Demineralization of Miscanthus Biocrude Obtained from Catalytic Hydrothermal Liquefaction: Conditioning through Acid Washing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physical Separation
2.3. Acid Washing
2.4. Biocrude Characterization
3. Results and Discussion
3.1. Biocrude Filtration
3.2. Demineralization
3.3. Biocrude Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Demirbas, A. Competitive liquid biofuels from biomass. Appl. Energy 2011, 88, 17–28. [Google Scholar] [CrossRef]
- Castello, D.; Pedersen, T.H.; Rosendahl, L.A. Continuous hydrothermal liquefaction of biomass: A critical review. Energies 2018, 11, 3165. [Google Scholar] [CrossRef] [Green Version]
- Biller, P.; Roth, A. Hydrothermal Liquefaction: A Promising Pathway Towards Renewable Jet Fuel BT. In Biokerosene: Status and Prospects; Kaltschmitt, M., Neuling, U., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2018; pp. 607–635. ISBN 978-3-662-53065-8. [Google Scholar]
- Castello, D.; Haider, M.S.; Rosendahl, L.A. Catalytic upgrading of hydrothermal liquefaction biocrudes: Different challenges for different feedstocks. Renew. Energy 2019, 141, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Elliott, D.C.; Hart, T.R.; Schmidt, A.J.; Neuenschwander, G.G.; Rotness, L.J.; Olarte, M.V.; Zacher, A.H.; Albrecht, K.O.; Hallen, R.T.; Holladay, J.E. Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor. Algal Res. 2013, 2, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Gollakota, A.R.K.; Reddy, M.; Subramanyam, M.D.; Kishore, N. A review on the upgradation techniques of pyrolysis oil. Renew. Sustain. Energy Rev. 2016, 58, 1543–1568. [Google Scholar] [CrossRef]
- Anastasakis, K.; Biller, P.; Madsen, R.; Glasius, M.; Johannsen, I. Continuous Hydrothermal Liquefaction of Biomass in a Novel Pilot Plant with Heat Recovery and Hydraulic Oscillation. Energies 2018, 11, 2695. [Google Scholar] [CrossRef] [Green Version]
- Marrone, P.A.; Elliott, D.C.; Billing, J.M.; Hallen, R.T.; Hart, T.R.; Kadota, P.; Moeller, J.C.; Randel, M.A.; Schmidt, A.J. Bench-Scale Evaluation of Hydrothermal Processing Technology for Conversion of Wastewater Solids to Fuels. Water Environ. Res. 2018, 90, 329–342. [Google Scholar] [CrossRef]
- Furimsky, E.; Massoth, F.E. Deactivation of hydroprocessing catalysts. Catal. Today 1999, 52, 381–495. [Google Scholar] [CrossRef]
- Jarvis, J.M.; Sudasinghe, N.M.; Albrecht, K.O.; Schmidt, A.J.; Hallen, R.T.; Anderson, D.B.; Billing, J.M.; Schaub, T.M. Impact of iron porphyrin complexes when hydroprocessing algal HTL biocrude. Fuel 2016, 182, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; Oyler, J.R.; Rotness, L.J.R.; Schmidt, A.J.; Zacher, A.H. System and Process for Efficient Separation of Biocrudes and Water in a Hydrothermal Liquefaction System. U.S. Patent 9,404,063, 8 February 2016. [Google Scholar]
- Snowden-Swan, L.; Zhu, Y.; Jones, S.; Elliott, D.; Schmidt, A.; Hallen, R.; Billing, J.; Hart, T.; Fox, S.; Maupin, G. Hydrothermal Liquefaction and Upgrading of Municipal Wastewater Treatment Plant Sludge: A Preliminary Techno-Economic Analysis; Pacific Northwest National Lab.: Richland, WA, USA, 2016. [Google Scholar]
- Schmidt, A.; Billing, J.; Albrecht, K.; Fos, S.; Hart, T.; Maupin, G.; Snowden-Swan, L.; Hallen, R. Conversion of blended primary and secondary sewage sludge into biofuels by hydrothermal liquefaction and catalytic hydrotreatment. Environ. Eng. Res. 2017, 26, 200382. [Google Scholar]
- Van de Beld, L.; Boerefijn, F.R.; Bos, G.M.; Goudriaan, F.; Naber, J.E.; Zeevalkink, J.A. Process for the Production of Liquid Fuels from Biomass. U.S. Patent 7,262,331, 28 August 2002. [Google Scholar]
- Jensen, C.U. PIUS—Hydrofaction(TM) Platform with Integrated Upgrading Step. Ph.D. Thesis, Aalborg University, Aalborg, Denmark, 2018. [Google Scholar]
- Iversen, S.B.; Jensen, C.U.; Olofsson, G.; Guerrero, J.K.R.; Ironside, A.; Karatzos, S.; Li, L. Separation System for High Pressure Processing System. U.S. Patent Application 16/499,010, 20 February 2020. [Google Scholar]
- Ali, M.F.; Abbas, S. A review of methods for the demetallization of residual fuel oils. Fuel Process. Technol. 2006, 87, 573–584. [Google Scholar] [CrossRef]
- Abbas, S.; Maqsood, Z.T.; Ali, M.F. The Demetallization of Residual Fuel Oil and Petroleum Residue. Pet. Sci. Technol. 2010, 28, 1770–1777. [Google Scholar] [CrossRef]
- Jiang, L.; Hu, S.; Sun, L.S.; Su, S.; Xu, K.; He, L.M.; Xiang, J. Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass. Bioresour. Technol. 2013, 146, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, X.; Yu, Z.; Peng, X.; Lin, Y. Studies on thermal decomposition behaviors of demineralized low-lipid microalgae by TG-FTIR. Thermochim. Acta 2018, 660, 101–109. [Google Scholar] [CrossRef]
- Toor, S.S.; Jasiunas, L.; Xu, C. (Charles); Sintamarean, I.M.; Yu, D.; Nielsen, A.H.; Rosendahl, L.A. Reduction of inorganics from macroalgae Laminaria digitata and spent mushroom compost (SMC) by acid leaching and selective hydrothermal liquefaction. Biomass Convers. Biorefinery 2018, 8, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Stefanidis, S.D.; Heracleous, E.; Patiaka, D.T.; Kalogiannis, K.G.; Michailof, C.M.; Lappas, A.A. Optimization of bio-oil yields by demineralization of low quality biomass. Biomass Bioenergy 2015, 83, 105–115. [Google Scholar] [CrossRef]
- Diaz, L.; Rojas, A.; Fuentes, M.; Robles, I.V.; Jena, U.; Das, K.C. Demineralization of Sargassum spp. Macroalgae Biomass: Selective Hydrothermal Liquefaction Process for Bio-Oil Production. Front. Energy Res. 2015, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.K.; Wang, H.; Rehman, S.; Dong, C.; Hsu, H.-Y.; Lin, C.S.K.; Leu, S.-Y. Sustainability metrics of pretreatment processes in a waste derived lignocellulosic biomass biorefinery. Bioresour. Technol. 2020, 298, 122558. [Google Scholar] [CrossRef]
- Carpio, R.; Kuo, C.-T.; De Leon, R.; Schideman, L.C.; Zhang, Y. Hydrothermal liquefaction of demineralized wastewater algae biomass. Int. J. Smart Grid Clean Energy 2018, 7, 13–23. [Google Scholar] [CrossRef]
- Kim, S.J.; Um, B.H. Effect of thermochemically fractionation before hydrothermal liquefaction of herbaceous biomass on biocrude characteristics. Renew. Energy 2020, 160, 612–622. [Google Scholar] [CrossRef]
- D482-13. Standard Test Method for Ash from Petroleum Products; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- D5291-16. Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Channiwala, S.A.; Parikh, P.P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002, 81, 1051–1063. [Google Scholar] [CrossRef]
- Elochukwu, O.H. An environmentally friendly solvent mix for asphaltene deposit removal. J. Eng. Appl. Sci. 2006, 10, 10555–10565. [Google Scholar]
- Haghighat, P.; Montanez, A.; Aguilera, G.R.; Rodriguez Guerrero, J.K.; Karatzos, S.; Clarke, M.A.; McCaffrey, W. Hydrotreating of HydrofactionTM biocrude in the presence of presulfided commercial catalysts. Sustain. Energy Fuels 2019, 3, 744–759. [Google Scholar] [CrossRef]
Sample Name | Washing Agent | Concentration (M) |
---|---|---|
M-Raw | - | - |
M-Sep | - | - |
M1-W | Water | 0.1 |
M2-CA | Citric acid | 0.1 |
M3-AA | Acetic acid | 0.1 |
M4-MA | Maleic acid | 0.1 |
M5-PA | Phosphoric acid | 0.1 |
M6-HA | Hydrochloric acid | 0.1 |
M7-SA | Sulfuric acid | 0.1 |
Raw | Acetone | MEK | EtOH | |
---|---|---|---|---|
Filtered solids (%) | - | 4.4 | 4.2 | 8.5 |
Ash content (%) | 2.3 | 0.47 | 0.39 | 0.80 |
Sample | S | Ca | Cr | Cu | Fe | K | Mg | Mn | P | Zn | Ash |
---|---|---|---|---|---|---|---|---|---|---|---|
(µg/g) | |||||||||||
M-Raw | 791 | 3821 | <30 | <30 | 292 | 6059 | 908 | 86.5 | 1217 | 28.8 | 23,445 |
M-Sep | 830 | 38.9 | <30 | <30 | 245 | 4221 | 47.6 | <3 | n.d. | 9.7 | 4589 |
M1-W | 862 | 40 | <30 | <30 | 277 | <500 | 12.3 | <3 | 9.7 | 10.4 | 1726 |
M2-CA | 916 | 23.9 | <30 | <30 | 279 | n.d. | 3.2 | n.d. | n.d. | 6.9 | 962 |
M3-AA | 864 | <15 | <30 | <30 | 281 | <500 | 4.1 | <3 | n.d. | 8.5 | 1296 |
M4-MA | 867 | <15 | <30 | <30 | 239 | n.d. | 1.8 | n.d. | 10.1 | 6.1 | 991 |
M5-PA | 875 | 27.3 | <30 | <30 | 236 | <500 | 5.9 | <3 | 593 | 10.9 | 1450 |
M6-HA | 857 | <15 | <30 | <30 | 61.9 | n.d. | 1.6 | n.d. | n.d. | 5.1 | 462 |
M7-SA | 3300 | <15 | <30 | <30 | <15 | n.d. | 2.1 | n.d. | n.d. | 8.2 | 337 |
Sample | Elemental Composition (%) | H/C (-) | HHV (MJ kg−1) | TOC (%) | TN (%) | |||
---|---|---|---|---|---|---|---|---|
C | H | N | O | |||||
M-Raw | 74.9 ± 1.1 | 6.8 ± 0.2 | 0.96 ± 0.03 | 17.3 ± 1.1 | 1.09 | 32.4 | - | - |
M-Sep | 78.1 ± 1.4 | 7.8 ± 0.1 | 1.09 ± 0.01 | 13.6 ± 1.4 | 1.19 | 35.1 | - | - |
M1-W | 79.6 ± 0.7 | 7.6 ± 0.1 | 1.74 ± 0.02 | 11.1 ± 0.7 | 1.15 | 35.5 | 0.9 | 0.025 |
M2-CA | 78.9 ± 0.9 | 7.4 ± 0.3 | 1.54 ± 0.46 | 12.2 ± 1.0 | 1.12 | 34.9 | 1.7 | 0.051 |
M3-AA | 79.1 ± 2.2 | 7.7 ± 0.2 | 1.88 ± 0.25 | 11.4 ± 2.2 | 1.16 | 35.4 | 1.0 | 0.023 |
M4-MA | 79.9 ± 1.1 | 7.5 ± 0.2 | 2.31 ± 0.04 | 10.3 ± 1.1 | 1.12 | 35.6 | 0.6 | 0.017 |
M5-PA | 77.8 ± 1.3 | 7.7 ± 0.2 | 2.09 ± 0.25 | 12.4 ± 1.3 | 1.18 | 34.9 | 0.9 | 0.059 |
M6-HA | 77.3 ± 0.6 | 7.6 ± 0.2 | 1.64 ± 0.36 | 13.5 ± 0.7 | 1.17 | 34.5 | 1.1 | 0.051 |
M7-SA | 78.4 ± 0.9 | 7.6 ± 0.2 | 1.53 ± 0.02 | 12.5 ± 1.0 | 1.16 | 35.0 | 1.0 | 0.058 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haider, M.S.; Isik, M.A.; Castello, D.; Pedersen, T.H.; Rosendahl, L.A. Demineralization of Miscanthus Biocrude Obtained from Catalytic Hydrothermal Liquefaction: Conditioning through Acid Washing. Processes 2021, 9, 1035. https://doi.org/10.3390/pr9061035
Haider MS, Isik MA, Castello D, Pedersen TH, Rosendahl LA. Demineralization of Miscanthus Biocrude Obtained from Catalytic Hydrothermal Liquefaction: Conditioning through Acid Washing. Processes. 2021; 9(6):1035. https://doi.org/10.3390/pr9061035
Chicago/Turabian StyleHaider, Muhammad Salman, Mehmed Akif Isik, Daniele Castello, Thomas Helmer Pedersen, and Lasse Aistrup Rosendahl. 2021. "Demineralization of Miscanthus Biocrude Obtained from Catalytic Hydrothermal Liquefaction: Conditioning through Acid Washing" Processes 9, no. 6: 1035. https://doi.org/10.3390/pr9061035
APA StyleHaider, M. S., Isik, M. A., Castello, D., Pedersen, T. H., & Rosendahl, L. A. (2021). Demineralization of Miscanthus Biocrude Obtained from Catalytic Hydrothermal Liquefaction: Conditioning through Acid Washing. Processes, 9(6), 1035. https://doi.org/10.3390/pr9061035