Dynamics of Single Droplet Splashing on Liquid Film by Coupling FVM with VOF
Abstract
:1. Introduction
2. Numerical Method
2.1. Mathematical Formulation
2.2. The Numerical Solution Procedure
2.3. Numerical Details
3. Simulation Results and Discussion
3.1. Dynamics Analysis of a Droplet’s Initial Impact on Liquid Film
3.2. Analysis of the Influence of Different Weber Numbers on Droplet Impact on Liquid Film
3.3. Analysis of the Influence of Different Thicknesses of Film on Droplet Impingment
4. Conclusions
- The crown height increases with the Weber number, and the diameter of the crown rim is inversely proportional to the number of impact Weber when other operating parameters remain the same;
- The thinner the thickness of the crown is, the smaller the diameter of the crown is and the lower the stability of the crown rim. Therefore, when the Weber number is larger, the number of secondary splash droplets formed from the crown edge would also increase;
- The height of the dimensionless crown decreases with the increase in the dimensionless thickness of the liquid film, which has little effect on the diameter of the crown rim during the growth of the crown;
- The thickness of the liquid film does not affect the generation of secondary splash droplets. However, when the thickness of the liquid film decreases, the evolution period of the crown would be shortened and the collapse speed would become faster.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
FVS | finite volume solution |
VOF | volume of fluid |
D0 | initial droplet diameter |
U0 | velocity of droplet |
h | liquid film thickness |
H* | non-dimensional liquid film thickness |
t | time |
T | non-dimensional time |
Κ | curvature of the interface region |
stress tensor | |
volumetric force | |
velocity vector | |
gravitational constant | |
▽ | del operator |
Greek symbols | |
ρ | density |
σ | surface tension |
μ | dynamic viscosity |
α | volume fraction |
References
- Li, H.; Fang, W.; Li, Y.; Yang, Q.; Li, M.; Li, Q.; Feng, X.-Q.; Song, Y. Spontaneous droplets gyrating via asymmetric self-splitting on heterogeneous surfaces. Nat. Commun. 2019, 10, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coghe, A. A first study about single drop impingement on thin liquid film in a low Laplace number range. In Proceedings of the 11th European Conference of ILASS-Europe, Nürnberg, Germany, 21–23 March 1995; pp. 285–293. [Google Scholar]
- Liang, G.; Ya-Li, G. Analysis of liquid sheet and jet flow mechanism after droplet impinging onto liquid film. Acta Phys. Sin. Chin. Ed. 2013, 62, 024705. [Google Scholar] [CrossRef]
- Cossali, G.E.; Coghe, A.; Marengo, M. The impact of a single drop on a wetted solid surface. Exp. Fluids 1997, 22, 463–472. [Google Scholar] [CrossRef]
- Gueyffier, D.; Zaleski, S. Finger formation during droplet impact on a liquid film. Comptes Rendus Académie Sci. Ser. IIB Mech. Phys. Astron. 1998, 326. [Google Scholar]
- Yarin, A.L.; Weiss, D.A. Impact of drops on solid surfaces: Self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 1995, 283, 141–173. [Google Scholar] [CrossRef]
- Rioboo, R.; Bauthier, C.; Conti, J.; Voue, M.; De Coninck, J. Experimental investigation of splash and crown formation during single drop impact on wetted surfaces. Exp. Fluids 2003, 35, 648–652. [Google Scholar] [CrossRef]
- Wal, R.L.V.; Berger, G.M.; Mozes, S.D. Droplets splashing upon films of the same fluid of various depths. Exp. Fluids 2006, 40, 33–52. [Google Scholar]
- Hao, J. Effect of surface roughness on droplet splashing. Phys. Fluids 2017, 29, 122105. [Google Scholar] [CrossRef]
- Okawa, T.; Kubo, K.; Kawai, K.; Kitabayashi, S. Experiments on splashing thresholds during single-drop impact onto a quiescent liquid film. Exp. Therm. Fluid Sci. 2020, 121, 110279. [Google Scholar] [CrossRef]
- Naveen, P.T.; Simhadri, R.R.; Ranjith, S.K. Simultaneous Effect of Droplet Temperature and Surface Wettability on Single Drop Impact Dynamics. Fluid Dyn. 2020, 55, 640–652. [Google Scholar] [CrossRef]
- Harlow, F.H.; Shannon, J.P. The Splash of a Liquid Drop. J. Appl. Phys. 1967, 38, 3855–3866. [Google Scholar] [CrossRef]
- Weiss, D.A.; Yarin, A.L. Single drop impact onto liquid films: Neck distortion, jetting, tiny bubble entrainment, and crown formation. J. Fluid Mech. 1999, 385, 229–254. [Google Scholar] [CrossRef]
- Shi, Z.Y.; Yan, Y.H.; Yang, F.; Qian, Y.H.; Guo-Hui, H.U. A lattice boltzmann method for simulation of a three-dimensional drop impact on a liquid film. J. Hydrodyn. Ser. B 2008, 20, 267–272. [Google Scholar] [CrossRef]
- Wu, J.; Liu, C.; Zhao, N. Dynamics of falling droplets impact on a liquid film: Hybrid lattice Boltzmann simulation. Colloids Surf. A Physicochem. Eng. Asp. 2015, 472, 92–100. [Google Scholar] [CrossRef]
- Raman, K.; Jaiman, R.; Lee, T.; Low, H. On the dynamics of crown structure in simultaneous two droplets impact onto stationary and moving liquid film. Comput. Fluids 2015, 107, 285–300. [Google Scholar] [CrossRef]
- Raman, K.A.; Jaiman, R.K.; Lee, T.-S.; Low, H.-T. Dynamics of simultaneously impinging drops on a dry surface: Role of impact velocity and air inertia. J. Colloid Interface Sci. 2017, 486, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.-H.; Dai, S.-Q. Numerical simulation on the mechanism of the normal impact of two droplets onto a thin film. J. Shanghai Univ. 2007, 11, 210–212. [Google Scholar] [CrossRef]
- Rieber, M.; Frohn, A. A numerical study on the mechanism of splashing. Int. J. Heat Fluid Flow 1999, 20, 455–461. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, L.; Liang, G.; Shen, S. Simulation of droplet impact on liquid film with CLSVOF. Int. Commun. Heat Mass Transf. 2014, 53, 26–33. [Google Scholar] [CrossRef]
- Nikolopoulos, N.; Theodorakakos, A.; Bergeles, G. Three-dimensional numerical investigation of a droplet impinging normally onto a wall film. J. Comput. Phys. 2007, 225, 322–341. [Google Scholar] [CrossRef]
- Gupta, G.; Kumar, P. Splashing dynamics of a drop impact onto a deep liquid pool with moving film interface. Phys. Fluids 2020, 32, 012102. [Google Scholar] [CrossRef]
- Yuan, H.; Li, J.; He, X.; Chen, L.; Wang, Z.; Tan, J. Study of droplet splashing on a liquid film with a tunable surface tension pseudopotential lattice Boltzmann method. AIP Adv. 2020, 10, 025209. [Google Scholar] [CrossRef]
- Hirt, C.; Nichols, B. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Patankar, S.V.; Spalding, D.B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. J. Heat Mass Transf. 1972, 15, 1787–1806. [Google Scholar] [CrossRef]
- Jasak, H. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows; Imperial College London: London, UK, 1996; pp. 46–51. [Google Scholar]
- Ubbink, O.; Issa, R.I. A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes. J. Comput. Phys. 1999, 153, 26–50. [Google Scholar] [CrossRef] [Green Version]
- Theodorakakos, A.; Bergeles, G. Simulation of sharp gas–liquid interface using VOF method and adaptive grid local refinement around the interface. Int. J. Numer. Methods Fluids 2004, 45, 421–439. [Google Scholar] [CrossRef]
- Okawa, T.; Shiraishi, T.; Mori, T. Production of secondary drops during the single water drop impact onto a plane water surface. Exp. Fluids 2006, 41, 965. [Google Scholar] [CrossRef]
Different Levels of Local Refinement | The Total Number of Computational Cells | Number of Liquid Film Cells | Number of Droplet Cells | Minimum Grid Volume (m3) |
---|---|---|---|---|
0 (base grid) | 103,031 | 100,000 | 6024 | 8 × 10−12 |
2 | 1,383,298 | 239,860 | 21,896 | 1 × 10−12 |
3 | 2,825,118 | 799,160 | 101,040 | 1.25 × 10−13 |
4 | 8,759,226 | 3,035,996 | 491,112 | 1.56 × 10−14 |
5 | 32,866,422 | 11,982,528 | 2,206,504 | 1.95 × 10−15 |
Case | V (m/s) | H (mm) | H* | We | Re | Oh | Dimensions of Solution Domain |
---|---|---|---|---|---|---|---|
A | 4.64 | 1 | 0.5 | 598 | 9236 | 0.00264 | 10D0 × 10D0 × 10D0 |
B | 3.97 | 1 | 0.5 | 437 | 7902 | 0.00264 | 10D0 × 10D0 × 10D0 |
C | 3 | 1 | 0.5 | 250 | 5971 | 0.00264 | 10D0 × 10D0 × 10D0 |
D | 3 | 0.6 | 0.3 | 250 | 5971 | 0.00264 | 10D0 × 10D0 × 10D0 |
E | 3 | 1.4 | 0.7 | 250 | 5971 | 0.00264 | 10D0 × 10D0 × 10D0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Zhou, H.; Zhu, L.; Li, Z. Dynamics of Single Droplet Splashing on Liquid Film by Coupling FVM with VOF. Processes 2021, 9, 841. https://doi.org/10.3390/pr9050841
Jin Y, Zhou H, Zhu L, Li Z. Dynamics of Single Droplet Splashing on Liquid Film by Coupling FVM with VOF. Processes. 2021; 9(5):841. https://doi.org/10.3390/pr9050841
Chicago/Turabian StyleJin, Yuzhen, Huang Zhou, Linhang Zhu, and Zeqing Li. 2021. "Dynamics of Single Droplet Splashing on Liquid Film by Coupling FVM with VOF" Processes 9, no. 5: 841. https://doi.org/10.3390/pr9050841
APA StyleJin, Y., Zhou, H., Zhu, L., & Li, Z. (2021). Dynamics of Single Droplet Splashing on Liquid Film by Coupling FVM with VOF. Processes, 9(5), 841. https://doi.org/10.3390/pr9050841