Continuum-Based Approach to Model Particulate Soil–Water Interaction: Model Validation and Insight into Internal Erosion
Abstract
:1. Introduction
2. Numerical Analysis
3. Model Validation
Simulation of Internal Soil Erosion Around Leaking Pipes
4. Results and Discussion
4.1. Excess Pore Water Pressure and Fluidized Zone
4.2. Flowrate
4.3. Sand Boiling at High-Inlet Velocities
4.4. The Effect of Polydispersity
5. Conclusions
- The numerical results presented show the model’s capability to capture the basic flow characteristics of soil–water mixtures as well as transitions in flow regime.
- The model could successfully reproduce the evolution of internal soil fluidization due to local leakage.
- More violent flows were also decently captured. However, a shortcoming is the model’s inability to capture soil fragmentation accurately due to numerical diffusion.
- Polydispersity could be successfully implemented, and the simulation results suggest that using a mono-dispersed assembly is not sufficient to describe the soil–water properly.
- Further testing and validation of the model is still required to ensure its robustness in dealing with geotechnical applications.
- Overall, the model shows good agreement with theoretical solutions and experimental data and can be a viable tool for investigating particulate soil–water flows in geotechnical applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, H.; Choi, J.H. A Review of Underground Pipeline Leakage and Sinkhole Monitoring Methods Based on Wireless Sensor Networking. Sustainability 2019, 11, 4007. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Li, J.; Chan, A.; Chapman, D. Coupled DEM–LBM simulation of internal fluidisation induced by a leaking pipe. Powder Technol. 2014, 254, 299–306. [Google Scholar] [CrossRef]
- Zhu, H.P.; Zhou, Z.Y.; Yang, R.Y.; Yu, A.B. Discrete particle simulation of particulate systems: Theoretical developments. Chem. Eng. Sci. 2007, 62, 3378–3396. [Google Scholar] [CrossRef]
- Tsuji, Y.; Kawaguchi, T.; Tanaka, T. Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 1993, 77, 79–87. [Google Scholar] [CrossRef]
- Ostermeier, P.; DeYoung, S.; Vandersickel, A.; Gleis, S.; Spliethoff, H. Comprehensive investigation and comparison of TFM, DenseDPM and CFD-DEM for dense fluidized beds. Chem. Eng. Sci. 2019, 196, 291–309. [Google Scholar] [CrossRef]
- Deen, N.G.; Van Sint Annaland, M.; Van der Hoef, M.A.; Kuipers, J.A.M. Review of discrete particle modeling of fluidized beds. Chem. Eng. Sci. 2007, 62, 28–44. [Google Scholar] [CrossRef]
- Suzuki, K.; Bardet, J.P.; Oda, M.; Iwashita, K.; Tsuji, Y.; Tanaka, T.; Kawaguchi, T. Simulation of upward seepage flow in a single column of spheres using discrete-element method with fluid-particle interaction. J. Geotech. Geoenviron. Eng. 2007, 133, 104–109. [Google Scholar] [CrossRef]
- Zou, Y.; Chen, C.; Zhang, L. Simulating Progression of Internal Erosion in Gap-Graded Sandy Gravels Using Coupled CFD-DEM. Int. J. Geomech. 2020, 20, 04019135. [Google Scholar] [CrossRef]
- Alsaydalani, M.O.A. Internal Fluidisation of Granular Material. Ph.D. Thesis, University of Southampton, Southampton, UK, 2010. [Google Scholar]
- van Zyl, J.E.; Alsaydalani, M.O.A.; Clayton, C.R.I.; Bird, T.; Dennis, A. Soil fluidisation outside leaks in water distribution pipes—Preliminary observations. Proc. Inst. Civ. Eng.-Water Manag. 2013, 166, 546–555. [Google Scholar] [CrossRef]
- Alsaydalani, M.O.A.; Clayton, C.R.I. Internal Fluidization in Granular Soils. J. Geotech. Geoenviron. 2014, 140, 04013024. [Google Scholar] [CrossRef]
- Tang, Y.; Chan, D.H.; Zhu, D.Z. Numerical Investigation of Sand-Bed Erosion by an Upward Water Jet. J. Eng. Mech. 2017, 143, 04017104. [Google Scholar] [CrossRef]
- Montella, E.P.; Toraldo, M.; Chareyre, B.; Sibille, L. Localized fluidization in granular materials: Theoretical and numerical study. Phys. Rev. E 2016, 94, 052905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vardoulakis, I.; Stavropoulou, M.; Papanastasiou, P. Hydro-mechanical aspects of the sand production problem. Transp. Porous Med. 1996, 22, 225–244. [Google Scholar] [CrossRef]
- Anderson, T.B.; Jackson, R. A fluid mechanical description of fluidized bed. Equations of motion. Ind. Eng. Ind. Fundam. 1967, 6, 527–539. [Google Scholar] [CrossRef]
- Kuipers, J.A.M.; Duin, K.J.V.; Beckum, V.; Swaaij, W.P.M.V. A numerical model of gas-fluidized beds. Chem. Eng. Sci. 1992, 47, 1913–1924. [Google Scholar] [CrossRef] [Green Version]
- Gidaspow, D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions; Academic: Boston, MA, USA, 1994. [Google Scholar]
- Tsuji, Y.; Tanaka, T.; Ishida, T. Lagrangian Numerical-Simulation of Plug Flow of Cohesionless Particles in a Horizontal Pipe. Powder Technol. 1992, 71, 239–250. [Google Scholar] [CrossRef]
- Cook, B.K.; Noble, D.R.; Williams, J.R. A direct simulation method for particle-fluid systems. Eng. Comput. 2004, 21, 151–168. [Google Scholar] [CrossRef]
- Ibrahim, A.; Meguid, M.A. Coupled Flow Modelling in Geotechnical and Ground Engineering: An Overview. Int. J. Geosynth. Ground Eng. 2020, 6, 1–25. [Google Scholar] [CrossRef]
- Hirche, D.; Birkholz, F.; Hinrichsen, O. A hybrid Eulerian-Eulerian-Lagrangian model for gas-solid simulations. Chem. Eng. J. 2019, 377, 119743. [Google Scholar] [CrossRef]
- Chauchat, J.; Cheng, Z.; Nagel, T.; Bonamy, C.; Hsu, T.-J. SedFoam-2.0: A 3-D two-phase flow numerical model for sediment transport. Geosci. Model Dev. 2017, 10, 4367–4392. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Hsu, T.-J.; Calantoni, J. SedFoam: A multi-dimensional Eulerian two-phase model for sediment transport and its application to momentary bed failure. Coast. Eng. 2017, 119, 32–50. [Google Scholar] [CrossRef] [Green Version]
- Ergun, S. Fluid Flow through Packed Columns. Chem. Eng. Prog. 1952, 48, 89–94. [Google Scholar]
- Syamlal, M.; Gidaspow, D. Hydrodynamics of Fluidization-Prediction of Wall to Bed Heat-Transfer Coefficients. AIChE J. 1985, 31, 127–135. [Google Scholar] [CrossRef]
- Syamlal, M.; Obrien, T.J. Simulation of Granular Layer Inversion in Liquid Fluidized-Beds. Int. J. Multiph. Flow 1988, 14, 473–481. [Google Scholar] [CrossRef]
- Garside, J.; Aldibouni, M.R. Velocity-Voidage Relationships for Fluidization and Sedimentation in Solid-Liquid Systems. Ind. Eng. Chem. Proc. Dev. 1977, 16, 206–214. [Google Scholar] [CrossRef]
- DallaValle, J.M. Micromeritics: The Technology of Fine Particles, 2nd ed.; Pitman Pub. Corp: London, UK, 1948. [Google Scholar]
- Lun, C.K.K.; Savage, S.B.; Jeffrey, D.J.; Chepurniy, N. Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech. 1984, 140, 223–256. [Google Scholar] [CrossRef]
- Ding, J.; Cidaspow, D. A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow. AIChE J. 1990, 36, 523–538. [Google Scholar] [CrossRef]
- Jenike, A.W. A Theory of Flow of Particulate Solids in Converging and Diverging Channels Based on a Conical Yield Function. Powder Technol. 1987, 50, 229–236. [Google Scholar] [CrossRef]
- Schaeffer, D.G. Instability in the Evolution-Equations Describing Incompressible Antigranulocytes Flow. J. Differ. Equ. 1987, 66, 19–50. [Google Scholar] [CrossRef] [Green Version]
- MFiX. MFiX Hybrid Eulerian-Lagrangian-Eulerian. Available online: https://mfix.netl.doe.gov/doc/mfix/19.1.4/about.html (accessed on 15 March 2021).
- Syamlal, M.; Rogers, W.; O’Brien, T.J. MFIX Documentation Theory Guide; USDOE Morgantown Energy Technology Center: Morgantown, WV, USA, 1993. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Chan, D.H.; Zhu, D.Z. A coupled discrete element model for the simulation of soil and water flow through an orifice. Int. J. Numer. Anal. Methods Geomech. 2017, 41, 1477–1493. [Google Scholar] [CrossRef]
Parameter | Viscous Regime | Plastic Regime |
---|---|---|
N/A |
Parameter | Value |
---|---|
Bed width (m) | 0.6 |
Orifice opening (mm) | 0.62 |
Bed height (m) | 0.3 |
Fluid density (kg/m3) | 1000 |
Solid density (kg/m3) | 2680 |
Initial porosity [-] | 0.35 |
Applied upstream pressure (kPa) | 10, 27, 60, and 190 |
Time step (s) | 0.00001 |
Mesh cell size (m) | 0.005 × 0.005 |
Temporal discretization | Implicit Euler |
Particle friction angle (degrees) | 30 |
Coefficient of restitution [-] | 0.6 |
Solid friction model | Schaeffer (1987) |
Drag model | Syamlal–O’Brien (1988) |
PSD1 | PSD2 | PSD3 | ||||
---|---|---|---|---|---|---|
Diameter (mm) | Volume Fraction | Diameter (mm) | Volume Fraction | Diameter (mm) | Volume Fraction | |
solid 1 | 0.5 | 0.153 | 0.85 | 0.153 | 0.5 | 0.288 |
solid 2 | 0.9 | 0.147 | 0.9 | 0.147 | 0.9 | 0.012 |
solid 3 | 1.2 | 0.153 | 1 | 0.153 | 1.2 | 0.012 |
solid 4 | 3 | 0.147 | 1.5 | 0.147 | 3 | 0.288 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, A.; Meguid, M. Continuum-Based Approach to Model Particulate Soil–Water Interaction: Model Validation and Insight into Internal Erosion. Processes 2021, 9, 785. https://doi.org/10.3390/pr9050785
Ibrahim A, Meguid M. Continuum-Based Approach to Model Particulate Soil–Water Interaction: Model Validation and Insight into Internal Erosion. Processes. 2021; 9(5):785. https://doi.org/10.3390/pr9050785
Chicago/Turabian StyleIbrahim, Ahmed, and Mohamed Meguid. 2021. "Continuum-Based Approach to Model Particulate Soil–Water Interaction: Model Validation and Insight into Internal Erosion" Processes 9, no. 5: 785. https://doi.org/10.3390/pr9050785
APA StyleIbrahim, A., & Meguid, M. (2021). Continuum-Based Approach to Model Particulate Soil–Water Interaction: Model Validation and Insight into Internal Erosion. Processes, 9(5), 785. https://doi.org/10.3390/pr9050785