Propylene Glycol Improves Stability of the Anti-Inflammatory Compounds in Scutellaria baicalensis Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Reagents and Media
2.2. Preparation of the S. baicalensis Extract (SBE) and Storage Conditions
2.3. Characterization of the Bioactive Compounds from S. baicalensis by High Performance Liquid Chromatography (HPLC)
2.4. Antibacterial Activity
2.5. Antioxidant Activity by the 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) Radical Scavenging Method
2.6. Cell Culture
2.7. Intracellular Reactive Oxygen Species (ROS) Assay
2.8. IL-1β Secretion
2.9. Phototoxicity Potential
2.10. Statistical Analysis
3. Results and Discussion
3.1. Comparative Stabilities of Saicalin, Wogonoside, Baicalein and Wogonin after SBE Storage in 20% PG and Water
3.2. Effects of SBE Storage in 20% PG and Water on the Antibacterial Activities against P. acnes and S. aureus
3.3. Effects of SBE Storage in 20% PG and Water on the Antioxidant Activity
3.4. Effects of SBE Storage in 20% PG and Water on Anti-Inflammatory Activity in Human Keratinocytes
3.5. Effects of SBE Storage in 20% PG and Water on the Phototoxicity Potential with Human Keratinocytes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, J.L.; Lu, F.L.; Liu, Y.C.; Lo, C.F. Identification of Scutellaria Baicalensis in Traditional Chinese Medicine Preparations by LC/MS/MS Fingerprinting Method. J. Food Drug Anal. 2012, 20, 887–899. [Google Scholar]
- Gao, Z.; Huang, K.; Xu, H. Protective effects of flavonoids in the roots of Scutellaria baicalensis Georgi against hydrogen peroxide-induced oxidative stress in HS-SY5Y cells. Pharmacol. Res. 2001, 43, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Min, W.; Liu, X.; Qian, Q.; Lin, B.; Wu, D.; Wang, M.; Ahmad, I.; Yusuf, N.; Luo, D. The effects of baicalin against UVA-induced photoaging in skin fibroblasts. Am. J. Chin. Med. 2014, 42, 709–727. [Google Scholar] [CrossRef]
- Kim, B.; Kim, J.E.; Lee, S.M.; Kim, H.S. Effect of Scutellaria baicalensis extract on skin barrier function via peroxisome proliferator-activated receptor-α. Korean Korean J. Chem. Eng. 2014, 31, 104–108. [Google Scholar] [CrossRef]
- Gabrielska, J.; Oszmiańsk, J.; Żyłka, R.; Komorowska, M. Antioxidant activity of flavones from Scutellaria baicalensis in lecithin liposomes. Z. Naturforsch. C. 1997, 52, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.S.; Kim, M.H.; Gwak, N.G.; Im, Y.S.; Lee, K.Y.; Sohn, Y.; Choi, H.; Yang, W.M. Antiallergic effects of Scutellaria baicalensis on inflammation in vivo and in vitro. J. Ethnopharmacol. 2012, 141, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.J.; Huang, W.C.; Hsieh, M.C.; Sung, P.J.; Kuo, Y.H.; Wu, W.H. Flavones isolated from Scutellariae radix suppress propionibacterium acnes-induced cytokine production in vitro and in vivo. Molecules 2016, 21, 15. [Google Scholar] [CrossRef] [Green Version]
- Ni, H.; Wu, Z.; Muhammad, I.; Lu, Z.; Li, J. Optimization of baicalin water extraction process from Scutellaria baicalensis (a traditional Chinese medicine) by using orthogonal test and HPLC. Rev. Bras. Farm. Farmacogn. 2018, 28, 151–155. [Google Scholar] [CrossRef]
- Choi, W.; Kwon, H.S.; Lee, H.Y. Enhancement of anti-skin inflammatory activities of Scutellaria baicalensis using an alkaline reduced water extraction process. Food Sci. Biotechnol. 2014, 23, 1859–1866. [Google Scholar] [CrossRef]
- World Health Organization. Stability testing of active pharmaceutical ingredients and finished pharmaceutical products. WHO Tech. Rep. Ser. 2009, 953, 87–123. [Google Scholar]
- Xing, J.; Chen, X.; Zhong, D. Stability of baicalin in biological fluids in vitro. J. Pharmaceut. Biomed. 2005, 39, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Tang, X.; He, Z.G.; Li, H.Z. Stability of baicalin aqueous solution by validated RP-HPLC. J. Chin. Pharm. 2004, 13, 134–137. [Google Scholar]
- Feng, Z.; Zhou, J.; Shang, X.; Kuang, G.; Han, J.; Lu, L.; Zhang, L. Comparative research on stability of baicalin and baicalein administrated in monomer and total flavonoid fraction form of Radix scutellariae in biological fluids in vitro. Pharm. Biol. 2017, 55, 1177–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moldovan, B.; David, L.; Chişbora, C.; Cimpoiu, C. Degradation kinetics of anthocyanins from European cranberrybush (Viburnum opulus L.) fruit extracts. Effects of temperature, pH and storage solvent. Molecules 2012, 17, 11655–11666. [Google Scholar] [CrossRef] [PubMed]
- Propylene Glycol and Esters. Available online: https://www.ema.europa.eu/en/propylene-glycol-esters (accessed on 13 May 2021).
- Okawa, M.; Kinjo, J.; Nohara, T.; Ono, M. DPPH (1, 1-diphenyl-2-picrylhydrazyl) radical scavenging activity of flavonoids obtained from some medicinal plants. Biol. Pharm. Bull. 2001, 24, 1202–1205. [Google Scholar] [CrossRef] [Green Version]
- Sittisart, P.; Chitsomboon, B. Intracellular ROS scavenging activity and downregulation of inflammatory mediators in RAW264. 7 macrophage by fresh leaf extracts of Pseuderanthemum palatiferum. Evid. Based Complement. Altern. Med. 2014, 2014, 309095. [Google Scholar] [CrossRef]
- Amaral, L.F.; Moriel, P.; Foglio, M.A.; Mazzola, P.G. Evaluation of the cytotoxicity and phototoxicity of Caryocar brasiliense supercritical carbon dioxide extract. Bmc Complementary Altern. Med. 2014, 14, 450. [Google Scholar] [CrossRef] [Green Version]
- Anwer, M.K.; Al-Shdefat, R.; Jamil, S.; Alam, P.; Abdel-Kader, M.S.; Shakeel, F. Solubility of bioactive compound hesperidin in six pure solvents at (298.15 to 333.15) K. J. Chem. Eng. Data. 2014, 59, 2065–2069. [Google Scholar] [CrossRef]
- Rhys, N.H.; Gillams, R.J.; Collins, L.E.; Callear, S.K.; Lawrence, M.J.; McLain, S.E. On the structure of an aqueous propylene glycol solution. J. Chem. Phys. 2016, 145, 224504. [Google Scholar] [CrossRef]
- Allen, J.L. Quality Control: Water activity considerations for beyond-use dates. Int. J. Pharm. Compd. 2018, 22, 288–293. [Google Scholar]
- Koreck, A.; Pivarcsi, A.; Dobozy, A.; Kemeny, L. The role of innate immunity in the pathogenesis of acne. Dermatology 2003, 206, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Degitz, K.; Ochsendorf, F. Acne. J. Dtsch. Dermatol. Ges. 2017, 15, 709–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Rensburg, J.J.; Lin, H.; Gao, X.; Toh, E.; Fortney, K.R.; Ellinger, S.; Zwickl, B.; Janowicz, D.M.; Katz, B.P.; Nelson, D.E. The human skin microbiome associates with the outcome of and is influenced by bacterial infection. MBio 2015, 6, e01315-15. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Joerger, R.; Wu, C. Study of the chemical composition and antimicrobial activities of ethanolic extracts from roots of Scutellaria baicalensis Georgi. J. Agric. Food Chem. 2011, 59, 10934–10942. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Meng, L.; Chen, J.; Jin, H.; Jiang, L. In vitro activity of five flavones from Scutellaria baicalensisin combination with Cefazolin against methicillin resistant Staphylococcus aureus (MRSA). Med. Chem. Res. 2016, 25, 2214–2219. [Google Scholar] [CrossRef]
- Temple, N. Antioxidants and disease: More questions than answers. Nutr. Res. 2000, 20, 449–459. [Google Scholar] [CrossRef]
- Ju, M.J.; Do, J.R.; Kwon, J.H.; Kim, H.K. Physiological activities of mistletoe extracts from Viscum album L. J. Korean Soc. Food Sci. Nutr. 2009, 38, 529–534. [Google Scholar] [CrossRef]
- Woźniak, D.; Dryś, A.; Matkowski, A. Antiradical and antioxidant activity of flavones from Scutellariae baicalensis radix. Nat. Prod. Res. 2015, 29, 1567–1570. [Google Scholar] [CrossRef]
- Rox, J.M.; Reinartz, J.; Kramer, M.D. Interleukin-1β upregulates tissue-type plasminogen activator in a keratinocyte cell line (HaCaT). Arch. Dermatol. Res. 1996, 288, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Ponec, M.; Haverkort, M.; Soei, Y.L.; Kempenaar, J.; Bodde, H. Use of human keratinocyte and fibroblast cultures for toxicity studies of topically applied compounds. J. Pharm. Sci. 1990, 79, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Hoh, A.; Maier, K. Comparative Cytotoxicity Test with Human Keratinocytes, HaCaT Cells, and Skin Fibroblasts to Investigate Skin-Irritating Substances. In Cell and Tissue Culture Models in Dermatological Research; Bernd, A., Bereiter-Hahn, J., Hevert, F., Holzmann, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 341–347. [Google Scholar]
- Pandey, K.B.; Rizvi, S.I. Current understanding of dietary polyphenols and their role in health and disease. Curr. Nutr. Food Sci. 2009, 5, 249–263. [Google Scholar] [CrossRef]
- Xiao, L.; Takada, H.; Maeda, K.; Haramoto, M.; Miwa, N. Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes. Biomed. Pharmacother. 2005, 59, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.S.; Lim, H.; Park, H.; Kim, H.P. Effects of wogonin, a plant flavone from Scutellaria radix, on skin inflammation: In vivo regulation of inflammation-associated gene expression. Biochem. Pharmacol. 2003, 66, 1271–1278. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K.; Tankhaeva, L.M. Phenolic compounds of Scutellaria baicalensis Georgi. Russ. J. Bioorg. Chem. 2010, 36, 816–824. [Google Scholar] [CrossRef]
- Reid, L.; Khammo, N.; Clothier, R.H. An evaluation of the effects of photoactivation of bithionol, amiodarone and chlorpromazine on human keratinocytes in vitro. Altern. Lab. Anim. 2007, 35, 471–485. [Google Scholar] [CrossRef] [PubMed]
SBE (mg/g) | 20% PG (Retained%) | Water (Retained%) | ||||||
---|---|---|---|---|---|---|---|---|
Storage time | 0 month | 1 month | 1.5 months | 2 months | 1 month | 1.5 months | 2 months | |
Baicalin | 270.05 ± 2.71 | 100.00 | 98.25 ± 2.16a | 98.89 ± 4.55a | 98.21 ± 1.98a | 99.20 ± 3.79a | 97.07 ± 2.95a | 92.41 ± 1.84b |
Wogonoside | 57.50 ± 4.32 | 100.00a | 97.61 ± 5.93a | 96.15 ± 6.39a | 80.85 ± 3.11b | 83.84 ± 2.10b | 80.94 ± 3.66b | 72.33 ± 2.13c |
Baicalein | 19.24 ± 1.01 | 100.00a | 98.19 ± 2.14a | 92.23 ± 6.87b | 84.28 ± 1.80c | 52.05 ± 3.89d | 47.18 ± 2.81d | 44.43 ± 8.09d |
Wogonin | 8.61 ± 0.89 | 100.00a | 99.89 ± 7.67a | 98.10 ± 1.70a | 83.82 ± 2.21c | 98.93 ± 1.90a | 92.76 ± 5.93b | 87.52 ± 2.05c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kao, T.-T.; Wang, M.-C.; Chen, Y.-H.; Chung, Y.-T.; Hwang, P.-A. Propylene Glycol Improves Stability of the Anti-Inflammatory Compounds in Scutellaria baicalensis Extract. Processes 2021, 9, 894. https://doi.org/10.3390/pr9050894
Kao T-T, Wang M-C, Chen Y-H, Chung Y-T, Hwang P-A. Propylene Glycol Improves Stability of the Anti-Inflammatory Compounds in Scutellaria baicalensis Extract. Processes. 2021; 9(5):894. https://doi.org/10.3390/pr9050894
Chicago/Turabian StyleKao, Tseng-Ting, Ming-Chao Wang, Yi-Hsuan Chen, Yu-Tung Chung, and Pai-An Hwang. 2021. "Propylene Glycol Improves Stability of the Anti-Inflammatory Compounds in Scutellaria baicalensis Extract" Processes 9, no. 5: 894. https://doi.org/10.3390/pr9050894
APA StyleKao, T. -T., Wang, M. -C., Chen, Y. -H., Chung, Y. -T., & Hwang, P. -A. (2021). Propylene Glycol Improves Stability of the Anti-Inflammatory Compounds in Scutellaria baicalensis Extract. Processes, 9(5), 894. https://doi.org/10.3390/pr9050894