Material Generation Algorithm: A Novel Metaheuristic Algorithm for Optimization of Engineering Problems
Abstract
:1. Introduction
2. Material Generation Algorithm
2.1. Inspiration
2.1.1. Chemical Compound
- -
- Ionic compounds are created when electrons are transferred from the atoms of one element to those of another.
- -
- Covalent compounds form when electrons are shared between atoms of different elements.
2.1.2. Chemical Reaction
2.1.3. Chemical Stability
2.2. Mathematical Model
2.2.1. Modeling Chemical Compound
2.2.2. Modeling Chemical Reaction
2.2.3. Modeling Chemical Stability
3. Problem Statement
3.1. Mathematically-Constrained Problems
3.2. Engineering Design Problems
4. Numerical Results of Mathematical Problems
5. Numerical Results of Engineering Problems
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Montes et al. [54] | Akhtar et al. [55] | Gandomi et al. [46] | Zhang et al. [56] | Present Study (MGA) | |
---|---|---|---|---|---|
Best | 3025.005 | 3008.08 | 3000.9810 | 2994.471066 | 2994.438869 |
b | 3.506163 | 3.506122 | 3.5015 | 3.5 | 3.500007956 |
m | 0.700831 | 0.700006 | 0.7000 | 0.7 | 0.700000656 |
z | 17 | 17 | 17.0000 | 17 | 17.00000081 |
l1 | 7.460181 | 7.549126 | 7.6050 | 7.3 | 7.300541927 |
l2 | 7.962143 | 7.85933 | 7.8181 | 7.7153199115 | 7.715357693 |
d1 | 3.3629 | 3.365576 | 3.3520 | 3.3502146661 | 3.350542391 |
d2 | 5.3090 | 5.289773 | 5.2875 | 5.2866544650 | 5.28665793 |
g1(x) | −0.0777 | −0.0755 | −0.0743 | −0.0739152 | −2.155122277 |
g2(x) | −0.2013 | −0.1994 | −0.1983 | −0.1979985 | −98.13710222 |
g3(x) | −0.4741 | −0.4562 | −0.4349 | −0.9999967 | −1.924273761 |
g4(x) | −0.8971 | −0.8994 | −0.9008 | −0.9999995 | −18.30969834 |
g5(x) | −0.0110 | −0.0132 | −0.0011 | −0.6668526 | −0.000437152 |
g6(x) | −0.0125 | −0.0017 | −0.0004 | −0.0000000 | −0.001666474 |
g7(x) | −0.7022 | −0.7025 | −0.7025 | −0.7025000 | −28.09998829 |
g8(x) | −0.0006 | −0.0017 | −0.0004 | −0.0000000 | −6.68 × 10−6 |
g9(x) | −0.5831 | −0.5826 | −0.5832 | −0.5833333 | −6.999993318 |
g10(x) | −0.0691 | −0.0796 | −0.0890 | −0.0513257 | −0.374728341 |
g11(x) | −0.0279 | −0.0179 | −0.0130 | −0.0000000 | −3.40 × 10−05 |
Rankings | Algorithms | Mean of Ranks |
---|---|---|
1 | Present Study (MGA) | 1.50 |
2 | Zhang et al. [56] | 2.00 |
3 | Gandomi et al. [46] | 3.00 |
4 | Akhtar et al. [55] | 3.87 |
5 | Montes et al. [54] | 4.62 |
Chi-sq. | 10.7848 | |
Prob > Chi-sq. | 0.0291 |
Coello [57] | Ray and Liew [58] | Han et al. [59] | Gandomi et al. [45] | Present Study (MGA) | |
---|---|---|---|---|---|
Best | 0.01270478 | 0.0126692 | 0.01266534 | 0.01266522 | 0.01266523 |
d | 0.051480 | 0.052160 | 0.0516800 | 0.05169 | 0.051689061 |
D | 0.351661 | 0.368159 | 0.3565001 | 0.35673 | 0.35671774 |
N | 11.632201 | 10.648442 | 11.3018335 | 11.2885 | 11.28896576 |
g1(x) | −0.003337 | −7.45 × 10−9 | −6.218 × 10−6 | 0 | 0 |
g2(x) | −0.000110 | −3.68 × 10−9 | −1.691 × 10−6 | 0 | 0 |
g3(x) | −4.026318 | −4.075805 | −4.0533150 | −4.0538 | −4.05378563 |
g4(x) | −0.731239 | −0.719787 | −0.7278799 | −0.7277 | −0.7277288 |
Rankings | Algorithms | Mean of Ranks |
---|---|---|
1 | Present Study (MGA) | 1.25 |
2 | Han et al. [59] | 2.25 |
3 | Coello [57] | 3.50 |
4 | Ray and Liew [58] | 4.00 |
5 | Gandomi et al. [45] | 4.00 |
Chi-sq. | 9.4000 | |
Prob > Chi-sq. | 0.0518 |
He and Wang [60] | Coelho [61] | Mezura-Montes and Coello [62] | Coello and Montes [63] | Present Study (MGA) | |
---|---|---|---|---|---|
Best | 6061.0777 | 6059.7208 | 6059.7456 | 6059.9463 | 6059.714350 |
Ts | 0.8125 | 0.8125 | 0.8125 | 0.8125 | 0.8125 |
Th | 0.4375 | 0.4375 | 0.4375 | 0.4375 | 0.4375 |
R | 42.0913 | 42.0984 | 42.098087 | 42.097398 | 42.0984 |
L | 176.7465 | 176.6372 | 176.640518 | 176.654050 | 176.6366 |
g1(x) | −1.37 × 10−6 | −8.79 × 10−7 | −6.92 × 10−6 | −2.02 × 10−5 | 0 |
g2(x) | −3.59 × 10−4 | −3.58 × 10−2 | −0.03588 | −0.03589 | −0.0359 |
g3(x) | −118.7687 | −0.2179 | 2.903372 | −24.8998 | 0 |
g4(x) | −63.2535 | −63.3628 | −63.3595 | −63.346 | −63.3634 |
Rankings | Algorithms | Mean of Ranks |
---|---|---|
1 | Present Study (MGA) | 1 |
2 | He and Wang [60] | 2.75 |
3 | Coello and Montes [63] | 3.25 |
4 | Coelho [61] | 4.00 |
5 | Mezura-Montes and Coello [62] | 4.00 |
Chi-sq. | 9.8000 | |
Prob > Chi-sq. | 0.0439 |
Huang et al. [64] | Eskandar et al. [65] | Guedria [66] | Han et al. [59] | Present Study (MGA) | |
---|---|---|---|---|---|
Best | 1.733461 | 1.724856 | 1.724852 | 1.6956397 | 1.672966512 |
h | 0.203137 | 0.205728 | 0.205730 | 0.20532536 | 0.198957505 |
l | 3.542998 | 3.470522 | 3.470489 | 3.26035648 | 3.341955765 |
t | 9.033498 | 9.036620 | 9.036624 | 9.03664424 | 9.187291977 |
b | 0.206179 | 0.205729 | 0.205730 | 0.20572991 | 0.199190532 |
g1(x) | −44.57856 | −0.034128 | −1.05 × 10−10 | −0.10520197 | −20.76244473 |
g2(x) | −44.66353 | −3.49 × 10−5 | −6.91 × 10−10 | −0.17417862 | −23.09392302 |
g3(x) | −0.003042 | −1.19 × 10−6 | −7.66 × 10−15 | −4.04330102 | −0.000233027 |
g4(x) | −3.423726 | −3.432980 | −3.432984 | −3.45179021 | −3.469028817 |
g5(x) | −0.078137 | −0.080728 | −0.080730 | −0.08032536 | −0.073957505 |
g6(x) | −0.235557 | −0.235540 | −0.235540 | −0.22831066 | −0.05415088 |
g7(x) | −38.02826 | −0.013503 | −5.80 × 10−10 | −0.03397937 | −30.47032014 |
Rankings | Algorithms | Mean of Ranks |
---|---|---|
1 | Present Study (MGA) | 1.50 |
2 | Guedria [66] | 2.25 |
3 | Han et al. [59] | 3.25 |
4 | Eskandar et al. [65] | 3 |
5 | Huang et al. [64] | 5 |
Chi-sq. | 11.0000 | |
Prob > Chi-sq. | 0.0266 |
Gandomi et al. [46] | Ray and Liew [58] | Zhang et al. [56] | Grag [67] | Present Study (MGA) | |
---|---|---|---|---|---|
Best | 263.97156 | 263.8958466 | 263.8958434 | 263.8958433 | 263.8958433 |
A1 | 0.78867 | 0.7886210370 | 0.7886751359 | 0.788676171219 | 0.788675136 |
A2 | 0.40902 | 0.4084013340 | 0.4082482868 | 0.408245358456 | 0.408248288 |
g1(x) | −0.00029 | −8.275 × 10−9 | −2.104 × 10−11 | −1.587 × 10−13 | 0 |
g2(x) | −0.00029 | −1.46392765 | −1.46410161 | −1.4641049 | −1.464101618 |
g3(x) | −0.73176 | −0.536072358 | −0.5358983 | −0.535895 | −0.535898382 |
Rankings | Algorithms | Mean of Ranks |
---|---|---|
1 | Present Study (MGA) | 1.75 |
2 | Grag [67] | 1.87 |
3 | Zhang et al. [56] | 2.37 |
4 | Ray and Liew [58] | 4.25 |
5 | Gandomi et al. [46] | 4.75 |
Chi-sq. | 12.8700 | |
Prob > Chi-sq. | 0.0119 |
Deb and Srinivasan [68] | Eskandar et al. [65] | Rao et al. [50] | Ferreira et al. [47] | Present Study (MGA) | |
---|---|---|---|---|---|
Best | 0.4704 | 0.313656 | 0.313656611 | 0.313656 | 0.235242467 |
r1 | 70 | 70 | 70 | 70 | 70.00000008 |
r0 | 90 | 90 | 90 | 90 | 90.0000003 |
t | 1.5 | 1 | 1 | 1 | 1.000000013 |
F | 1000 | 910 | 810 | 830 | 865.6907633 |
Z | 3 | 3 | 3 | 3 | 2.00000004 |
g1(x) | 0 | 0 | 0 | 0 | −2.18 × 10−7 |
g2(x) | −22 | −24 | −24 | −24 | −25.4999999 |
g3(x) | −0.9005 | −0.909480 | −0.91942781 | −0.917438 | −0.913888149 |
g4(x) | −9.7906 | −9.809429 | −9830.371094 | −9.826183 | −9.985383395 |
g5(x) | −7.8947 | −7.894696 | −7894.69659 | −7.894697 | −9.830260243 |
g6(x) | −3.3527 | −2.231421 | −0.702013203 | −0.173855 | −14.98276443 |
g7(x) | −60.6250 | −49.768749 | −37706.25 | −40.118750 | −83479.16052 |
g8(x) | −11.6473 | −12.768578 | −14.2979868 | −14.826145 | −0.017235569 |
Rankings | Algorithms | Mean of Ranks |
---|---|---|
1 | Present Study (MGA) | 1.5 |
2 | Ferreira et al. [47] | 2.12 |
3 | Eskandar et al. [65] | 2.37 |
4 | Rao et al. [50] | 4.00 |
Chi-sq. | 8.8378 | |
Prob > Chi-sq. | 0.0315 |
Savsani and Savsani [48] | Present Study (MGA) | |
---|---|---|
Best | 0.525588 | 0.52325 |
N1 | 34 | 40 |
N2 | 25 | 21 |
N3 | 33 | 14 |
N4 | 32 | 19 |
N5 | 23 | 17 |
N6 | 116 | 69 |
P | 4 | 3 |
m1 | 2.5 | 2 |
m2 | 1.75 | 3 |
Rankings | Algorithms | Mean of Ranks |
---|---|---|
1 | Present Study (MGA) | 2.50 |
2 | Zhang et al. [70] | 2.50 |
3 | Savsani and Savsani [48] | 3.00 |
4 | Rao and Savsani [69] (ABC) | 3.00 |
5 | Rao and Savsani [69] (PSO) | 4.00 |
Chi-sq. | 12.8700 | |
Prob > Chi-sq. | 0.0119 |
TLBO [50] | WOA [44] | WCA [44] | MBA [44] | Present Study (MGA) | |
---|---|---|---|---|---|
Best | 16.63451 | 16.6345213 | 16.63450849 | 16.6345078 | 16.18595608 |
d1 | 40 | 40 | 40 | 40 | 38.53034981 |
d2 | 54.7643 | 54.764326 | 54.764300 | 54.764300 | 53.04151483 |
d3 | 73.01318 | 54.764326 | 54.764300 | 54.764300 | 70.67294075 |
d4 | 73.01318 | 54.764326 | 54.764300 | 88.428419 | 84.71470998 |
w | 73.01318 | 85.986297 | 54.764300 | 85.986242 | 90 |
Rankings | Algorithms | Mean of Ranks |
---|---|---|
1 | Present Study (MGA) | 1.00 |
2 | MBA [44] | 2.00 |
3 | WCA [44] | 3.25 |
4 | TLBO [50] | 4.25 |
5 | WOA [44] | 4.50 |
Chi-sq. | 14.2000 | |
Prob > Chi-sq. | 0.0067 |
Gandomi et al. [46] | Loh and Papalambros [79] | Kannan and Kramer [80] | Sandgren [81] | Present Study (MGA) | |
---|---|---|---|---|---|
Best | 2.701 × 10−12 | 2.7× 10−12 | 2.146 × 10−8 | 5.712 × 10−6 | 1.06 × 10−19 |
zd | 19 | 19 | 13 | 18 | 27.32076302 |
zb | 16 | 16 | 15 | 22 | 13.75530503 |
za | 43 | 43 | 33 | 45 | 48.25305913 |
zf | 49 | 49 | 41 | 60 | 53.98015133 |
Rankings | Algorithms | Mean of Ranks |
---|---|---|
1 | Present Study (MGA) | 2.00 |
2 | Wang et al. [82] (CPKH) | 2.37 |
3 | Loh and Papalambros [79] | 2.75 |
4 | Wang et al. [82] (ABC) | 3.37 |
5 | Gandomi et al. [46] | 4.50 |
Chi-sq. | 6.2278 | |
Prob > Chi-sq. | 0.1828 |
CSA [46] | Present Study (MGA) | |
---|---|---|
Best | 8.4271 | 8.413406652 |
H | 0.05 | 0.05 |
B | 2.043 | 2.041637535 |
X | 120 | 120 |
D | 4.0851 | 4.083080224 |
References
- Glover, F. Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 1986, 13, 533–549. [Google Scholar] [CrossRef]
- Sörensen, K.; Sevaux, M.; Glover, F. A History of Metaheuristics; Handbook of heuristics. arXiv 2017, arXiv:1704.00853. [Google Scholar]
- Moscato, P. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. Caltech Concurr. Comput. Program C3P Rep. 1989, 826, 1989. [Google Scholar]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Koza, J.R.; Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Beyer, H.G.; Schwefel, H.P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002, 1, 3–52. [Google Scholar] [CrossRef]
- Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef] [Green Version]
- Eberhart, R.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1996, 26, 29–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basturk, B. An artificial bee colony (ABC) algorithm for numeric function optimization. In Proceedings of the IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA, 12 May 2006. [Google Scholar]
- Chu, S.C.; Tsai, P.W.; Pan, J.S. Cat Swarm Optimization. In Pacific Rim International Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2006; pp. 854–858. [Google Scholar]
- Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Bristol, UK, 2010. [Google Scholar]
- Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4831–4845. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Erol, O.K.; Eksin, I. A new optimization method: Big bang–big crunch. Adv. Eng. Softw. 2006, 37, 106–111. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Kaveh, A.; Talatahari, S. A novel heuristic optimization method: Charged system search. Acta Mech. 2010, 213, 267–289. [Google Scholar] [CrossRef]
- Alatas, B. ACROA: Artificial chemical reaction optimization algorithm for global optimization. Expert Syst. Appl. 2011, 38, 13170–13180. [Google Scholar] [CrossRef]
- Kaveh, A.; Mahdavi, V.R. Colliding bodies optimization: A novel meta-heuristic method. Comput. Struct. 2014, 139, 18–27. [Google Scholar] [CrossRef]
- Talatahari, S.; Azizi, M. Chaos Game Optimization: A novel metaheuristic algorithm. Artif. Intell. Rev. 2020, 22, 1–88. [Google Scholar] [CrossRef]
- Talatahari, S.; Azizi, M. Optimization of Constrained Mathematical and Engineering Design Problems Using Chaos Game Optimization. Comput. Ind. Eng. 2020, 145, 106560. [Google Scholar] [CrossRef]
- Azizi, M. Atomic orbital search: A novel metaheuristic algorithm. Appl. Math. Model. 2021, 93, 657–683. [Google Scholar] [CrossRef]
- Atashpaz-Gargari, E.; Lucas, C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 4661–4667. [Google Scholar]
- Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214. [Google Scholar]
- Talatahari, S.; Azizi, M. Tribe-charged system search for global optimization. Appl. Math. Model. 2021, 93, 115–133. [Google Scholar] [CrossRef]
- Carbas, S. Design optimization of steel frames using an enhanced firefly algorithm. Eng. Optim. 2016, 48, 2007–2025. [Google Scholar] [CrossRef]
- Hasançebi, O.; Çarbaş, S.; Saka, M.P. Improving the performance of simulated annealing in structural optimization. Struct. Multidiscip. Optim. 2010, 41, 189–203. [Google Scholar] [CrossRef]
- Azad, S.K. Design optimization of real-size steel frames using monitored convergence curve. Struct. Multidiscip. Optim. 2021, 63, 267–288. [Google Scholar] [CrossRef]
- Akış, T.; Azad, S.K. Structural Design Optimization of Multi-layer Spherical Pressure Vessels: A Metaheuristic Approach. Iran. J. Sci. Technol. Trans. Mech. Eng. 2019, 43, 75–90. [Google Scholar] [CrossRef]
- Tubishat, M.; Idris, N.; Shuib, L.; Abushariah, M.A.; Mirjalili, S. Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection. Expert Syst. Appl. 2020, 145, 113–122. [Google Scholar] [CrossRef]
- Mokeddem, D.; Mirjalili, S. Improved Whale Optimization Algorithm applied to design PID plus second-order derivative controller for automatic voltage regulator system. J. Chin. Inst. Eng. 2020, 43, 541–552. [Google Scholar] [CrossRef]
- Kaveh, A.; Hosseini, S.M.; Zaerreza, A. Improved Shuffled Jaya algorithm for sizing optimization of skeletal structures with discrete variables. In Structures; Elsevier: Amsterdam, The Netherlands, 2021; pp. 107–128. [Google Scholar]
- Ebrahimi, B.; Tavana, M.; Toloo, M.; Charles, V. A novel mixed binary linear DEA model for ranking decision-making units with preference information. Comput. Ind. Eng. 2020, 149, 106720. [Google Scholar] [CrossRef]
- Azizi, M.; Ghasemi, S.A.; Ejlali, R.E.; Talatahari, S. Optimization of Fuzzy Controller for Nonlinear Buildings with Improved Charged System Search. Struct. Eng. Mech. 2020, 76, 781. [Google Scholar]
- Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization; Technical Report; National University of Defense Technology: Changsha, China; Kyungpook National University: Daegu, Korea; Nanyang Technological University: Singapore, 2017. [Google Scholar]
- Tvrdík, J.; Poláková, R. Simple framework for constrained problems with application of L-SHADE44 and IDE. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5 June 2017; pp. 1436–1443. [Google Scholar]
- Polakova, R. L-SHADE with competing strategies applied to constrained optimization. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5 June 2017; pp. 1683–1689. [Google Scholar]
- Zamuda, A. Adaptive constraint handling and success history differential evolution for CEC 2017 constrained real-parameter optimization. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5 June 2017; pp. 2443–2450. [Google Scholar]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
- Sörensen, K. Metaheuristics—The metaphor exposed. Int. Trans. Oper. Res. 2015, 22, 3–18. [Google Scholar] [CrossRef]
- Kumar, A.; Wu, G.; Ali, M.Z.; Mallipeddi, R.; Suganthan, P.N.; Das, S. A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm Evol. Comput. 2020, 56, 100693. [Google Scholar] [CrossRef]
- Yildiz, A.R.; Abderazek, H.; Mirjalili, S. A Comparative Study of Recent Non-traditional Methods for Mechanical Design Optimization. Arch. Comput. Methods Eng. 2020, 27, 1031–1048. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Yang, X.S.; Alavi, A.H.; Talatahari, S. Bat algorithm for constrained optimization tasks. Neural Comput. Appl. 2013, 22, 1239–1255. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Yang, X.S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Eng. Comput. 2013, 29, 17–35. [Google Scholar] [CrossRef]
- Ferreira, M.P.; Rocha, M.L.; Neto, A.J.; Sacco, W.F. A constrained ITGO heuristic applied to engineering optimization. Expert Syst. Appl. 2018, 110, 106–124. [Google Scholar] [CrossRef]
- Savsani, P.; Savsani, V. Passing vehicle search (PVS): A novel metaheuristic algorithm. Appl. Math. Model. 2016, 40, 3951–3978. [Google Scholar] [CrossRef]
- Rao, S.S. Engineering Optimization: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, T.; Cheng, P.; Zuo, W.; Liu, X.; Yoshino, T. Optimal Design of Truss Structures with Frequency Constraints Using Interior Point Trust Region Method. Proc. Rom. Acad. Ser. 2014, 15, 165–173. [Google Scholar]
- Gupta, S.; Tiwari, R.; Nair, S.B. Multi-objective design optimisation of rolling bearings using genetic algorithms. Mech. Mach. Theory 2007, 42, 1418–1443. [Google Scholar] [CrossRef]
- Zelinka, I.; Lampinen, J. Mechanical Engineering Problem Optimization by SOMA. In New Optimization Techniques in Engineering; Springer: Berlin/Heidelberg, Germany, 2004; pp. 633–653. [Google Scholar]
- Mezura-Montes, E.; Coello, C.C.; Landa-Becerra, R. Engineering Optimization Using Simple Evolutionary Algorithm. In Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence, Sacramento, CA, USA, 5 November 2003; pp. 149–156. [Google Scholar]
- Akhtar, S.; Tai, K.; Ray, T. A socio-behavioural simulation model for engineering design optimization. Eng. Optim. 2002, 34, 341–354. [Google Scholar] [CrossRef]
- Zhang, M.; Luo, W.; Wang, X. Differential evolution with dynamic stochastic selection for constrained optimization. Inf. Sci. 2008, 178, 3043–3074. [Google Scholar] [CrossRef]
- Coello, C.A. Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 2000, 41, 113–127. [Google Scholar] [CrossRef]
- Ray, T.; Liew, K.M. Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Trans. Evol. Comput. 2003, 7, 386–396. [Google Scholar] [CrossRef]
- Han, J.; Yang, C.; Zhou, X.; Gui, W. A two-stage state transition algorithm for constrained engineering optimization problems. Int. J. Control Autom. Syst. 2018, 16, 522–534. [Google Scholar] [CrossRef]
- He, Q.; Wang, L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 2007, 20, 89–99. [Google Scholar] [CrossRef]
- Dos Santos Coelho, L. Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Syst. Appl. 2010, 37, 1676–1683. [Google Scholar] [CrossRef]
- Zahara, E.; Kao, Y.T. Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems. Expert Syst. Appl. 2009, 36, 3880–3886. [Google Scholar] [CrossRef]
- Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M. Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 2013, 13, 2592–2612. [Google Scholar] [CrossRef]
- Huang, F.Z.; Wang, L.; He, Q. An effective co-evolutionary differential evolution for constrained optimization. Appl. Math. Comput. 2007, 186, 340–356. [Google Scholar] [CrossRef]
- Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm—A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012, 110, 151–166. [Google Scholar] [CrossRef]
- Guedria, N.B. Improved accelerated PSO algorithm for mechanical engineering optimization problems. Appl. Soft Comput. 2016, 40, 455–467. [Google Scholar] [CrossRef]
- Garg, H. A hybrid GSA-GA algorithm for constrained optimization problems. Inf. Sci. 2019, 478, 499–523. [Google Scholar] [CrossRef]
- Deb, K.; Srinivasan, A. Innovization: Innovating Design Principles through Optimization. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, WA, USA, 8 July 2006; pp. 1629–1636. [Google Scholar]
- Rao, R.V.; Savsani, V.J. Mechanical Design Optimization Using Advanced Optimization Techniques; Springer Science & Business Media: London, UK, 2012. [Google Scholar]
- Zhang, J.; Xiao, M.; Gao, L.; Pan, Q. Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems. Appl. Math. Model. 2018, 63, 464–490. [Google Scholar] [CrossRef]
- Siddall, J.N. Optimal Engineering Design: Principles and Applications; CRC Press: London, UK, 1982. [Google Scholar]
- Deb, K.; Goyal, M. Optimizing Engineering Designs Using a Combined Genetic Search. InICGA 1997, 521–528. [Google Scholar]
- Coello, C.A. The Use of a Multiobjective Optimization Technique to Handle Constraints. In Proceedings of the Second International Symposium on Artificial Intelligence (Adaptive Systems); Institute of Cybernetics, Mathematics and Physics, Ministry of Science Technology and Environment: La Habana, Cuba, 1999; pp. 251–256. [Google Scholar]
- Şahin, İ.; Dörterler, M.; Gokce, H. Optimization of Hydrostatic Thrust Bearing Using Enhanced Grey Wolf Optimizer. Mechanics 2019, 25, 480–486. [Google Scholar] [CrossRef] [Green Version]
- Rao, R.V.; Waghmare, G.G. A new optimization algorithm for solving complex constrained design optimization problems. Eng. Optim. 2017, 49, 60–83. [Google Scholar] [CrossRef]
- Lamberti, L.; Pappalettere, C. Move limits definition in structural optimization with sequential linear programming. Part I: Optimization algorithm. Comput. Struct. 2003, 81, 197–213. [Google Scholar] [CrossRef]
- Baghlani, A.; Makiabadi, M.H. Teaching-learning-based optimization algorithm for shape and size optimization of truss structures with dynamic frequency constraints. Iran. J. Sci. Technol. Trans. Civ. Eng. 2013, 37, 409. [Google Scholar]
- Kaveh, A.; Zolghadr, A. Shape and size optimization of truss structures with frequency constraints using enhanced charged system search algorithm. Asian J. Civ. Eng. Build. Hous. 2011, 12, 487–509. [Google Scholar]
- Loh, H.T.; Papalambros, P.Y. Computational implementation and tests of a sequential linearization algorithm for mixed-discrete nonlinear design optimization. J. Mech. Des. 1990, 5213, 11–12. [Google Scholar] [CrossRef]
- Kannan, B.K.; Kramer, S.N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 1994, 116, 405–411. [Google Scholar] [CrossRef]
- Sandgren, E. Nonlinear integer and discrete programming in mechanical design. J. Mech. Des. 1988, 112, 223–229. [Google Scholar] [CrossRef]
- Wang, G.G.; Hossein Gandomi, A.; Hossein Alavi, A. A chaotic particle-swarm krill herd algorithm for global numerical optimization. Kybernetes 2013, 42, 962–978. [Google Scholar] [CrossRef]
- Wang, G.G. Adaptive response surface method using inherited latin hypercube design points. J. Mech. Des. 2003, 125, 210–220. [Google Scholar] [CrossRef]
Duration | Period | Achievement |
---|---|---|
Pre-1940 | Pre-Theoretical | Limited applications without formal presentation. |
1940–1980 | Early | Introduction of heuristics approaches. |
1980–2000 | Method-Centric | Proposal and improvement of metaheuristics algorithms for different applications. |
2000–Present | Framework-Centric | Utilization of metaheuristic frameworks in different fields. |
Future | Scientific or Future | Future development and design of metaheuristics as a matter of science rather than a matter of art. |
No. | Type | D | H | G | Bounds |
---|---|---|---|---|---|
C1 | Non Separable | 10, 30, 50 and 100 | 0 | 1 | −100 ≤ xi ≤ 100 |
C2 | Non Separable | 10, 30, 50 and 100 | 0 | 1 | −100 ≤ xi ≤ 100 |
C3 | Non Separable | 10, 30, 50 and 100 | 1 | 1 | −100 ≤ xi ≤ 100 |
C4 | Separable | 10, 30, 50 and 100 | 0 | 2 | −10 ≤ xi ≤ 10 |
C5 | Non Separable | 10, 30, 50 and 100 | 0 | 2 | −10 ≤ xi ≤ 10 |
C6 | Separable | 10, 30, 50 and 100 | 6 | 0 | −20 ≤ xi ≤ 20 |
C7 | Separable | 10, 30, 50 and 100 | 2 | 0 | −50 ≤ xi ≤ 50 |
C8 | Separable | 10, 30, 50 and 100 | 2 | 0 | −100 ≤ xi ≤ 100 |
C9 | Separable | 10, 30, 50 and 100 | 2 | 0 | −10 ≤ xi ≤ 10 |
C10 | Separable | 10, 30, 50 and 100 | 2 | 0 | −100 ≤ xi ≤ 100 |
No. | Name | D | G | H | Formulation |
---|---|---|---|---|---|
F1 | Speed Reducer | 7 | 11 | 0 | [44] |
F2 | Tension/Compression Spring | 3 | 4 | 0 | [45] |
F3 | Pressure Vessel | 4 | 4 | 0 | [45] |
F4 | Welded Beam | 4 | 7 | 0 | [45] |
F5 | Three-Bar Truss | 2 | 3 | 0 | [46] |
F6 | Multiple Disk Clutch Brake | 5 | 8 | 0 | [47] |
F7 | Planetary Gear Train | 9 | 10 | 1 | [48] |
F8 | Step-Cone Pulley | 5 | 8 | 3 | [49] |
F9 | Hydrostatic Thrust Bearing | 4 | 7 | 0 | [50] |
F10 | Ten-Bar Truss | 10 | 3 | 0 | [51] |
F11 | Rolling Element Bearing | 10 | 9 | 0 | [52] |
F12 | Gear Train | 4 | 1 | 1 | [53] |
F13 | Steel I-Shaped Beam | 4 | 2 | 0 | [46] |
F14 | Piston Lever | 4 | 4 | 0 | [46] |
F15 | Cantilever Beam | 5 | 1 | 0 | [46] |
Reference | Result | Function | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | ||
Zamuda [38] | Best | 0 | 0 | 62700 | 13.573 | 0 | 332.30 | −178.02 | −0.00135 | −0.00498 | −0.00051 |
Median | 0 | 0 | 2.260 × 105 | 13.573 | 0 | 1750.6 | −26.778 | −0.00135 | −0.00498 | −0.00051 | |
c | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 4, 2 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | |
0 | 0 | 0 | 0 | 0 | 3.83 × 10−2 | 0 | 0 | 0 | 0 | ||
Mean | 0 | 0 | 3.259 × 105 | 14.418 | 0 | 808.36 | −34 | 0 | 0 | 0 | |
Worst | 0 | 0 | 1.089 × 106 | 15.919 | 0 | 1819.7 | −7 | 0 | 0 | 0 | |
Std | 0 | 0 | 2.575 × 105 | 1.1495 | 0 | 545.03 | 57 | 0 | 0 | 0 | |
SR | 100 | 100 | 100 | 100 | 100 | 0 | 80 | 100 | 100 | 100 | |
0 | 0 | 0 | 0 | 0 | 3.766 × 10−2 | 3.189 × 10−5 | 0 | 0 | 0 | ||
Polakova [39] | Best | 0 | 0 | 3533.77 | 13.5728 | 0 | 348.977 | −101.211 | −0.00135 | −0.00498 | −0.00051 |
Median | 0 | 0 | 21,144.4 | 13.5853 | 0 | 1368.85 | 12.7815 | −0.00135 | −0.00498 | −0.00051 | |
c | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 4, 2 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | |
0 | 0 | 0 | 0 | 0 | 0.029702 | 0 | 0 | 0 | 0 | ||
Mean | 0 | 0 | 31,548.2 | 13.6147 | 0 | 648.899 | 3.74362 | −0.00135 | −0.00497 | −0.00051 | |
Worst | 0 | 0 | 118,005 | 13.8018 | 0 | 1260.3 | 105.62 | −0.00135 | −0.00485 | −0.00051 | |
Std | 0 | 0 | 37,019.6 | 0.061549 | 0 | 283.706 | 69.5716 | 2.21 × 10−19 | 2.44 × 10−5 | 1.11 × 10−19 | |
SR | 100 | 100 | 92 | 100 | 100 | 0 | 88 | 100 | 100 | 100 | |
0 | 0 | 6.67 × 10−6 | 0 | 0 | 0.032309 | 2.11 × 10−5 | 0 | 0 | 0 | ||
Tvrdík and Poláková [40] | Best | 0 | 0 | 6341.810292 | 15.919244 | 0 | 103.288465 | −148.219878 | −0.001348 | −0.004975 | −0.000510 |
Median | 0 | 0 | 40,103.1993 | 35.818324 | 0 | 307.643490 | −65.209283 | −0.001348 | −0.004975 | −0.000510 | |
c | 0, 0, 0 | 0, 0, 0 | 0, 0, 1 | 0, 0, 0 | 0, 0, 0 | 0, 0, 5 | 0, 0, 2 | 0, 0, 2 | 0, 0, 1 | 0, 0, 1 | |
0 | 0 | 0.000103 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Mean | 0 | 0 | 110,008 | 38.738 | 0.956779 | 549.617 | −48.7352 | −0.001348 | 0.125471 | −0.00051 | |
Worst | 0 | 0 | 548,034.199888 | 55.717399 | 3.986579 | 2058.812018 | 102.366112 | −0.001348 | 3.256178 | −0.000510 | |
Std | 0 | 0 | 1.5587 × 105 | 8.948 × 105 | 1.737 × 10 | 4.866 × 102 | 6.826 × 101 | 6.639 × 10−19 | 6.522 × 10−1 | 0.0000 | |
SR | 100 | 100 | 44 | 100 | 100 | 96 | 68 | 100 | 100 | 100 | |
0 | 0 | 0.00063352 | 0 | 0 | 0.0053656 | 0.00309144 | 1.456 × 10−5 | 4 × 10−6 | 3.96 × 10−6 | ||
Present Study (MGA) | Best | 0 | 0 | 5731.729 | 15.91932 | 0.048494 | 177.1936 | −204.799 | −0.00103 | −0.00497 | −0.00048 |
Median | 0 | 0 | 9655.116 | 18.9044315 | 1.554645 | 189.7318 | −99.5936 | 0.000667 | −0.00497 | −0.00034 | |
c | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 4, 2 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | |
0 | 0 | 0 | 0 | 0 | 0.070346 | 0 | 0 | 0 | 0 | ||
Mean | 0 | 0 | 22,532.64 | 18.57982 | 1.867275 | 245.6745 | −86.6422 | 0.001115 | 0.04604 | −0.0003 | |
Worst | 0 | 0 | 116,693.6 | 27.8597111 | 4.016201 | 1231.20125 | 8.612641 | 0.008756 | 0.57474405 | 8.06 × 10−5 | |
Std | 0 | 0 | 35,636.84 | 4.235729 | 1.393692 | 308.6091 | 68.43618 | 0.002994 | 0.152843 | 0.000167 | |
SR | 100 | 100 | 100 | 100 | 100 | 11 | 100 | 89 | 100 | 100 | |
0 | 0 | 0 | 0 | 0 | 0.059761 | 0 | 1.11 × 10−5 | 0 | 0 |
Reference | Result | Function | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | ||
Zamuda [38] | Best | 0 | 0 | 2.76 × 106 | 13.573 | 0 | 4095.8 | −234.05 | −2.82 × 10−4 | −0.00267 | −0.000103 |
Median | 0 | 0 | 6.58 × 106 | 13.573 | 0 | 4374.9 | −80.772 | −2.70 × 10−4 | −0.00267 | −9.91 × 10−5 | |
c | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 4, 2 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | |
0 | 0 | 0 | 0 | 0 | 2.55 × 10−2 | 0 | 0 | 0 | 0 | ||
Mean | 0 | 0 | 6.70 × 106 | 13.854 | 0 | 5526.4 | −81.088 | −2.63 × 10−4 | −2.67 × 10−3 | −9.78 × 10−5 | |
Worst | 0 | 0 | 1.17 × 107 | 15.919 | 0 | 5018.0 | −36.510 | −2.12 × 10−4 | −2.67 × 10−3 | −8.96 × 10−5 | |
Std | 0 | 0 | 2.25 × 106 | 0.7782 | 0 | 759.06 | 90.929 | 2.04 × 10−5 | 0.00 × 100 | 3.69 × 10−6 | |
SR | 100 | 100 | 100 | 100 | 100 | 0 | 96 | 100 | 100 | 100 | |
0 | 0 | 0 | 0 | 0 | 2.57 × 10−2 | 4.06 × 10−6 | 0 | 0 | 0 | ||
Polakova [39] | Best | 0 | 0 | 39,059.8 | 13.5728 | 0 | 3121.78 | −245.715 | −0.00028 | −0.00267 | −0.0001 |
Median | 0 | 0 | 20,5874 | 13.5728 | 0 | 5802.76 | −134.373 | −0.00028 | −0.00267 | −0.0001 | |
c | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 4, 2 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | |
0 | 0 | 0 | 0 | 0 | 0.012659 | 0 | 0 | 0 | 0 | ||
Mean | 3.87 × 10−30 | 5.26 × 10−30 | 355,118 | 13.5728 | 0 | 4071.08 | −109.428 | −0.00028 | −0.00267 | −0.0001 | |
Worst | 2.08 × 10−29 | 3.34 × 10−29 | 2.18 × 106 | 13.5728 | 0 | 2405.82 | 81.6284 | −0.00028 | −0.00267 | −0.0001 | |
Std | 6.10× 10−30 | 8.39 × 10−30 | 446,751 | 5.44 × 10−15 | 0 | 981.519 | 88.7374 | 0 | 1.33 × 10−18 | 0 | |
SR | 100 | 100 | 100 | 100 | 100 | 0 | 96 | 100 | 100 | 100 | |
0 | 0 | 0 | 0 | 0 | 0.015016 | 8.20 × 10−6 | 0 | 0 | 0 | ||
Tvrdík and Poláková [40] | Best | 0 | 0 | 217,854.405028 | 64.671883 | 0 | 1976.35821 | −330.786337 | −0.000284 | −0.002666 | −0.000103 |
Median | 0 | 0 | 736,404.82 | 113.424634 | 0 | 3827.58828 | −32.589365 | −0.000284 | −0.002666 | −0.000103 | |
c | 0, 0, 0 | 0, 0, 0 | 0, 0, 1 | 0, 0, 0 | 0, 0, 0 | 0, 0, 4 | 0, 0, 2 | 0, 0, 2 | 0, 0, 1 | 0, 0, 1 | |
0 | 0 | 0.001441 | 0 | 0 | 0 | 0.000067 | 0 | 0 | 0 | ||
Mean | 0 | 0 | 1.299 × 106 | 115.734 | 0.797325 | 3745.32 | −24.1162 | −0.000284 | 0.0233628 | −0.000103 | |
Worst | 0 | 0 | 5,082,420.837959 | 159.192594 | 3.986624 | 5065.298248 | 185.582813 | −0.000284 | 0.648053 | −0.000103 | |
Std | 0 | 0 | 1.195 × 106 | 2.201 × 101 | 1.627 × 10 | 8.431 × 102 | 1.154 × 102 | 1.659 × 10−19 | 1.301 × 10−1 | 4.149 × 10−20 | |
SR | 100 | 100 | 32 | 100 | 100 | 100 | 52 | 100 | 96 | 100 | |
0 | 0 | 0.0242756 | 0 | 0 | 1.164 × 10−5 | 0.0035614 | 0 | 1.0709 × 106 | 6.6 × 10−6 | ||
Present Study (MGA) | Best | 0 | 0 | 101,125.9 | 72.90983 | 0 | 1369.466 | −214.361 | 1.311075 | 0.000266 | 0.342705 |
Median | 0 | 0 | 3,769,626.34 | 106.7165 | 0 | 1582.655 | −212.331 | 2.173907 | 0.574744 | 0.627412 | |
c | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 1, 4 | 0, 0, 0 | 2, 0, 0 | 0, 0, 0 | 2, 0, 0 | |
0 | 0 | 0 | 0 | 0 | 0.002259 | 0 | 6.590862 | 0 | 2.124071 | ||
Mean | 0 | 0 | 497,341.7 | 103.0124 | 0 | 1639.729 | −229.997 | 2.013486 | 0.903313 | 0.587699 | |
Worst | 0 | 0 | 1,083,246 | 196.971781 | 0 | 2375.443 | −52.3606 | 3.901132 | 4.706474 | 0.887197 | |
Std | 0 | 0 | 417,284.9 | 22.09312 | 0 | 459.9857 | 106.7847 | 0.979232 | 1.476608 | 0.206912 | |
SR | 100 | 100 | 100 | 100 | 100 | 77 | 100 | 0 | 100 | 0 | |
0 | 0 | 0 | 0 | 0 | 0.010403 | 0 | 3.814903 | 0 | 2.547508 |
Reference | Result | Function | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | ||
Zamuda [38] | Best | 0 | 0 | 7.80 × 106 | 13.573 | 0 | 8775 | −347.6 | 1.40 × 10−4 | 3.25 × 10−5 | −347.6 |
Median | 0 | 0 | 2.65 × 107 | 13.573 | 0 | 10,224 | −134.7 | 2.87 × 10−4 | 8.66 × 10−5 | −134.7 | |
c | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0,1,5 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | |
0 | 0 | 0 | 0 | 0 | 1.38 × 10−2 | 0 | 0 | 0 | 0 | ||
Mean | 1.49 × 10−8 | 0 | 2.65 × 107 | 13.988 | 0 | 8601 | −154.0 | 2.86 × 10−4 | 9.12 × 10−5 | −154.0 | |
Worst | 1.00 × 10−7 | 5.94 × 10−8 | 4.25 × 107 | 16.914 | 0 | 9202 | 39.3 | 4.85 × 10−4 | 2.28 × 10−4 | 39.3 | |
Std | 1.95 × 10−8 | 1.17 × 10−8 | 8.66 × 106 | 0.9868 | 0 | 1217 | 106.3 | 8.44 × 10−5 | 3.91 × 10−5 | 106.3 | |
SR | 100 | 100 | 100 | 100 | 100 | 0 | 100 | 100 | 100 | 100 | |
0 | 0 | 0 | 0 | 0 | 1.52 × 10−2 | 0 | 0 | 0 | 0 | ||
Polakova [39] | Best | 8.68 × 10−30 | 2.50 × 10−29 | 286,730 | 13.5728 | 0 | 6708.83 | −0.00013 | −0.00204 | −4.83 × 10−5 | −0.00013 |
Median | 7.73 × 10−29 | 1.02 × 10−28 | 633,683 | 13.5728 | 1.30 × 10−28 | 8636.68 | −0.00013 | −0.00204 | −4.83 × 10−5 | −0.00013 | |
c | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0,2,4 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | |
0 | 0 | 0 | 0 | 0 | 0.011381 | 0 | 0 | 0 | 0 | ||
Mean | 7.79 × 10−29 | 9.79 × 10−29 | 894521 | 13.5728 | 1.68 × 10−28 | 7514.8 | −0.00013 | −0.00204 | −4.83 × 10−5 | −0.00013 | |
Worst | 1.42 × 10−28 | 1.78 × 10−28 | 3.87 × 106 | 13.5728 | 6.40 × 10−28 | 6637.22 | −0.00013 | −0.00204 | −4.83 × 10−5 | −0.00013 | |
Std | 3.08 × 10−29 | 4.60 × 10−29 | 740490 | 5.44 × 10−15 | 1.59 × 10−28 | 1417.76 | 2.77 × 10−20 | 1.33 × 10−18 | 0 | 2.77 × 10−20 | |
SR | 100 | 100 | 100 | 100 | 100 | 0 | 100 | 100 | 100 | 100 | |
0 | 0 | 0 | 0 | 0 | 0.011693 | 0 | 0 | 0 | 0 | ||
Tvrdík and Poláková [40] | Best | 0 | 0 | 460,407.836 | 145.263065 | 0 | 3486.644298 | −340.22487 | 0.000601 | −0.002037 | −0.00004 |
Median | 0 | 0 | 4,381,259.215675 | 181.081674 | 0 | 6041.018996 | −85.989214 | 0.000965 | −0.002037 | −0.00004 | |
c | 0, 0, 0 | 0, 0, 0 | 0, 0, 1 | 0, 0, 0 | 0, 0, 0 | 0, 0, 4 | 0, 0, 2 | 0, 0, 0 | 0, 0, 1 | 0, 0, 0 | |
0 | 0 | 0.000050 | 0 | 0 | 0 | 0.000075 | 0 | 0 | 0 | ||
Mean | 0 | 0 | 6.6413 × 106 | 187.37 | 0.31893 | 6364.72 | −68.1059 | 0.0009928 | 0.0810008 | −4.284 × 10−5 | |
Worst | 0 | 0 | 27,234,258.492770 | 244.758532 | 3.986624 | 9005.415965 | 163.958553 | 0.001558 | 1.138593 | −0.00001 | |
Std | 0 | 0 | 5.9790 × 106 | 2.5905 × 101 | 1.1038 × 100 | 1.6322 × 103 | 1.3458 × 102 | 2.4328 × 10−4 | 2.3626 × 10−1 | 6.101 × 10−6 | |
SR | 100 | 100 | 48 | 100 | 100 | 100 | 56 | 100 | 84 | 100 | |
0 | 0 | 0.0694317 | 0 | 0 | 1.02 × 10−5 | 0.00180008 | 3.48 × 10−6 | 1.4708 × 107 | 0 | ||
Present Study (MGA) | Best | 7.73 × 10−6 | 3.40 × 10−7 | 67,5040.5 | 214.0131 | 183.3693 | 2104.094 | −287.24 | 6.111175 | 16.76229 | 11.98384 |
Median | 6.16 × 10−6 | 2.87 × 10−5 | 1686140 | 231.3667 | 264.3097 | 2453.639 | −121.342 | 10.1111743 | 19.39083 | 19.33752 | |
c | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 2, 0, 0 | 1, 0, 0 | 2, 0, 0 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 77.75325 | 1.398507 | 2716.256 | ||
Mean | 2.29 × 10−5 | 9.39 × 10−5 | 3,733,884 | 236.5529 | 295.9803 | 2601.021 | −100.093 | 7.705596 | 18.78359 | 23.86641 | |
Worst | 8.70 × 10−5 | 0.000571 | 65,265,448.5 | 309.4055 | 429.773726 | 4601.16137 | 152.382091 | 10.65774 | 19.76821 | 54.4833554 | |
Std | 3.41 × 10−5 | 0.000167 | 4,614,030 | 32.99758 | 125.1962 | 591.8259 | 105.2148 | 1.261924 | 0.963696 | 11.58393 | |
SR | 100 | 100 | 100 | 100 | 100 | 76 | 100 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | 0 | 0.057435 | 0 | 75.19797 | 1.255203 | 3025.091 |
Reference | Result | Function | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | ||
Zamuda [38] | Best | 2.434 | 1.072 | 9.39 × 107 | 13.573 | 0 | 15,440 | −530.12 | 1.22 × 10−3 | 3.51 × 10−4 | −530.12 |
Median | 6.211 | 2.318 | 2.27 × 108 | 13.573 | 0 | 15,595 | −324.99 | 1.44 × 10−3 | 4.13 × 10−4 | −324.99 | |
c | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 4, 2 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | |
0 | 0 | 0 | 0 | 0 | 1.18 × 10−2 | 0 | 0 | 0 | 0 | ||
Mean | 7 | 3 | 2.25 × 108 | 14.028 | 0 | 15,533 | −335.49 | 1.48 × 10−3 | 4.25 × 10−4 | −335.49 | |
Worst | 16.527 | 6.765 | 4.21 × 108 | 16.914 | 0 | 14,830 | −110.18 | 1.78 × 10−3 | 5.53 × 10−4 | −110.18 | |
Std | 3.190 | 1.397 | 9.21 × 107 | 1.083 | 0 | 1604 | 122.40 | 1.77 × 10−4 | 4.92 × 10−5 | 122.40 | |
SR | 100 | 100 | 100 | 100 | 100 | 0 | 100 | 100 | 100 | 100 | |
0 | 0 | 0 | 0 | 0 | 1.19 × 10−2 | 0 | 0 | 0 | 0 | ||
Polakova [39] | Best | 1.30 × 10−26 | 1.31 × 10−26 | 1.34 × 106 | 13.5728 | 4.34 × 10−7 | 17,164.3 | −4.83 × 10−5 | −0.00143 | −1.72 × 10−5 | −4.83 × 10−5 |
Median | 4.50 × 10−26 | 4.59 × 10−26 | 2.47 × 106 | 13.5728 | 4.90 × 10−6 | 15,803.2 | −4.82 × 10−5 | −0.00143 | −1.72 × 10−5 | −4.82 × 10−5 | |
c | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0,1,5 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | |
0 | 0 | 0 | 0 | 0 | 0.009677 | 0 | 0 | 0 | 0 | ||
Mean | 1.03 × 10−25 | 8.47 × 10−26 | 2.73 × 106 | 13.7132 | 3.28 × 10−5 | 15,562.2 | −4.81 × 10−5 | −0.00143 | −1.72 × 10−5 | −4.81 × 10−5 | |
Worst | 6.51 × 10−25 | 6.38 × 10−25 | 4.79 × 106 | 15.5748 | 0.000416 | 16,718.9 | −4.77 × 10−5 | −0.00143 | −1.71 × 10−5 | −4.77 × 10−5 | |
Std | 1.68 × 10−25 | 1.25 × 10−25 | 965,593 | 0.462703 | 9.25 × 10−5 | 1595.41 | 1.33 × 10−7 | 2.21 × 10−19 | 1.29 × 10−8 | 1.33 × 10−7 | |
SR | 100 | 100 | 100 | 100 | 100 | 0 | 100 | 100 | 100 | 100 | |
0 | 0 | 0 | 0 | 0 | 0.009805 | 0 | 0 | 0 | 0 | ||
Tvrdík and Poláková [40] | Best | 0.080255 | 0.072938 | 1,684,503.31 | 329.329439 | 0 | 10,950.2096 | −481.32898 | 0.013288 | 0 | 0.000365 |
Median | 0.432564 | 0.184568 | 9,938,948.89 | 408.925707 | 0.011586 | 15,506.5581 | −278.65043 | 0.027209 | 0.000217 | 0.000501 | |
c | 0, 0, 0 | 0, 0, 0 | 0, 0, 1 | 0, 0, 0 | 0, 0, 0 | 0, 0, 2 | 0, 0, 2 | 0, 0, 2 | 0, 0, 0 | 0, 0, 0 | |
0 | 0 | 0.002547 | 0 | 0 | 0 | 0.000198 | 0.000832 | 0 | 0 | ||
Mean | 0.977746 | 0.366104 | 1.51413 × 107 | 413.582 | 0.818836 | 15,222.9 | −193.458 | 0.0415975 | 0.522499 | 0.00051308 | |
Worst | 11.315168 | 3.620979 | 60,598,481.7 | 469.617973 | 4.066555 | 18,535.3302 | 376.526002 | 0.087460 | 5.348516 | 0.000684 | |
Std | 2.1781 × 10 | 6.9971 × 10−1 | 1.3449 × 107 | 3.6721 × 101 | 1.512 × 10 | 1.7824 × 103 | 2.0127 × 102 | 2.4668 × 10−2 | 1.1223 × 10 | 7.3482 × 10−5 | |
SR | 100 | 100 | 16 | 100 | 100 | 100 | 40 | 0 | 96 | 100 | |
0 | 0 | 0.0242065 | 0 | 0 | 5.6 × 10−6 | 0.00436664 | 0.0012406 | 1.564 × 10−5 | 1.268 × 10−5 | ||
Present Study (MGA) | Best | 79.17725 | 82.46377 | 1,939,226 | 1035.546 | 149,057.2 | 4524.706 | −24.7894 | 11.02866 | 16.5913 | 47.71097 |
Median | 226.9738 | 216.2455 | 5,229,008 | 1115.146 | 162,884.7 | 4982.677 | 68.55985 | 11.59449 | 18.9102539 | 53.43286 | |
c | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 4 | 2, 0, 0 | 2, 0, 0 | 1, 0, 0 | 2, 0, 0 | |
0 | 0 | 0 | 0 | 0 | 0.002105 | 1162.713 | 1530.176 | 698.7951 | 102,643 | ||
Mean | 242.9825 | 256.1113 | 7,766,430 | 1107.661 | 167,178.1 | 5646.481 | 88.40124 | 11.62023 | 18.23359 | 53.97361 | |
Worst | 400.539192 | 445.345609 | 21,948,580 | 1186.64915 | 221,456 | 7418.342 | 402.6898 | 13.20224 | 19.2152074 | 60.58393 | |
Std | 125.7168 | 167.4498 | 6,395,089 | 61.20722 | 26,483.47 | 1233.678 | 177.8638 | 1.155593 | 0.934306 | 4.846915 | |
SR | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | 0 | 0.305535 | 1485.207 | 1221.619 | 773.7698 | 105,498 |
Approaches | Best | Mean | Worst | Std-Dev |
---|---|---|---|---|
Montes et al. [54] | 3025.005 | 3088.7778 | 3078.5918 | NA |
Akhtar et al. [55] | 3008.08 | 3012.1200 | 3028.2800 | NA |
Gandomi et al. [46] | 3000.9810 | 3007.1997 | 3.0090 | 4.9634 |
Zhang et al. [56] | 2994.471066 | 2994.471066 | 2994.471066 | 3.58 × 10−12 |
Present Study (MGA) | 2994.438869 | 2994.47065 | 2996.558237 | 4.72 × 10−16 |
Approaches | Best | Mean | Worst | Std-Dev |
---|---|---|---|---|
Coello [57] | 0.01270478 | 0.01276920 | 0.01282208 | 3.9390 × 10−5 |
Ray and Liew [58] | 0.0126692 | 0.0129227 | 0.0167172 | 5.1985 × 10−5 |
Han et al. [59] | 0.01266534 | 0.01268592 | 0.01272968 | 2.1672 × 10−5 |
Gandomi et al. [45] | 0.01266522 | 0.01350052 | 0.0168954 | 0.001420272 |
Present Study (MGA) | 0.01266523 | 0.01266558 | 0.01266723 | 5.65 × 10−7 |
Approaches | Best | Mean | Worst | Std-Dev |
---|---|---|---|---|
He and Wang [60] | 6061.0777 | 6147.1332 | 6363.8041 | 86.4500 |
Coelho [61] | 6059.7208 | 6440.3786 | 7544.4925 | 448.4711 |
Mezura-Montes and Coello [62] | 6059.7456 | 6850.004948 | 7332.879883 | 426 |
Coello and Montes [63] | 6059.9463 | 6177.2532668 | 6469.32201 | 130.9 |
Present Study (MGA) | 6059.714350 | 6059.694923 | 6273.765974 | 0.028912058 |
Approaches | Best | Mean | Worst | Std-Dev |
---|---|---|---|---|
Huang et al. [64] | 1.733461 | 1.768158 | 1.824105 | 0.022194 |
Eskandar et al. [65] | 1.724856 | 1.726427 | 1.744697 | 4.29 × 10−3 |
Guedria [66] | 1.724852 | 1.724853 | 1.724862 | 2.02 × 10−6 |
Han et al. [59] | 1.6956397 | 1.7160908 | 1.7530472 | 1.83 × 10−2 |
Present Study (MGA) | 1.672966512 | 1.678791422 | 1.687172363 | 4.4147 × 10−3 |
Approaches | Best | Mean | Worst | Std-Dev |
---|---|---|---|---|
Gandomi et al. [46] | 263.97156 | 264.0669 | NA | 0.00009 |
Ray and Liew [58] | 263.8958466 | 263.9033 | 263.9033 | 1.26 × 10−2 |
Zhang et al. [56] | 263.8958434 | 263.8958436 | 263.8958498 | 9.72 × 10−7 |
Grag [67] | 263.8958433 | 263.8958437 | 263.8958459 | 5.34 × 10−7 |
Present Study (MGA) | 263.8958433 | 263.8958436 | 263.8959632 | 2.05 × 10−14 |
Approaches | Best | Mean | Worst | Std-Dev |
---|---|---|---|---|
Eskandar et al. [65] | 0.313656 | 0.313656 | 0.313656 | 1.69 × 10−16 |
Rao et al. [50] | 0.313657 | 0.3271662 | 0.392071 | 0.67 |
Ferreira et al. [47] | 0.313656 | 0.313656 | 0.313656 | 1.13 × 10−16 |
Present Study (MGA) | 0.235242467 | 0.235244323 | 0.235252239 | 2.42 × 10−6 |
Approaches | Best | Mean | Worst | Std-Dev |
---|---|---|---|---|
Rao and Savsani [69] (PSO) | 0.53 | 0.5361934 | NA | NA |
Rao and Savsani [69] (ABC) | 0.525769 | 0.5272922 | NA | NA |
Zhang et al. [70] | 0.525589 | 0.525589 | NA | NA |
Savsani and Savsani [48] | 0.525588 | 0.53063 | NA | NA |
Present Study (MGA) | 0.52325 | 0.5300526 | 0.5370588 | 0.0082564 |
Approaches | Best | Mean | Worst | Std-Dev |
---|---|---|---|---|
TLBO [50] | 16.63451 | 24.0113577 | 74.022951 | 0.34 |
WOA [44] | 16.6345213 | 20.93829477 | 24.8488259 | 3.3498 |
WCA [44] | 16.63450849 | 17.53037682 | 18.83302997 | 0.9229 |
MBA [44] | 16.6345078 | 16.702535 | 18.3237145 | 0.2627 |
Present Study (MGA) | 16.18595608 | 16.35528922 | 16.98647762 | 0.14824361 |
Siddall [71] | Deb and Goyal [72] | Coello [73] | Rao et al. [50] | Present Study (MGA) | |
---|---|---|---|---|---|
Best | 2288.2268 | 2161.4215 | 1950.2860 | 1625.44276 | 1623.980938 |
R | 7.155 | 6.778 | 6.271 | 5.9557805026 | 5.963241516 |
R0 | 6.689 | 6.234 | 12.901 | 5.3890130519 | 5.395907989 |
µ | 8.321 × 10−6 | 6.096 × 10−6 | 5.605 × 10−6 | 0.0000053586 | 5.38 × 10−6 |
Q | 9.168 | 3.809 | 2.938 | 2.2696559728 | 2.282242505 |
g1(x) | −11,086.7430 | −8329.7681 | −2126.86734 | −0.0001374735 | −144.9586796 |
g2(x) | −402.4493 | −177.3527 | −68.0396 | −0.0000010103 | −1.194802021 |
g3(x) | −35.057196 | −10.684543 | −3.705191 | −0.0000000210 | −0.372450027 |
g4(x) | −0.001542 | −0.000652 | −0.000559 | −0.0003243625 | −0.00032915 |
g5(x) | −0.466000 | −0.544000 | −0.666000 | −0.5667674507 | −0.567333527 |
g6(x) | −0.000144 | −0.000717 | −0.000805 | −0.0009963614 | −0.000996355 |
g7(x) | −563.644401 | −83.618221 | −849.718683 | −0.0000090762 | −4.144258876 |
Approaches | Best | Mean | Worst | Std-Dev |
---|---|---|---|---|
Şahin et al. [74] | 1625.46467 | 1627.744198 | 1650.698747 | 3.815546973 |
Rao and Waghmare [75] | 1625.44271 | 1796.89367 | 2104.3776 | 0.21 |
Rao et al. [50] | 1625.44276 | 1797.70798 | 2096.8012 | 0.19 |
Present Study (MGA) | 1621.246175 | 1739.156729 | 1992.961305 | 0.11 |
Rankings | Algorithms | Mean of Ranks |
---|---|---|
1 | Present Study (MGA) | 1.5 |
2 | Şahin et al. [74] | 2.5 |
3 | Rao and Waghmare [75] | 3 |
4 | Rao et al. [50] | 3 |
Chi-sq. | 3.6000 | |
Prob > Chi-sq. | 0.3080 |
Yu et al. [51] | Lamberti and Pappalettere [76] | Baghlani and Makiabadi [77] | Kaveh and Zolghadr [78] | Present Study (MGA) | |
---|---|---|---|---|---|
Best | 544.7 | 534.57 | 530.76 | 529.25 | 529.1204229 |
A1 | 36.380 | 35.148 | 35.494 | 39.569 | 36.76416 |
A2 | 12.941 | 13.169 | 14.777 | 16.740 | 16.29897 |
A3 | 35.764 | 37.69 | 36.203 | 34.361 | 37.94378 |
A4 | 18.314 | 19.556 | 15.387 | 12.994 | 16.51087 |
A5 | 3.002 | 1.087 | 0.6451 | 0.645 | 0.659 |
A6 | 5.433 | 4.844 | 4.5896 | 4.802 | 4.57489 |
A7 | 20.989 | 18.314 | 23.211 | 26.182 | 22.94023 |
A8 | 24.14 | 27.415 | 24.561 | 21.260 | 22.63185 |
A9 | 9.753 | 12.562 | 12.482 | 11.766 | 10.87892 |
A10 | 18.102 | 12.106 | 12.324 | 11.392 | 11.53643 |
Approaches | Best | Mean | Worst | Std-Dev |
---|---|---|---|---|
Present Study (MGA) | 529.1204229 | 534.6843574 | 548.0179132 | 26.33651675 |
TLBO [50] | Present Study (MGA) * | |
---|---|---|
Best | 81,859.74 | 83,912.87983 |
Dm | 21.42559 | 125.0002787 |
Db | 125.7191 | 21.87451192 |
Z | 11 | 10.77706583 |
fi | 0.515 | 0.515000822 |
f0 | 0.515 | 0.515002993 |
KDmin | 0.424266 | 0.405908353 |
KDmax | 0.633948 | 0.65558802 |
ε | 0.3 | 0.300004155 |
e | 0.068858 | 0.077544926 |
ζ | 0.799498 | 0.6 |
Approaches | Best | Mean | Worst | Std-Dev |
---|---|---|---|---|
TLBO [50] | 81,859.74 | 81,438.987 | 80,807.8551 | 0.66 |
Present Study (MGA) | 83,912.87983 | 83,892.25647 | 83,711.21317 | 23.65841 |
Approaches | Best | Mean | Worst | Std-Dev |
---|---|---|---|---|
Gandomi et al. [46] | 2.7009 × 10−12 | 1.9841 × 10−9 | 2.3576 × 10−9 | 3.5546 × 10−9 |
Loh and Papalambros [79] | 2.7 × 10−12 | 2.7 × 10−12 | 2.7 × 10−12 | 2.2122 × 10−28 |
Wang et al. [82] (CPKH) | 2.22 × 10−16 | 2.22× 10−16 | 8.5 × 10−9 | 7.96 × 10−22 |
Wang et al. [82] (ABC) | 2.92 × 10−15 | 3.18 × 10−15 | 8.5 × 10−9 | 9.81 × 10−10 |
Present Study (MGA) | 1.06 × 10−19 | 7.69 × 10−14 | 7.62 × 10−13 | 1.78 × 10−13 |
ARSM [83] | I-ARSM [83] | MATLAB [83] | CS [46] | Present Study (MGA) | |
---|---|---|---|---|---|
Best | 0.0157 | 0.131 | 0.0131 | 0.0130747 | 0.013074119 |
h | 80 | 79.99 | 80 | 80 | 79.9999992 |
b | 37.05 | 48.42 | 50 | 50 | 49.9999985 |
tw | 1.71 | 0.9 | 0.9 | 0.9 | 0.9 |
tf | 2.31 | 2.4 | 2.32 | 2.3216715 | 2.321792333 |
Approaches | Best | Mean | Worst | Std-Dev |
---|---|---|---|---|
CS [46] | 0.0130747 | 0.0132165 | 0.01353646 | 0.0001345 |
Present Study (MGA) | 0.013074119 | 0.013074141 | 0.013074291 | 3.86 × 10−8 |
Approaches | Best | Mean | Worst | Std-Dev |
---|---|---|---|---|
HPSO [46] | 162 | 187 | 197 | 13.4 |
GA [46] | 161 | 185 | 216 | 18.2 |
DE [46] | 159 | 187 | 199 | 14.2 |
CSA [46] | 8.4271 | 40.2319 | 168.5920 | 59.0552 |
Present Study (MGA) | 8.413406652 | 32.4688925 | 167.4732134 | 29.96370439 |
MMA [46] | GCA-I [46] | GCA-II [46] | CSA [46] | Present Study (MGA) | |
---|---|---|---|---|---|
Best | 1.34 | 1.34 | 1.34 | 1.33999 | 1.339975661 |
x1 | 6.01 | 6.01 | 6.01 | 6.0089 | 6.011660964 |
x2 | 5.3 | 5.3 | 5.3 | 5.3049 | 5.315676194 |
x3 | 4.49 | 4.49 | 4.49 | 4.5023 | 4.510681877 |
x4 | 3.49 | 3.49 | 3.49 | 3.5077 | 3.485698713 |
x5 | 2.15 | 2.15 | 2.15 | 2.1504 | 2.150251174 |
Approaches | Best | Mean | Worst | Std-Dev |
---|---|---|---|---|
Present Study (MGA) | 1.339975661 | 1.340052681 | 1.340201166 | 6.99 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talatahari, S.; Azizi, M.; Gandomi, A.H. Material Generation Algorithm: A Novel Metaheuristic Algorithm for Optimization of Engineering Problems. Processes 2021, 9, 859. https://doi.org/10.3390/pr9050859
Talatahari S, Azizi M, Gandomi AH. Material Generation Algorithm: A Novel Metaheuristic Algorithm for Optimization of Engineering Problems. Processes. 2021; 9(5):859. https://doi.org/10.3390/pr9050859
Chicago/Turabian StyleTalatahari, Siamak, Mahdi Azizi, and Amir H. Gandomi. 2021. "Material Generation Algorithm: A Novel Metaheuristic Algorithm for Optimization of Engineering Problems" Processes 9, no. 5: 859. https://doi.org/10.3390/pr9050859
APA StyleTalatahari, S., Azizi, M., & Gandomi, A. H. (2021). Material Generation Algorithm: A Novel Metaheuristic Algorithm for Optimization of Engineering Problems. Processes, 9(5), 859. https://doi.org/10.3390/pr9050859