Effect of Vertical Permeability Heterogeneity in Stratified Formation on Electricity Generation Performance of Enhanced Geothermal System
Abstract
:1. Introduction
1.1. Background
1.2. Research Objectives
2. Numerical Method
2.1. Physical–Mathematical Model
2.2. Domain, Grid and Parameters
2.3. Boundary and Initial Conditions
3. Results and Discussion
3.1. Water Production Rate
3.2. Production Temperature
3.3. Electric Power
3.4. Injection Pressure
3.5. Reservoir Impedance
3.6. Pump Power
3.7. Energy Efficiency
4. Model Validation
5. Conclusions
- (1)
- When the average value of the horizontal permeability of the layered reservoir is constant, for a homogenous reservoir, the system obtains a maximum water production rate.
- (2)
- When the average value of the horizontal permeability of the layered reservoir is constant, with the increasing of the reservoir permeability heterogeneity, the duration of the declining stage gradually declines and the production temperature during the declining stage gradually increases.
- (3)
- When the average value of the horizontal permeability of the layered reservoir is constant, for a homogenous reservoir, the system obtains a maximum electric power.
- (4)
- When the average value of the horizontal permeability of the layered reservoir is constant, for a homogenous reservoir, the system obtains a minimum reservoir impedance.
- (5)
- When the average value of the horizontal permeability of the layered reservoir is constant, for a homogenous reservoir, the system obtains a maximum pump power.
- (6)
- When the average value of the horizontal permeability of the layered reservoir is constant, with the increasing of the vertical permeability heterogeneity, the water production rate gradually decreases, the electric power gradually declines, the reservoir impedance gradually increases, and the pump power gradually declines.
- (7)
- When the average value of the horizontal permeability of the layered reservoir is constant, with the increasing of the reservoir permeability heterogeneity, the injection pressure and energy efficiency have only very slight changes. This proves that the reservoir permeability heterogeneity is not the main factor affecting the injection pressure and energy efficiency.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
g | gravity, 9.80 m/s2 |
h | well depth, m |
h1 | depth of injection well, m |
h2 | depth of production well, m |
hinj | injection specific enthalpy, kJ/kg |
production specific enthalpy, kJ/kg | |
IR | reservoir impedance, MPa/(kg/s) |
k | reservoir permeability, m2 |
kf | fracture permeability, m2 |
km | matrix permeability, m2 |
kx | intrinsic permeability along x, m2 |
ky | intrinsic permeability along y, m2 |
kz | intrinsic permeability along z, m2 |
P | pressure, MPa |
Pmax | critical pressure, MPa |
injection pressure, MPa | |
production pressure, MPa | |
P0 | bottomhole production pressure, MPa |
q | water production rate, kg/s |
Q | total water production rate, kg/s |
T | temperature, ℃ |
T0 | mean heat rejection temperature, 282.15 K |
production temperature, ℃ | |
electric power of pump, MW | |
We | electric power, MW |
x, y, z | cartesian coordinates, m |
reservoir porosity | |
η | energy efficiency |
pump efficiency, 80% | |
ρ | water density, kg/m3 |
References
- Tester, J.W.; Livesay, B.; Anderson, B.J.; Moore, M.C.; Bathchelor, A.S.; Nichols, K.; Blackwell, D.D.; Petty, S.; DiPippo, R.; Toksöz, M.N.; et al. The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century; An assessment by an MIT-led interdisciplinary panel; Massachusetts Institute of Technology: Cambridge, MA, USA, 2006. [Google Scholar]
- Zeng, Y.; Zhan, J.; Wu, N.; Luo, Y.; Cai, W. Numerical investigation of electricity generation potential from fractured granite reservoir by water circulating through three horizontal wells at Yangbajing geothermal field. Appl. Therm. Eng. 2016, 104, 1–15. [Google Scholar] [CrossRef]
- Wang, J.; Hu, S.; Pang, Z.; He, L.; Zhao, P.; Zhu, C.; Rao, S.; Tang, X.; Kong, Y.; Luo, L.; et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China. Sci. Technol. Rev. 2012, 30, 25–31. (In Chinese) [Google Scholar]
- Zeng, Y.C.; Su, Z.; Wu, N.Y. Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field. Energy 2013, 56, 92–107. [Google Scholar] [CrossRef]
- Zeng, Y.C.; Wu, N.Y.; Su, Z.; Wang, X.X.; Hu, J. Numerical simulation of heat production potential from hot dry rock by water circulating through a novel single vertical fracture at Desert Peak geothermal field. Energy 2013, 63, 268–282. [Google Scholar] [CrossRef]
- Zeng, Y.C.; Wu, N.Y.; Su, Z.; Hu, J. Numerical simulation of electricity generation potential from fractured granite reservoir through a single horizontal well at Yangbajing geothermal field. Energy 2014, 65, 472–487. [Google Scholar] [CrossRef]
- Zeng, Y.C.; Zhan, J.M.; Wu, N.Y.; Luo, Y.Y.; Cai, W.H. Numerical investigation of electricity generation potential from fractured granite reservoir through a single vertical well at Yangbajing geothermal field. Energy 2016, 114, 24–39. [Google Scholar] [CrossRef]
- Zeng, Y.C.; Zhan, J.M.; Wu, N.Y.; Luo, Y.Y.; Cai, W.H. Numerical simulation of electricity generation potential from fractured granite reservoir through vertical wells at Yangbajing geothermal field. Energy 2016, 103, 290–304. [Google Scholar] [CrossRef]
- Zeng, Y.; Tang, L.; Wu, N.; Cao, Y. Analysis of influencing factors of production performance of enhanced geothermal system: A case study at Yangbajing geothermal field. Energy 2017, 127, 218–235. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Li, Z.W.; Guo, L.L.; Gao, P.; Jin, X.P.; Xu, T.F. Electricity generation from enhanced geothermal systems by oilfield produced water circulating through reservoir stimulated by staged fracturing technology for horizontal wells: A case study in Xujiaweizi area in Daqing Oilfield, China. Energy 2014, 78, 788–805. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Guo, L.L.; Li, Z.W.; Yu, Z.W.; Xu, T.F.; Lan, C.Y. Electricity generation and heating potential from enhanced geothermal system in Songliao Basin, China: Different reservoir stimulation strategies for tight rock and naturally fractured formations. Energy 2015, 93, 1860–1885. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Li, Z.W.; Yu, Z.W.; Guo, L.L.; Jin, X.P.; Xu, T.F. Evaluation of developing an enhanced geothermal heating system in northeast China: Field hydraulic stimulation and heat production forecast. Energy Build. 2015, 88, 1–14. [Google Scholar] [CrossRef]
- Huang, X.X.; Zhu, J.L.; Niu, C.G.; Li, J.; Hu, X.; Jin, X. Heat extraction and power production forecast of a prospective Enhanced Geothermal System site in Songliao Basin, China. Energy 2014, 75, 360–370. [Google Scholar] [CrossRef]
- Huang, X.X.; Zhu, J.L.; Li, J.; Lan, C.Y.; Jin, X.P. Parametric study of an enhanced geothermal system based on thermo-hydro-mechanical modeling of a prospective site in Songliao Basin. Appl. Therm. Eng. 2016, 105, 1–7. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, X.; Xu, X.F. Current status and potential of enhanced geothermal system in China: A review. Renew. Sustain. Energy Rev. 2014, 33, 214–223. [Google Scholar] [CrossRef]
- Franco, A.; Vaccaro, M. Numerical simulation of geothermal reservoirs for the sustainable design of energy plants: A review. Renew. Sustain. Energy Rev. 2014, 30, 987–1002. [Google Scholar] [CrossRef]
- Zhu, J.L.; Hu, K.Y.; Lu, X.L.; Huang, X.X.; Liu, K.T.; Wu, X.J. A review of geothermal energy resources, development, and application in China: Current status and prospects. Energy 2015, 93, 466–483. [Google Scholar] [CrossRef]
- Pandey, S.N.; Vishal, V.; Chaudhuri, A. Geothermal reservoir modeling in a coupled thermos-hydro-mechanical-chemical approach: A review. Earth Sci. Rev. 2018, 185, 1157–1169. [Google Scholar] [CrossRef]
- Sanyal, S.K.; Butler, S.J. An analysis of power generation prospects from enhanced geothermal systems. In Proceedings of the World Geothermal Congress 2005, Antalya, Turkey, 24–29 April 2005; pp. 1–6. [Google Scholar]
- Taron, J.; Elsworth, D.; Min, K. Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media. Int. J. Rock Mech. Min. Sci. 2009, 46, 842–854. [Google Scholar] [CrossRef]
- Taron, J.; Elsworth, D. Thermal-hydrologic-mechanical-chemical processes in the evolution of engineered geothermal reservoirs. Int. J. Rock Mech. Min. Sci. 2009, 46, 855–864. [Google Scholar] [CrossRef]
- Gelet, R.; Loret, B.; Khalili, N. A thermo-hydro-mechanical coupled model in local thermal non-equilibrum for fractured HDR reservoir with double porosity. J. Geophys. Res. 2012, 117, 1–23. [Google Scholar]
- Gelet, R.; Loret, B.; Khalili, N. Thermal recovery from a fractured medium in local thermal non-equilibrium. Int. J. Numer. Anal. Methods Geomech. 2013, 37, 2471–2501. [Google Scholar] [CrossRef] [Green Version]
- Pruess, K. Enhanced geothermal system (EGS) using CO2 as working fluid-A novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 2006, 35, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Pruess, K. On production behavior of enhanced geothermal systems with CO2 as working fluid. Energy Convers. Manag. 2008, 49, 1446–1454. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.C.; Tang, L.S.; Wu, N.Y.; Cao, Y.F. Numerical simulation of electricity generation potential from fractured granite reservoir using the MINC method at the Yangbajing geothermal field. Geothermics 2018, 75, 122–136. [Google Scholar] [CrossRef]
- Salimzadeh, S.; Nick, H.M. A coupled model for reactive flow through deformable fractures in Enhanced Geothermal Systems. Geothermics 2019, 81, 88–100. [Google Scholar] [CrossRef]
- Shi, Y.; Song, X.Z.; Li, J.C.; Wang, G.S.; Zheng, R.; Yulong, F.X. Numerical investigation on heat extraction performance of a multilateral-well enhanced geothermal system with a discrete fracture network. Fuel 2019, 244, 207–226. [Google Scholar] [CrossRef]
- Wang, Y.; Li, T.; Chen, Y.; Ma, G.W. A three-dimensional thermo-hydro-mechanical coupled model for enhanced geothermal systems (EGS) embedded with discrete fracture networks. Comput. Methods Appl. Mech. Eng. 2019, 356, 465–489. [Google Scholar] [CrossRef]
- Sun, Z.X.; Zhang, X.; Xu, Y.; Yao, J.; Wang, H.X.; Lv, S.H.; Sun, Z.L.; Huang, Y.; Cai, M.Y.; Huang, X. Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures. Energy 2017, 120, 20–33. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, X.; Sun, Z.X.; Huang, Z.Q.; Liu, J.R.; Li, Y.; Xin, Y.; Yan, X.; Liu, W. Numerical simulation of the heat extraction in 3D-EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model. Geothermics 2018, 74, 19–34. [Google Scholar] [CrossRef]
- Zinsalo, J.M.; Lamarche, L.; Raymond, J. Sustainable electricity generation from an Enhanced geothermal system considering reservoir heterogeneity and water losses with a discrete fractures model. Appl. Therm. Eng. 2021, 192, 116886. [Google Scholar] [CrossRef]
- Jiang, F.M.; Luo, L.; Chen, J.L. A novel three-dimensional transient model for subsurface heat exchange in enhanced geothermal systems. Int. Commun. Heat Mass Transf. 2013, 41, 57–62. [Google Scholar] [CrossRef]
- Jiang, F.M.; Chen, J.L.; Huang, W.B.; Luo, L. A three-dimensional transient model for EGS subsurface thermo-hydraulic process. Energy 2014, 72, 300–310. [Google Scholar] [CrossRef]
- Shaik, A.R.; Rahman, S.S.; Tran, N.H.; Tran, T. Numerical simulation of fluid-rock coupling heat transfer in naturally fractured geothermal system. Appl. Therm. Eng. 2011, 31, 1600–1606. [Google Scholar] [CrossRef]
- Fan, X. Conceptual Model and Assessment of the Yangbajing Geothermal Field, Tibet, China; Geothermal Training Programme: Reykjavík, Iceland, 2002. [Google Scholar]
- Dor, J.; Zhao, P. Characteristics and genesis of the Yangbajing geothermal field, Tibet. In Proceedings of the World Geothermal Congress 2000, Kyushu-Tohoku, Japan, 28 May–10 June 2000; pp. 1083–1088. [Google Scholar]
- Pruess, K.; Oldenburg, C.; Moridis, G. TOUGH2 User’s Guide, Version 2.0; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 1999. [Google Scholar]
- Luo, F.; Xu, R.N.; Jiang, P.X. Numerical investigation of the influence of vertical permeability heterogeneity in stratified formation and of injection/production well perforation placement on CO2 geological storage with enhanced CH4 recovery. Appl. Energy 2013, 102, 1314–1323. [Google Scholar] [CrossRef]
Case | α | β | k (10−15 m2) | L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 0 | kh | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
kv | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | |||
2 | 0.3 | kh | 70 | 65 | 63 | 60 | 40 | 37 | 35 | 30 | |
kv | 35 | 32.5 | 31.5 | 30 | 20 | 18.5 | 17.5 | 15 | |||
3 | 0.5 | kh | 80 | 78 | 70 | 68 | 32 | 30 | 22 | 20 | |
kv | 40 | 39 | 35 | 34 | 16 | 15 | 11 | 10 | |||
4 | 0.8 | kh | 95 | 90 | 88 | 85 | 15 | 12 | 10 | 5 | |
kv | 47.5 | 45 | 44 | 42.5 | 7.5 | 6 | 5 | 2.5 | |||
5 | 5 | 0 | kh | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
kv | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |||
6 | 0.3 | kh | 70 | 65 | 63 | 60 | 40 | 37 | 35 | 30 | |
kv | 14 | 13 | 12.6 | 12 | 8 | 7.4 | 7 | 6 | |||
7 | 0.5 | kh | 80 | 78 | 70 | 68 | 32 | 30 | 22 | 20 | |
kv | 16 | 15.6 | 14 | 13.6 | 6.4 | 6 | 4.4 | 4 | |||
8 | 0.8 | kh | 95 | 90 | 88 | 85 | 15 | 12 | 10 | 5 | |
kv | 19 | 18 | 17.6 | 17 | 3 | 2.4 | 2 | 1 | |||
9 | 10 | 0 | kh | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
kv | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | |||
10 | 0.3 | kh | 70 | 65 | 63 | 60 | 40 | 37 | 35 | 30 | |
kv | 7 | 6.5 | 6.3 | 6 | 4 | 3.7 | 3.5 | 3 | |||
11 | 0.5 | kh | 80 | 78 | 70 | 68 | 32 | 30 | 22 | 20 | |
kv | 8 | 7.8 | 7 | 6.8 | 3.2 | 3.0 | 2.2 | 2.0 | |||
12 | 0.8 | kh | 95 | 90 | 88 | 85 | 15 | 12 | 10 | 5 | |
kv | 9.5 | 9 | 8.8 | 8.5 | 1.5 | 1.2 | 1 | 0.5 |
Parameter | Value |
---|---|
Rock thermal conductivity | 2.50 W/(m·K) |
Rock specific heat | 1000 J/(kg·K) |
Rock density | 2650 kg/m3 |
Reservoir height | 400 m |
Reservoir length (simulated domain) | 500 m |
Reservoir width (simulated domain) | 500 m |
Reservoir porosity | 10% |
Reservoir horizontal permeability kh (case1) | 50 × 10−15 m2 |
Reservoir vertical permeability kv (case1) | 25 × 10−15 m2 |
Bottomhole production pressure P0 | 5.00 MPa |
Productivity index PI | 5.0 × 10−12 m3 |
Injection temperature | 60 °C (260.66 kJ/kg) |
Initial temperature | 248 °C |
Initial pressure |
Case | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
q(kg/s) | 25.0 | 20.0 | 15.0 | 4.5 | 23.0 | 18.0 | 12.0 | 3.5 | 20.0 | 15.0 | 11.0 | 3.0 |
Q(kg/s) | 100.0 | 80.0 | 60.0 | 18.0 | 92.0 | 72.0 | 48.0 | 14.0 | 80.0 | 60.0 | 44.0 | 12.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Sun, F.; Zhai, H. Effect of Vertical Permeability Heterogeneity in Stratified Formation on Electricity Generation Performance of Enhanced Geothermal System. Processes 2021, 9, 744. https://doi.org/10.3390/pr9050744
Zeng Y, Sun F, Zhai H. Effect of Vertical Permeability Heterogeneity in Stratified Formation on Electricity Generation Performance of Enhanced Geothermal System. Processes. 2021; 9(5):744. https://doi.org/10.3390/pr9050744
Chicago/Turabian StyleZeng, Yuchao, Fangdi Sun, and Haizhen Zhai. 2021. "Effect of Vertical Permeability Heterogeneity in Stratified Formation on Electricity Generation Performance of Enhanced Geothermal System" Processes 9, no. 5: 744. https://doi.org/10.3390/pr9050744
APA StyleZeng, Y., Sun, F., & Zhai, H. (2021). Effect of Vertical Permeability Heterogeneity in Stratified Formation on Electricity Generation Performance of Enhanced Geothermal System. Processes, 9(5), 744. https://doi.org/10.3390/pr9050744