek, M.; Malinowska-Pańczyk, E.; Martysiak-Żurowska, D.; Pawłowicz, R.; Kołodziejska, I. Comparison of oil yield and quality obtained by different extraction procedures from salmon (Salmo salar) processing byproducts. Eur. J. Lipid Sci. Technol. 2016, 118, 1759–1767. [Google Scholar] [CrossRef]
- Zieniuk, B.; Wołoszynowska, M.; Białecka-Florjańczyk, E. Enzymatic Synthesis of Biodiesel by Direct Transesterification of Rapeseed Cake. Int. J. Food Eng. 2020, 16, 1–10. [Google Scholar] [CrossRef]
- Behera, S.K.; Meena, H.; Chakraborty, S.; Meikap, B.C. Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. Int. J. Min. Sci. Technol. 2018, 28, 621–629. [Google Scholar] [CrossRef]
- Kumari, M.; Gupta, S.K. Response surface methodological (RSM) approach for optimizing the removal of trihalomethanes (THMs) and its precursor’s by surfactant modified magnetic nanoadsorbents (sMNP)-An endeavor to diminish probable cancer risk. Sci. Rep. 2019, 9, 18339. [Google Scholar] [CrossRef] [PubMed]
- Chumuang, N.; Punsuvon, V. Response Surface Methodology for Biodiesel Production Using Calcium Methoxide Catalyst Assisted with Tetrahydrofuran as Cosolvent. J. Chem. 2017, 2017, 4190818. [Google Scholar] [CrossRef] [Green Version]
- Nelson, L.A.; Foglia, T.A.; Marmer, W.N. Lipase-catalyzed production of biodiesel. JAOCS J. Am. Oil Chem. Soc. 1996, 73, 1191–1195. [Google Scholar] [CrossRef] [Green Version]
- Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Chen, G.; Ying, M.; Li, W. Enzymatic Conversion of Waste Cooking Oils Into Alternative Fuel—Biodiesel. Appl. Biochem. Biotechnol. 2006, 132, 911–921. [Google Scholar] [CrossRef]
- Dizge, N.; Keskinler, B. Enzymatic production of biodiesel from canola oil using immobilized lipase. Biomass Bioenergy 2008, 32, 1274–1278. [Google Scholar] [CrossRef]
- Nie, K.; Xie, F.; Wang, F.; Tan, T. Lipase catalyzed methanolysis to produce biodiesel: Optimization of the biodiesel production. J. Mol. Catal. B Enzym. 2006, 43, 142–147. [Google Scholar] [CrossRef]
- Pinyaphong, P.; Sriburi, P.; Phutrakul, S. Biodiesel fuel production by methanolysis of fish oil derived from the discarded parts of fish catalyzed by Carica papaya lipase. World Acad. Sci. Eng. Technol. 2011, 76, 466–472. [Google Scholar]
- Li, L.; Du, W.; Liu, D.; Wang, L.; Li, Z. Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J. Mol. Catal. B Enzym. 2006, 43, 58–62. [Google Scholar] [CrossRef]
- Azcar, L.; Ciudad, G.; Muoz, R.; Jeison, D.; Toro, C.; Navi, R. Feasible Novozym 435-Catalyzed Process to Fatty Acid Methyl Ester Production from Waste Frying Oil: Role of Lipase Inhibition. In Enzyme Inhibition and Bioapplications; InTech: Philadelphia, PA, USA, 2012. [Google Scholar]
- Ognjanovic, N.; Bezbradica, D.; Knezevic-Jugovic, Z. Enzymatic conversion of sunflower oil to biodiesel in a solvent-free system: Process optimization and the immobilized system stability. Bioresour. Technol. 2009, 100, 5146–5154. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Martín, E.; Otero, C. Different enzyme requirements for the synthesis of biodiesel: Novozym® 435 and Lipozyme® TL IM. Bioresour. Technol. 2008, 99, 277–286. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Volpato, G.; Wada, K.; Ayub, M.A.Z. Enzymatic synthesis of biodiesel from transesterification reactions of vegetable oils and short chain alcohols. J. Am. Oil Chem. Soc. 2008, 85, 925–930. [Google Scholar] [CrossRef]
- Noureddini, H.; Gao, X.; Philkana, R.S. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour. Technol. 2005, 96, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Marín-Suárez, M.; Méndez-Mateos, D.; Guadix, A.; Guadix, E.M. Reuse of immobilized lipases in the transesterification of waste fish oil for the production of biodiesel. Renew. Energy 2019, 140, 1–8. [Google Scholar] [CrossRef]
- Lotti, M.; Pleiss, J.; Valero, F.; Ferrer, P. Effects of methanol on lipases: Molecular, kinetic and process issues in the production of biodiesel. Biotechnol. J. 2015, 10, 22–30. [Google Scholar] [CrossRef]
- Lotti, M.; Pleiss, J.; Valero, F.; Ferrer, P. Enzymatic Production of Biodiesel: Strategies to Overcome Methanol Inactivation. Biotechnol. J. 2018, 13, 1700155. [Google Scholar] [CrossRef] [PubMed]
- Hama, S.; Noda, H.; Kondo, A. How lipase technology contributes to evolution of biodiesel production using multiple feedstocks. Curr. Opin. Biotechnol. 2018, 50, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Andrade, T.A.; Errico, M.; Christensen, K.V. Influence of the reaction conditions on the enzyme catalyzed transesterification of castor oil: A possible step in biodiesel production. Bioresour. Technol. 2017, 243, 366–374. [Google Scholar] [CrossRef] [Green Version]
- Al Basir, F.; Roy, P.K. Study on enzyme inhibition in biodiesel synthesis: Effect of stepwise addition of methanol and removal of glycerol. Energy Ecol. Environ. 2019, 4, 75–84. [Google Scholar] [CrossRef]
- Norjannah, B.; Ong, H.C.; Masjuki, H.H. Effects of methanol and enzyme pretreatment to Ceiba pentandra biodiesel production. Energy Sources Part A Recover. Util. Environ. Eff. 2017, 39, 1548–1555. [Google Scholar] [CrossRef]
- Shimada, Y.; Watanabe, Y.; Sugihara, A.; Tominaga, Y. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J. Mol. Catal. B Enzym. 2002, 17, 133–142. [Google Scholar] [CrossRef]
- Shimada, Y.; Watanabe, Y.; Samukawa, T.; Sugihara, A.; Noda, H.; Fukuda, H.; Tominaga, Y. Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. JAOCS J. Am. Oil Chem. Soc. 1999, 76, 789–793. [Google Scholar] [CrossRef]
- Watanabe, Y.; Shimada, Y.; Sugihara, A.; Tominaga, Y. Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. J. Mol. Catal. B Enzym. 2002, 17, 151–155. [Google Scholar] [CrossRef]
- Hajar, M.; Shokrollahzadeh, S.; Vahabzadeh, F.; Monazzami, A. Solvent-free methanolysis of canola oil in a packed-bed reactor with use of Novozym 435 plus loofa. Enzym. Microb. Technol. 2009, 45, 188–194. [Google Scholar] [CrossRef]
- Xu, Y.; Nordblad, M.; Nielsen, P.M.; Brask, J.; Woodley, J.M. In situ visualization and effect of glycerol in lipase-catalyzed ethanolysis of rapeseed oil. J. Mol. Catal. B Enzym. 2011, 72, 213–219. [Google Scholar] [CrossRef]
- Watanabe, Y.; Shimada, Y.; Sugihara, A.; Tominaga, Y. Stepwise ethanolysis of tuna oil using immobilized Candida antarctica lipase. J. Biosci. Bioeng. 1999, 88, 622–626. [Google Scholar] [CrossRef]
- Tiosso, P.C.; Carvalho, A.K.F.; De Castro, H.F.; De Moraes, F.F.; Zanin, G.M. Utilization of immobilized lipases as catalysts in the transesterification of non-edible vegetable oils with ethanol. Braz. J. Chem. Eng. 2014, 31, 839–847. [Google Scholar] [CrossRef] [Green Version]
- Taher, H.; Al-Zuhair, S.; Al-Marzouqi, A.H.; Haik, Y.; Farid, M.M. A review of enzymatic transesterification of microalgal oil-based biodiesel using supercritical technology. Enzym. Res. 2011, 2011. [Google Scholar] [CrossRef] [PubMed]
- Royon, D.; Daz, M.; Ellenrieder, G.; Locatelli, S. Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour. Technol. 2007, 98, 648–653. [Google Scholar] [CrossRef] [PubMed]
StdOrder | RunOrder | CenterPt | Blocks | EC | Temp | Time | Ratio | Yield (%) |
---|---|---|---|---|---|---|---|---|
9 | 1 | 1 | 1 | 5 | 40 | 8 | 5 | 61.07 |
10 | 2 | 1 | 1 | 15 | 40 | 8 | 5 | 72.77 |
19 | 3 | 0 | 1 | 10 | 45 | 16 | 4 | 84.26 |
17 | 4 | 0 | 1 | 10 | 45 | 16 | 4 | 86.27 |
13 | 5 | 1 | 1 | 5 | 40 | 24 | 5 | 71.07 |
3 | 6 | 1 | 1 | 5 | 50 | 8 | 3 | 42.61 |
18 | 7 | 0 | 1 | 10 | 45 | 16 | 4 | 87.77 |
5 | 8 | 1 | 1 | 5 | 40 | 24 | 3 | 56.55 |
16 | 9 | 1 | 1 | 15 | 50 | 24 | 5 | 76.00 |
14 | 10 | 1 | 1 | 15 | 40 | 24 | 5 | 78.54 |
15 | 11 | 1 | 1 | 5 | 50 | 24 | 5 | 73.00 |
1 | 12 | 1 | 1 | 5 | 40 | 8 | 3 | 56.98 |
11 | 13 | 1 | 1 | 5 | 50 | 8 | 5 | 46.16 |
7 | 14 | 1 | 1 | 5 | 50 | 24 | 3 | 61.94 |
12 | 15 | 1 | 1 | 15 | 50 | 8 | 5 | 59.39 |
4 | 16 | 1 | 1 | 15 | 50 | 8 | 3 | 59.35 |
2 | 17 | 1 | 1 | 15 | 40 | 8 | 3 | 68.38 |
6 | 18 | 1 | 1 | 15 | 40 | 24 | 3 | 64.39 |
8 | 19 | 1 | 1 | 15 | 50 | 24 | 3 | 63.45 |
22 | 20 | 1 | 2 | 5 | 50 | 8 | 3 | 42.09 |
27 | 21 | 1 | 2 | 15 | 50 | 24 | 3 | 62.79 |
24 | 22 | 1 | 2 | 5 | 40 | 24 | 3 | 55.81 |
25 | 23 | 1 | 2 | 15 | 40 | 24 | 3 | 61.28 |
21 | 24 | 1 | 2 | 15 | 40 | 8 | 3 | 67.2 |
35 | 25 | 1 | 2 | 15 | 50 | 24 | 5 | 74.03 |
38 | 26 | 0 | 2 | 10 | 45 | 16 | 4 | 87.24 |
20 | 27 | 1 | 2 | 5 | 40 | 8 | 3 | 56.88 |
26 | 28 | 1 | 2 | 5 | 50 | 24 | 3 | 61.28 |
33 | 29 | 1 | 2 | 15 | 40 | 24 | 5 | 75.28 |
28 | 30 | 1 | 2 | 5 | 40 | 8 | 5 | 61.18 |
34 | 31 | 1 | 2 | 5 | 50 | 24 | 5 | 69.32 |
37 | 32 | 0 | 2 | 10 | 45 | 16 | 4 | 86.66 |
31 | 33 | 1 | 2 | 15 | 50 | 8 | 5 | 58.18 |
29 | 34 | 1 | 2 | 15 | 40 | 8 | 5 | 71.07 |
23 | 35 | 1 | 2 | 15 | 50 | 8 | 3 | 58.35 |
36 | 36 | 0 | 2 | 10 | 45 | 16 | 4 | 88.18 |
30 | 37 | 1 | 2 | 5 | 50 | 8 | 5 | 45.25 |
32 | 38 | 1 | 2 | 5 | 40 | 24 | 5 | 72.82 |
42 | 39 | −1 | 3 | 10 | 50 | 16 | 4 | 76.32 |
39 | 40 | −1 | 3 | 5 | 45 | 16 | 4 | 83.12 |
40 | 41 | −1 | 3 | 15 | 45 | 16 | 4 | 91.86 |
45 | 42 | −1 | 3 | 10 | 45 | 16 | 3 | 73.75 |
49 | 43 | 0 | 3 | 10 | 45 | 16 | 4 | 87.64 |
44 | 44 | −1 | 3 | 10 | 45 | 24 | 4 | 85.48 |
46 | 45 | −1 | 3 | 10 | 45 | 16 | 5 | 82.11 |
48 | 46 | 0 | 3 | 10 | 45 | 16 | 4 | 85.45 |
41 | 47 | −1 | 3 | 10 | 40 | 16 | 4 | 82.09 |
43 | 48 | −1 | 3 | 10 | 45 | 8 | 4 | 75.78 |
47 | 49 | 0 | 3 | 10 | 45 | 16 | 4 | 88.24 |
Source | DF | p-Value | VIF |
---|---|---|---|
Model | 16 | 0.000 | |
Blocks | 2 | 0.115 | |
1 | 0.181 | 1.40 | |
2 | 0.087 | 1.40 | |
Linear | 4 | 0.000 | |
EC | 1 | 0.000 | 1.00 |
Temp | 1 | 0.000 | 1.00 |
Time | 1 | 0.000 | 1.00 |
Ratio | 1 | 0.000 | 1.00 |
Square | 4 | 0.000 | |
EC*EC | 1 | 0.959 | 4.03 |
Temp*Temp | 1 | 0.000 | 4.03 |
Time*Time | 1 | 0.000 | 4.03 |
Ratio*Ratio | 1 | 0.000 | 4.03 |
2-Way Interaction | 6 | 0.000 | |
EC*Temp | 1 | 0.668 | 1.00 |
EC*Time | 1 | 0.000 | 1.00 |
EC*Ratio | 1 | 0.468 | 1.00 |
Temp*Time | 1 | 0.000 | 1.00 |
Temp*Ratio | 1 | 0.001 | 1.00 |
Time*Ratio | 1 | 0.000 | 1.00 |
Error | 32 | ||
Lack-of-Fit | 26 | 0.230 | |
Pure Error | 6 | ||
Total | 48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramakrishnan, V.V.; Dave, D.; Liu, Y.; Routray, W.; Murphy, W. Statistical Optimization of Biodiesel Production from Salmon Oil via Enzymatic Transesterification: Investigation of the Effects of Various Operational Parameters. Processes 2021, 9, 700. https://doi.org/10.3390/pr9040700
Ramakrishnan VV, Dave D, Liu Y, Routray W, Murphy W. Statistical Optimization of Biodiesel Production from Salmon Oil via Enzymatic Transesterification: Investigation of the Effects of Various Operational Parameters. Processes. 2021; 9(4):700. https://doi.org/10.3390/pr9040700
Chicago/Turabian StyleRamakrishnan, Vegneshwaran V., Deepika Dave, Yi Liu, Winny Routray, and Wade Murphy. 2021. "Statistical Optimization of Biodiesel Production from Salmon Oil via Enzymatic Transesterification: Investigation of the Effects of Various Operational Parameters" Processes 9, no. 4: 700. https://doi.org/10.3390/pr9040700
APA StyleRamakrishnan, V. V., Dave, D., Liu, Y., Routray, W., & Murphy, W. (2021). Statistical Optimization of Biodiesel Production from Salmon Oil via Enzymatic Transesterification: Investigation of the Effects of Various Operational Parameters. Processes, 9(4), 700. https://doi.org/10.3390/pr9040700