Evaluation of the Spoilage-Related Bacterial Profiles of Vacuum-Packaged Chilled Ostrich Meat by Next-Generation DNA Sequencing Approach
Abstract
:1. Introduction
2. Material and Methods
2.1. Meat Samples
2.2. Microbiological Analysis
2.3. 16S rDNA Amplicon Sequencing
2.3.1. DNA Extraction
2.3.2. PCR Amplification of 16S rDNA Genes
2.3.3. Library Preparation and Sequencing
2.3.4. Sequencing Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Bacterial Enumeration of Initial and VP Meat
3.2. 16S rDNA Sequencing Data of VP Meat
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poławska, E.; Zdanowska-Sąsiadek, Ż.; Horbańczuk, J.; Pomianowski, J.F.; Jóźwik, A.; Tolik, D.; Raes, K.; De Smet, S. Effect of dietary organic and inorganic selenium supplementation on chemical, mineral and fatty acid composition of ostrich meat. CyTA J. Food 2016, 14, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Poławska, E.; Cooper, R.G.; Jóźwik, A.; Pomianowski, J. Meat from alternative species e nutritive and dietetic value, and its benefit for human health—A review. CyTA J. Food 2013, 11, 37–42. [Google Scholar] [CrossRef]
- Al-Khalifa, H.; Al-Naser, A. Ostrich meat: Production, quality parameters and nutritional comparison to other types of meat. J. Appl. Poult. Res. 2014, 23, 784–790. [Google Scholar] [CrossRef]
- Medina, F.X.; Aguilar, A. Ostrich meat: Nutritional, breeding and consumption aspects. The case of Spain. J. Food Nutr. Res. 2014, 2, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Horbańczuk, O.K.; Wierzbicka, A. Technological and nutritional properties of ostrich, emu, and rhea meat quality. J. Vet. Res. 2016, 60, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Calleja, C.; Martınez-Fernández, B.; Prieto, M.; Capita, R. Microbiological quality of vacuum-packed retail ostrich meat in Spain. Food Microbiol. 2004, 21, 241–246. [Google Scholar] [CrossRef]
- Bingol, E.B.; Ergun, O. Effects of modified atmosphere packaging (MAP) on the microbiological quality and shelf life of ostrich meat. Meat Sci. 2011, 88, 774–785. [Google Scholar] [CrossRef]
- Capita, R.; Alvarez-Gonzales, T.; Alonso-Calleja, C. Effect of several packaging conditions on the microbiological, physicochemical, and sensory properties of ostrich steaks during refrigerated storage. Food Microbiol. 2018, 72, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Seydim, A.C.; Acton, J.C.; Hall, M.A.; Dawson, P.L. Effects of packaging atmospheres on shelf-life quality of ground ostrich meat. Meat Sci. 2006, 73, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Venter, P.; Shale, K.; Lues, J.F.R.; Buys, E.M. Microbial proliferation and mathematical indices of vacuum-packed bovine meat. J. Food Process Preserv. 2006, 20, 433–448. [Google Scholar] [CrossRef]
- Ercolini, D.; Ferrocino, I.; Nasi, A.; Ndagijimana, M.; Vernocchi, P.; La Storia, A.; Laghi, L.; Mauriello, G.; Guerzoni, M.E.; Villani, F. Monitoring of microbial metabolites and bacterial diversity in beef stored under different packaging conditions. Appl. Environ. Microbiol. 2011, 77, 7372–7381. [Google Scholar] [CrossRef] [Green Version]
- Bakhtiary, F.; Sayevand, H.R.; Remely, M.; Hippe, B.; Hosseini, H.; Haslberger, A.G. Evaluation of bacterial contamination sources in the meat production line. J. Food Qual. 2016, 39, 750–756. [Google Scholar] [CrossRef]
- Odeyemi, O.A.; Alegbeleye, O.O.; Strateva, M.; Stratev, D. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Compr. Rev. Food Sci. Food Saf. 2020, 19, 311–331. [Google Scholar] [CrossRef] [Green Version]
- Doulgeraki, A.I.; Ercolini, D.; Villani, F.; Nychas, G.E. Spoilage microbiota associated to the storage of raw meat in different conditions. Int. J. Food Microbiol. 2012, 157, 130–141. [Google Scholar] [CrossRef]
- Pennacchia, C.; Ercolini, D.; Villani, F. Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack. Food Microbiol. 2011, 28, 84–93. [Google Scholar] [CrossRef]
- Chaillou, S.; Chaulot-Talmon, A.; Caekebeke, H.; Cardinal, M.; Christieans, S.; Denis, C.; Helene Desmonts, M.; Dousset, X.; Feurer, C.; Hamon, E.; et al. Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. ISME J. 2015, 9, 1105–1118. [Google Scholar] [CrossRef] [Green Version]
- Fernández-López, J.; Sayas-Barberá, E.; Munõz, T.; Sendra, E.; Navarro, C.; Pérez-Alvarez, J.A. Effect of packaging conditions on shelf-life of ostrich steaks. Meat Sci. 2008, 78, 143–152. [Google Scholar] [CrossRef]
- Otremba, M.M.; Dikeman, M.E.; Boyle, E.A.E. Refrigerated shelf life of vacuum-packaged, previously frozen ostrich meat. Meat Sci. 1999, 52, 279–283. [Google Scholar] [CrossRef]
- Benson, A.K.; David, J.R.; Gilbreth, S.E.; Smith, G.; Nietfeldt, J.; Legge, R.; Kim, J.; Sinha, R.; Duncan, C.E.; Ma, J.; et al. Microbial successions are associated with changes in chemical profiles of a model refrigerated fresh pork sausage during an 80-day shelf life study. Appl. Environ. Microbiol. 2014, 80, 5178–5194. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Zhou, G.; Ye, K.; Wang, S.; Xu, X.; Li, C. Microbial changes in vacuum-packed chilled pork during storage. Meat Sci. 2015, 100, 145–149. [Google Scholar] [CrossRef]
- Nieminen, T.T.; Dalgaard, P.; Björkroth, J. Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork. Int. J. Food Microbiol. 2016, 218, 86–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oakley, B.B.; Morales, C.A.; Line, J.; Berrang, M.E.; Meinersmann, R.J.; Tillman, G.E.; Wise, M.G.; Siragusa, G.R.; Hiett, K.L.; Seal, B.S. The poultry-associated microbiome: Network analysis and farm-to-fork characterizations. PLoS ONE 2013, 8, e57190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouger, A.; Moriceau, N.; Prévost, H.; Remenant, B.; Zagorec, M. Diversity of bacterial communities in French chicken cuts stored under modified atmosphere packaging. Food Microbiol. 2018, 70, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Dong, Y.; Zhu, Y.; Cui, H.I. Bacterial diversity analysis of Zhenjiang Yao meat during refrigerated and vacuum-packed storage by 454 pyrosequencing. Curr. Microbiol. 2013, 66, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhang, Y.; Wu, Q.; Gu, Q.; Chen, M.; Zhang, Y.; Sun, X.; Zhang, J. High-throughput sequencing analysis of bacterial community composition and quality characteristics in refrigerated pork during storage. Food Microbiol. 2019, 83, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Stoops, J.; Ruyters, S.; Busschaert, P.; Spaepen, R.; Verreth, C.; Claes, J.; Lievens, B.; Van Campenhout, I. Bacterial community dynamics during cold storage of minced meat packaged under modified atmosphere and supplemented with different preservatives. Food Microbiol. 2015, 48, 192–199. [Google Scholar] [CrossRef]
- Hilgarth, M.; Fuertes-Perez, S.; Ehrmann, M.; Vogel, R.F. An adapted isolation procedure reveals Photobacterium spp. As common spoilers on modified atmosphere packed meats. Lett. Appl. Microbiol. 2018, 66, 262–267. [Google Scholar] [CrossRef]
- Rouger, A.; Remenant, B.; Prévost, H.; Zagorec, M. A method to isolate bacterial communities and characterize ecosystems from food products: Validation and utilization in as a reproducible chicken meat model. Int. J. Food Microbiol. 2017, 247, 38–47. [Google Scholar] [CrossRef]
- Lee, J.; Kim, T.; Choi, S.H.; Kim, B. Analysis of the bacterial microbiome in the small octopus, Octopus variabilis, from South Korea to detect the potential risk of foodborne illness and to improve product management. Food Res. Int. 2017, 102, 51–60. [Google Scholar] [CrossRef]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a chimera-checked 16S rRNA gene 25 database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006, 72, 5069. [Google Scholar] [CrossRef] [Green Version]
- Hӧll, I.; Behr, J.; Vogel, R.F. Identification and growth dynamics of meat spoilage microorganisms in modified atmosphere packaged poultry meat by MALDI-TOF MS. Food Microbiol. 2016, 60, 84–91. [Google Scholar] [CrossRef]
- Argyri, A.A.; Papadopoulou, O.S.; Nisiotou, A.; Tassou, C.C.; Chorianopolos, N. Effect of high-pressure processing on the survival of Salmonella Enteritidis and shelf-life of chicken fillets. Food Microbiol. 2018, 70, 55–64. [Google Scholar] [CrossRef]
- Jones, R.J. Observations on the succession dynamics of lactic acid bacteria populations in chill-stored vacuum-packaged beef. Int. J. Food Microbiol. 2004, 90, 273–282. [Google Scholar] [CrossRef]
- Fuertes-Perez, S.; Hauschild, P.; Hilgarth, M.; Vogel, R.F. Biodiversity of Photobacterium spp. isolated from meats. Front. Microbiol. 2019, 10, 2399. [Google Scholar] [CrossRef]
- Hilgarth, M.; Fuertes-Perez, S.; Ehrmann, M.; Vogel, R.F. Photobacterium carnosum sp. nov., isolated from spoiled modified atmosphere packaged poultry meat. Syst. Appl. Microbiol. 2018, 41, 44–50. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, J.; Zhu, L.; Luo, X.; Mao, Y.; Hopkins, D.L.; Zhang, Y.; Dong, P. Effect of modified atmosphere on shelf life and bacterial community of roast duck meat. Food Res. Int. 2020, 137, 109645. [Google Scholar] [CrossRef]
- Björkroth, J.; Ristiniemi, M.; Vandamme, P.; Korkeala, H. Enterococcus species dominating in fresh modified-atmosphere-packaged marinated broiler legs are over-grown by Carnobacterium and Lactobacillus species during storage at 6 degrees C. Int. J. Food Microbiol. 2005, 97, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.Y.; Xiao, X.; Wang, H.H.; Zhang, Q.Y.; Zou, Y.F. Characterization of the bacterial community of braised chicken, a specialty poultry product in China. Poult. Sci. 2019, 98, 1055–1063. [Google Scholar] [CrossRef]
- Jouki, M.; Yazdi, F.T. The effect of gamma irradiation and vacuum packaging upon selected quality traits of refrigerated ostrich meat. Part 1. Microbial assessment. Anim. Sci. Pap. Rep. 2014, 32, 81–89. [Google Scholar]
- Angulo, R.; Angulo, M. Comer carne de avestruz: +es una alternativa segura? Aliment. Noviembre 2001, 327, 51–54. [Google Scholar]
- Dalgaard, P.; Mejlholm, O.; Christiansen, T.; Huss, H.H. Importance of Photobacterium phosphoreum in relation to spoilage of modified atmosphere-packed fish products. Lett. Appl. Microbiol. 1997, 24, 373–378. [Google Scholar] [CrossRef]
- Ast, J.C.; Dunlap, P.V. Phylogenetic resolution and habitat specificity of members of the Photobacterium phosphoreum species group. Environ. Microbiol. 2005, 7, 1641–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, H.; Ogai, M.; Miya, S.; Kuda, T.; Kimura, B. Effects of environmental factors on histamine production in the psychrophilic histamine-producing bacterium Photobacterium iliopiscarium. Food Control 2015, 52, 39–42. [Google Scholar] [CrossRef]
- Nieminen, T.T.; Koskinen, K.; Laine, P.; Hultman, J.; Säde, E.; Paulin, L.; Paloranta, A.; Johansson, P.; Björkroth, J.; Auvinen, P. Comparison of microbial communities in marinated and unmarinated broiler meat by metagenomics. Int. J. Food Microbiol. 2012, 157, 142–149. [Google Scholar] [CrossRef]
- Hӧll, I.; Hilgarth, M.; Geissler, A.J.; Behr, J.; Vogel, R.F. Prediction of in situ metabolism of photobacteria in modified atmosphere packaged poultry meat using metatranscriptomics data. Microbiol. Res. 2019, 222, 52–59. [Google Scholar] [CrossRef]
- Tian, X.; Wu, W.; Yu, Q.; Hou, M.; Gao, F.; Li, X.; Dai, R. Bacterial diversity analysis of pork longissimus lumborum following long-term ohmic cooking and water bath cooking by amplicon sequencing of 16S rRNA gene. Meat Sci. 2017, 123, 97–104. [Google Scholar] [CrossRef]
- Kim, C.; Stein, R.A.; Pao, S. Comparison of the microbial quality of lamb and goat meat acquired from internet and local retail markets. J. Food Prot. 2015, 78, 1980–1987. [Google Scholar] [CrossRef]
- Wang, T.; Guo, H.; Zhang, H.; Ren, F.; Zhang, M.; Ge, S.; Luo, H.; Zhao, L. Dynamics of bacterial communities of lamb meat packaged in air and vacuum pouch during chilled storage. Food Sci. Anim. Resour. 2019, 39, 209–221. [Google Scholar] [CrossRef]
- Gardner, A.; Mills, J.; Brightwell, G. The spoilage characteristics of Brochothrix thermosphacta and two psychrotolerant Enterobacteriaceae in vacuum packed lamb and the comparison between high and low pH cuts. Meat Sci. 2014, 97, 83–92. [Google Scholar]
- De Filippis, F.; La Storia, A.; Villani, F.; Ercolini, D. Exploring the sources of bacterial spoilers in beef steaks by culture-independent high-throughput sequencing. PLoS ONE 2013, 8, e70222. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, X.; Wang, G.; Jia, K.; Xu, X.; Zhou, G. Bacterial community and spoilage profiles shift in response to packaging in Yellow-Feather broiler, a high popular meat in Asia. Front. Microbiol. 2017, 8, 2588. [Google Scholar] [CrossRef] [Green Version]
- Andreevskaya, M.; Johansson, P.; Laine, P.; Smolander, O.-P.; Sonck, M.; Rahkila, R.; Jääskeläinen, E.; Paulin, L.; Auvinen, P.; Björkroth, J. Genome sequence and transcriptome analysis of meat-spoilage-associated lactic acid bacterium Lactococcus piscium MKFS47. Appl. Environ. Microbiol. 2015, 81, 3800–3811. [Google Scholar]
- Chenoli, E.; Macián, M.C.; Elizaquivel, P.; Aznar, R. Lactic acid bacteria associated with vacuum-packed cooked meat product spoilage: Population analysis by rDNA-based methods. J. Appl. Microbiol. 2007, 102, 498–508. [Google Scholar] [CrossRef]
- Jääskeläinen, E.; Hultman, J.; Parshintsev, J.; Riekkola, M.-L.; Bjӧrkroth., J. Development of spoilage bacterial community and volatile compounds in chilled beef under vacuum or high oxygen atmospheres. Int. J. Food Microbiol. 2016, 223, 25–32. [Google Scholar]
- Luong, N.-D.M.; Coroller, M.; Membre, J.-M.; Guillou, S. Spoilage of chilled fresh meat products during Storage: A quantitative analysis of literature data. Microorganisms 2020, 8, 1198. [Google Scholar] [CrossRef]
- Danielski, G.M.; Imazaki, P.H.; de Andrade-Cavalari, C.M.; Daube, G.; Clinquart, A.; de Macedo, R.E.F. Carnobacterium maltaromaticum as bioprotective culture in vitro and cooked ham. Meat Sci. 2020, 162, 108035. [Google Scholar] [CrossRef]
- Ercolini, D.; La Storia, A.; Villani, F.; Mauriello, G. Effect of a bacteriocin-activated polyethylene film on Listeria monocytogenes as evaluated by viable staining and epifluorescence microscopy. J. Appl. Microbiol. 2006, 100, 765–772. [Google Scholar] [CrossRef]
- Cleveland, J.; Montville, T.J.; Nes, I.F.; Chikindas, M.L. Bacteriocins: Safe, natural antimicrobials for food preservations. Int. J. Food Microbiol. 2001, 45, 83–102. [Google Scholar] [CrossRef]
- Dos Reis, F.B.; de Souza, V.M.; Thomaz, M.R.S.; Fernandes, L.P.; de Oliveirs, W.P.; de Martinis, E.C.P. Use of Carnobacterium maltaromaticum cultures and hydroalcoholic extract of Lippia sidoides Cham. against Listeria monocytogenes in fish model systems. Int. J. Food Microbiol. 2011, 146, 228–234. [Google Scholar] [CrossRef]
- Rossaint, S.; Klausmann, S.; Kreyenschmidt, J. Effect of high-oxygen and oxygen-free modified atmosphere packaging on the spoilage process of poultry breast fillets. Poult. Sci. 2015, 94, 96–103. [Google Scholar] [CrossRef]
- Al-Mutairi, M. The Incidence of Enterobacteriaceae Causing Food Poisoning in Some Meat Products. Adv. J. Food Sci. Technol. 2011, 3, 116–121. [Google Scholar]
- De Jesús-Laboy, K.M.; Godoy-Vitorino, F.; Picento, Y.M.; Tom, L.M.; Pantoja-Feliciano, L.G.; Rivera-Rivera, M.J.; Andersen, G.I.; Dominguez-Bello, M.G. Comparison of the fecal microbiota in feral and domestic goats. Genes 2012, 3, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Esmer, O.K.; Irkin, R.; Degirmencioglu, N.; Degirmencioglu, A. The effect of modified atmosphere gas composition on microbial criteria, color, and oxidation values of minced beef meat. Meat Sci. 2011, 88, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Orkusz, A. Quality changes of goose breast meat during cold storage under modified atmosphere and vacuum. Eur. Poult. Sci. 2017, 81, 1–9. [Google Scholar]
- Richard, G.P.; Watson, M.A.; Crane, E.J., III; Burt, I.G.; Bushek, D. Shewanella and Photobacterium spp. in Oysters and Seawater from the Delaware Bay. Appl. Environ. Microbiol. 2008, 74, 3323–3327. [Google Scholar] [CrossRef] [Green Version]
- Liang, R.; Yu, X.; Wang, R.; Luo, X.; Mao, Y.; Zhu, L.; Zhang, Y. Bacterial diversity and spoilage-related microbiota associated with freshly prepared chicken products under aerobic conditions at 4 °C. J. Food Prot. 2012, 75, 1057–1062. [Google Scholar] [CrossRef]
- Ntzimani, A.G.; Paleologos, E.K.; Savvaidis, I.N.; Kontominas, M.G. Formation of biogenic amines and relation to microbial flora and sensory changes in smoked turkey breast fillets stored under various packaging conditions at 4 °C. Food Microbiol. 2008, 25, 509–517. [Google Scholar] [CrossRef]
Microbial Group | Culture Medium | Incubation | References | |
---|---|---|---|---|
Temp. (°C) | Time (h) | |||
Presumptive Photobacterium sp. a | Marine Agar (Difco Becton Dickinson Sparks MD. USA) | 15 | 72 | [27] |
Lactic acid bacteria (LAB) a | Man. Rogosa. Sharpe (MRS) agar (Merck, Darmstadt, Germany) | 30 | 72 | ISO 15214:1998 |
Brochothrix spp. b | Streptomycin, sulphate thallous acetate agar (STAA) (Oxoid Basingstoke, UK) | 25 | 48 | ISO 13722:2017 |
Pseudomonas spp. b | Pseudomonas agar supplemented with cetrimide. fucidin. cephalosporin (CFC) (Merck, Darmstadt, Germany) | 25 | 72 | ISO 13720:2010 |
Enterobacteriaceaec | Violet red bile glucose agar (VRBGA) (Graso Biotech., Poland) | 37 | 24 | ISO 21528-2:2017 |
Meat | Colony Count (log CFU/g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Photobacterium spp. | LAB | Brochotrix spp. | Pseudomonas spp. | Enterobacteriaceae | ||||||
Storage Days | ||||||||||
Initial | 14 Days | Initial | 14 Days | Initial | 14 Days | Initial | 14 Days | Initial | 14 Days | |
Batch I | 4.95 ± 0.13 aA | 7.40 ± 0.08 bA | 3.10 ± 0.30 aA | 6.15 ± 0.00 bB | 1.80 ± 0.45 aA | 2.66 ± 0.24 aA | <1.00 aA | 1.48 ± 0.67 aA | 2.47 ± 0.51 aA | 5.02 ± 0.03 bA |
Batch II | 5.12 ± 0.05 aA | 7.65 ± 0.05 bAB | 2.75 ± 0.15 aA | 5.70 ± 0.48 bAB | 1.82 ± 0.47 aA | 3.27 ± 0.43 aAB | 1.87 ± 0.12 aB | 1.73 ± 0.18 aA | 2.91 ± 0.41 aA | 5.62 ± 0.30 bA |
Batch III | 4.15 ± 1.05 aA | 7.85 ± 0.08 bB | 3.56 ± 0.68 aA | 4.78 ± 0.10 aA | 2.02 ± 0.08 aA | 4.73 ± 0.45 bB | 0.54 ± 0.66 aAB | 1.65 ± 0.07 aA | 1.70 ± 0.06 aA | 5.56 ± 0.07 bA |
Family/Genus | Steak I | Steak II | Steak III | Fillet I | Fillet II | Fillet III | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | % | N | % | N | % | N | % | N | % | N | % | |
Vibrionaceae/Photobacterium | 60,540.0 | 85.63 | 52,126.0 | 87.71 | 52,997.0 | 47.22 | 65,651.0 | 83.47 | 41,658.0 | 91.77 | 62,198.0 | 65.31 |
Carnobacteriaceae/Carnobacterium | 494.0 | 0.70 | 1,550.0 | 2.61 | 17,533.0 | 15.62 | 1013.0 | 1.29 | 1520.0 | 3.35 | 8749.0 | 9.19 |
Carnobacteriaceae/Other | - | - | - | - | 22,224.0 | 19.80 | - | - | - | - | 9852.0 | 10.35 |
Lactobacillaceae/Lactobacillus | 3320.0 | 4.70 | 4,078.0 | 6.86 | 2474.0 | 2.20 | 2125.0 | 2.70 | 1051.0 | 2.32 | 1924.0 | 2.02 |
Enterobacteriaceae/Serratia | - | - | - | - | - | - | 657.0 | 0.84 | - | - | - | - |
Enterobacteriaceae/Other | - | - | 494.0 | 0.83 | 5564.0 | 4.96 | - | - | 594.0 | 1.31 | 3061.0 | 3.21 |
Streptococcaceae/Lactococcus | - | - | - | - | 3023.0 | 2.69 | - | - | - | - | 3785.0 | 3.97 |
Enterococcaceae/Vagococcus | - | - | - | - | - | - | - | - | 101.0 | 0.22 | - | - |
Leuconostocaceae/Weissella | 530.0 | 0.75 | 650.0 | 1.09 | - | - | 720.0 | 0.92 | 67.0 | 0.15 | - | - |
Shewanellaceae/Shewanella | 1241.0 | 1.76 | - | - | - | - | 859.0 | 1.09 | - | - | - | - |
Bacteroidaceae/Bacteroides | 492.0 | 0.70 | - | - | - | - | - | - | - | - | - | - |
Unidentified | 2607.0 | 3.69 | 250.0 | 0.42 | 7546.0 | 6.72 | 4745.0 | 6.03 | 5050.0 | 5.30 |
Family/Genus | Batch I (August) | Batch II (October) | Batch III (March) | Relative Abundances (I + II + III) * |
---|---|---|---|---|
(%) | (%) | (%) | (%) | |
Vibrionaceae/Photobacterium | 84.55 | 89.74 | 56.27 | 76.85 |
Carnobacteriaceae/other | - | - | 15.08 | 15.08 |
Carnobacteriaceae/Carnobacterium | 1.00 | 2.98 | 12.21 | 5.39 |
Enterobacteriaceae/other | - | - | 4.09 | 4.09 |
Lactobacillaceae/Lactobacillus | 3.7 | 4.7 | 2.11 | 3.50 |
Streptococcaceae/Lactococcus | - | - | 3.33 | 3.33 |
Shewanellaceae/Shewanella | 1.43 | - | - | 1.43 |
Enterococcaceae/Vagococcus | - | 1.35 | - | 1.35 |
Leuconostocaceae/Weissella | 0.84 | 0.62 | - | 0.73 |
Enterobacteriaceae/Serratia | 0.84 | - | - | 0.84 |
Bacteroidaceae/Bacteroides | 0.7 | - | - | 0.70 |
Unclassified | 4.86 | 0.475 | 6.01 | 3.78 |
Family/Genus | Batch I (August) | Batch II (October) | Batch III (March) |
---|---|---|---|
Vibrionaceae/Photobacterium | 84.55 ± 1.53 Cb | 89.74 ± 2.87 Cb | 56.09 ± 12,81 Da |
Bacteroidaceae/Bacteroides | 0.35 ± 0.49 Aa | 0 ± 0 Aa | 0 ± 0 Aa |
Carnobacteriaceae/Carnobacterium | 1,00 ± 0,42 Aa | 2.98 ± 0.52 ABa | 12.21 ± 4.6 BCb |
Lactobacillaceae/Lactobacillus | 3.70 ± 1.41 Ba | 4.61 ± 3.18 Ba | 2.11 ± 0.13 Aa |
Carnobacteriaceae/Other | 0 ± 0 Aa | 0 ± 0 Aa | 15.08 ± 6.68 Cb |
Enterobacteriaceae/Other | 0 ± 0 Aa | 0 ± 0 Aa | 4.09 ± 1.24 ABb |
Enterobacteriaceae/Serratia | 0.84 ± 0.59 Aa | 0 ± 0 Aa | 0 ± 0 Aa |
Enterococcaceae/Vagococcus | 0 ± 0 Aa | 1.35 ± 1.9 Aa | 0 ± 0 Aa |
Streptococcaceae/Lactococcus | 0 ± 0 Aa | 0 ± 0 Aa | 3.33 ± 0.91 ABb |
Leuconostocaceae/Weissella | 0.84 ± 0.12 Aa | 0.62 ± 0.66 Aa | 0.10 ± 0.01 Aa |
Shewanellaceae/Shewanella | 1.43 ± 0.47 Ab | 0 ± 0 Aa | 0 ± 0 Aa |
Unidentified | 4.86 ± 1.65 Bb | 0.21 ± 0.3 Aa | 6.01 ± 1.00 ABCb |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juszczuk-Kubiak, E.; Dekowska, A.; Sokołowska, B.; Połaska, M.; Lendzion, K. Evaluation of the Spoilage-Related Bacterial Profiles of Vacuum-Packaged Chilled Ostrich Meat by Next-Generation DNA Sequencing Approach. Processes 2021, 9, 803. https://doi.org/10.3390/pr9050803
Juszczuk-Kubiak E, Dekowska A, Sokołowska B, Połaska M, Lendzion K. Evaluation of the Spoilage-Related Bacterial Profiles of Vacuum-Packaged Chilled Ostrich Meat by Next-Generation DNA Sequencing Approach. Processes. 2021; 9(5):803. https://doi.org/10.3390/pr9050803
Chicago/Turabian StyleJuszczuk-Kubiak, Edyta, Agnieszka Dekowska, Barbara Sokołowska, Marzena Połaska, and Krzysztof Lendzion. 2021. "Evaluation of the Spoilage-Related Bacterial Profiles of Vacuum-Packaged Chilled Ostrich Meat by Next-Generation DNA Sequencing Approach" Processes 9, no. 5: 803. https://doi.org/10.3390/pr9050803
APA StyleJuszczuk-Kubiak, E., Dekowska, A., Sokołowska, B., Połaska, M., & Lendzion, K. (2021). Evaluation of the Spoilage-Related Bacterial Profiles of Vacuum-Packaged Chilled Ostrich Meat by Next-Generation DNA Sequencing Approach. Processes, 9(5), 803. https://doi.org/10.3390/pr9050803