Lifetime Prediction Using a Tribology-Aware, Deep Learning-Based Digital Twin of Ball Bearing-Like Tribosystems in Oil and Gas
Abstract
:1. Introduction
1.1. Studies on Tribometry in Maintenance
1.2. Studies on Digital Twins in Maintenance
1.3. Studies on Machine Learning
2. Methodology
3. Experiments Using a Four-Ball Tester
3.1. Extreme Pressure Testing of the Lubricant Oil
3.2. Remaining Useful Life Measurements
- = Hertz diameter of the contact area in millimeters
- P = static applied load in kilograms-force.
4. Modeling
4.1. Data-Driven Digital Twin Based on the Convolutional Neural Network
4.1.1. Kernel, or Filter, or Feature Detector and Convolutions
4.1.2. Dilated Causal Convolutions
4.1.3. Pooling
4.1.4. Dropout
4.2. Proposed CNN Architecture
5. Results and Discussion
5.1. Processed FBT Experimental Data
5.2. Digital Twin Model
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mudrak, C. Subsea Production Systems—A Review of Components, Maintenance and Reliability. Master’s Thesis, Department of Production and Quality Engineering, Faculty of Engineering Science and Technology-Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway, 2016; pp. 12–15. [Google Scholar]
- Moreno-Trejo, J.; Markeset, T. Identifying challenges in the maintenance of subsea petroleum production systems. In Proceedings of the IFIP International Conference on Advances in Production Management Systems, Stavanger, Norway, 26–28 September 2011; pp. 251–259. [Google Scholar]
- Fan, D.; Zhang, A.; Feng, Q.; Cai, B.; Liu, Y.; Ren, Y. Group maintenance optimization of subsea Xmas trees with stochastic dependency. Reliab. Eng. Syst. Saf. 2021, 209, 107450. [Google Scholar] [CrossRef]
- Castanier, B.; Rausand, M. Maintenance optimization for subsea oil pipelines. Int. J. Press. Vessel. Pip. 2006, 83, 236–243. [Google Scholar] [CrossRef]
- Kayrbekova, D.; Barabadi, A.; Markeset, T. Maintenance cost evaluation of a system to be used in Arctic conditions: A case study. J. Qual. Maint. Eng. 2011. [Google Scholar] [CrossRef]
- Williams, J. Engineering Tribology; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- López-Ortega, A.; Bayón, R.; Arana, J.; Arredondo, A.; Igartua, A. Influence of temperature on the corrosion and tribocorrosion behaviour of High-Strength Low-Alloy steels used in offshore applications. Tribol. Int. 2018, 121, 341–352. [Google Scholar] [CrossRef]
- Gill, W.; Marshall, M.; Lewis, R.; Hall, B.; Bolton, S. Failure analysis of pipeline indents using steel precision balls under subsea conditions. Tribol. Int. 2018, 118, 524–537. [Google Scholar] [CrossRef]
- Lu, P.; Powrie, H.; Wood, R.; Harvey, T.; Harris, N. Early Wear Detection and Its Significance for Condition Monitoring. Tribol. Int. 2021, 159, 106946. [Google Scholar] [CrossRef]
- Carvalho, T.P.; Soares, F.A.; Vita, R.; Francisco, R.d.P.; Basto, J.P.; Alcalá, S.G. A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 2019, 137, 106024. [Google Scholar] [CrossRef]
- Wanasinghe, T.R.; Wroblewski, L.; Petersen, B.K.; Gosine, R.G.; James, L.A.; De Silva, O.; Mann, G.K.; Warrian, P.J. Digital twin for the oil and gas industry: Overview, research trends, opportunities, and challenges. IEEE Access 2020, 8, 104175–104197. [Google Scholar] [CrossRef]
- Liu, M.; Fang, S.; Dong, H.; Xu, C. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 2020, 58, 346–361. [Google Scholar] [CrossRef]
- Ramasamy, J.; Sha’ri, M.Y. A literature review of subsea asset integrity framework for project execution phase. Procedia Manuf. 2015, 4, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Errandonea, I.; Beltrán, S.; Arrizabalaga, S. Digital Twin for maintenance: A literature review. Comput. Ind. 2020, 123, 103316. [Google Scholar] [CrossRef]
- Shafiee, M.; Animah, I.; Alkali, B.; Baglee, D. Decision support methods and applications in the upstream oil and gas sector. J. Pet. Sci. Eng. 2019, 173, 1173–1186. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; He, D.; Bechhoefer, E. Survey of lubrication oil condition monitoring, diagnostics, and prognostics techniques and systems. J. Chem. Sci. Technol. 2013, 2, 100–115. [Google Scholar]
- Zhu, X.; Zhong, C.; Zhe, J. Lubricating oil conditioning sensors for online machine health monitoring—A review. Tribol. Int. 2017, 109, 473–484. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Mukherjee, P.; Mishra, N. Online condition monitoring of engine oil. Ind. Lubr. Tribol. 2005, 57, 260–267. [Google Scholar] [CrossRef]
- Macián, V.; Tormos, B.; Olmeda, P.; Montoro, L. Analytical approach to wear rate determination for internal combustion engine condition monitoring based on oil analysis. Tribol. Int. 2003, 36, 771–776. [Google Scholar] [CrossRef]
- Zhu, J.; Yoon, J.M.; He, D.; Qu, Y.; Bechhoefer, E. Lubrication oil condition monitoring and remaining useful life prediction with particle filtering. Int. J. Progn. Health Manag. 2013, 4, 124–138. [Google Scholar]
- Blau, P.J. Running-in. In Encyclopedia of Tribology; Wang, Q.J., Chung, Y.W., Eds.; Springer US: Boston, MA, USA, 2013; pp. 2967–2969. [Google Scholar] [CrossRef]
- ASTM D2783-19. Standard Test Method for Measurement of Extreme-Pressure Properties of Lubricating Fluids (Four-Ball Method); ASTM Standard; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- Liu, Z.; Chen, W.; Zhang, C.; Yang, C.; Chu, H. Data super-network fault prediction model and maintenance strategy for mechanical product based on digital twin. IEEE Access 2019, 7, 177284–177296. [Google Scholar] [CrossRef]
- Ding, H.; Yang, L.; Yang, Z. A predictive maintenance method for shearer key parts based on qualitative and quantitative analysis of monitoring data. IEEE Access 2019, 7, 108684–108702. [Google Scholar] [CrossRef]
- Wang, J.; Yan, J.; Li, C.; Gao, R.X.; Zhao, R. Deep heterogeneous GRU model for predictive analytics in smart manufacturing: Application to tool wear prediction. Comput. Ind. 2019, 111, 1–14. [Google Scholar] [CrossRef]
- Li, X.; Ding, Q.; Sun, J.Q. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab. Eng. Syst. Saf. 2018, 172, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rajesh, P.; Manikandan, N.; Ramshankar, C.; Vishwanathan, T.; Sathishkumar, C. Digital twin of an automotive brake pad for predictive maintenance. Procedia Comput. Sci. 2019, 165, 18–24. [Google Scholar] [CrossRef]
- Magargle, R.; Johnson, L.; Mandloi, P.; Davoudabadi, P.; Kesarkar, O.; Krishnaswamy, S.; Batteh, J.; Pitchaikani, A. A simulation-based digital twin for model-driven health monitoring and predictive maintenance of an automotive braking system. In Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, 15–17 May 2017; Linköping University Electronic Press: Linköping, Sweden, 2017; pp. 35–46. [Google Scholar]
- Aivaliotis, P.; Georgoulias, K.; Chryssolouris, G. The use of Digital Twin for predictive maintenance in manufacturing. Int. J. Comput. Integr. Manuf. 2019, 32, 1067–1080. [Google Scholar] [CrossRef]
- Kwon, Y.; Won, J.H.; Kim, B.J.; Paik, M.C. Uncertainty quantification using Bayesian neural networks in classification: Application to biomedical image segmentation. Comput. Stat. Data Anal. 2020, 142, 106816. [Google Scholar] [CrossRef]
- Pham, D.T.; Afify, A.A. Machine-learning techniques and their applications in manufacturing. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2005, 219, 395–412. [Google Scholar] [CrossRef]
- Kiran, B.R.; Sobh, I.; Talpaert, V.; Mannion, P.; Al Sallab, A.A.; Yogamani, S.; Pérez, P. Deep reinforcement learning for autonomous driving: A survey. arXiv 2021, arXiv:2002.00444. [Google Scholar]
- Furfaro, R.; Bloise, I.; Orlandelli, M.; Di Lizia, P.; Topputo, F.; Linares, R. Deep learning for autonomous lunar landing. In Proceedings of the 2018 AAS/AIAA Astrodynamics Specialist Conference, Univelt, Stevenson, WA, USA, 19–23 August 2018; Volume 167, pp. 3285–3306. [Google Scholar]
- Li, H.; Yan, D.; Zhang, Z.; Lichtfouse, E. Prediction of CO2 absorption by physical solvents using a chemoinformatics-based machine learning model. Environ. Chem. Lett. 2019, 17, 1397–1404. [Google Scholar] [CrossRef]
- Desai, P.S.; Higgs, C.F. Spreading process maps for powder-bed additive manufacturing derived from physics model-based machine learning. Metals 2019, 9, 1176. [Google Scholar] [CrossRef] [Green Version]
- Male, F.; Jensen, J.L.; Lake, L.W. Comparison of permeability predictions on cemented sandstones with physics-based and machine learning approaches. J. Nat. Gas Sci. Eng. 2020, 77, 103244. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.K.; Atiya, A.F.; Gayar, N.E.; El-Shishiny, H. An empirical comparison of machine learning models for time series forecasting. Econom. Rev. 2010, 29, 594–621. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, M.; Wang, D.; Song, C.; Liu, M.; Li, J.; Lou, L.; Liu, Z. Failure prediction using machine learning and time series in optical network. Opt. Express 2017, 25, 18553–18565. [Google Scholar] [CrossRef]
- Pavlyshenko, B.M. Machine-learning models for sales time series forecasting. Data 2019, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Deb, C.; Zhang, F.; Yang, J.; Lee, S.E.; Shah, K.W. A review on time series forecasting techniques for building energy consumption. Renew. Sustain. Energy Rev. 2017, 74, 902–924. [Google Scholar] [CrossRef]
- Klüber. Lubricants for Land and Offshore Drilling oil and Refineries Industry. Brochure. 2018. Available online: https://www.klueber.com/us/en/industry-solutions/industry/lubricants-oil-and-gas-industry/ (accessed on 3 January 2021).
- The MathWorks, Inc. Models for Predicting Remaining Useful Life—MATLAB & Simulink; The MathWorks, Inc.: Natick, MA, USA, 2021. [Google Scholar]
- Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media: Sebastopol, CA, USA, 2019. [Google Scholar]
- Oord, A.v.d.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K. Wavenet: A generative model for raw audio. arXiv 2016, arXiv:1609.03499. [Google Scholar]
- Huber, P.J. Robust estimation of a location parameter. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 492–518. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 3 January 2021).
Parameter | Value |
---|---|
Window (N) | 16, 32, 64, 128 |
Number of kernels | 64, 128 |
Kernel size () | 2 |
Stride | 1 |
Dropout | 0.2 |
Number of neurons in the final dense layer | 128, 256 |
Activation function for all layers () | ReLU |
Padding | Causal |
Pooling | None |
Optimizer | Adam |
Loss function | Huber |
Epoch | 500 |
NN Architecture | Window | Filters | Dense Layer Neurons | # of Trainable Params |
---|---|---|---|---|
1 | 16 | 64 | 128 | 156,545 |
2 | 16 | 64 | 256 | 287,873 |
3 | 16 | 128 | 128 | 361,985 |
4 | 16 | 128 | 256 | 624,385 |
5 | 32 | 64 | 128 | 295,873 |
6 | 32 | 64 | 256 | 558,273 |
7 | 32 | 128 | 128 | 657,025 |
8 | 32 | 128 | 256 | 1,181,569 |
9 | 64 | 64 | 128 | 566,273 |
10 | 64 | 64 | 256 | 1,090,817 |
11 | 64 | 128 | 128 | 1,214,209 |
12 | 64 | 128 | 256 | 2,263,041 |
13 | 128 | 64 | 128 | 1,098,817 |
14 | 128 | 64 | 256 | 2,147,649 |
15 | 128 | 128 | 128 | 2,295,681 |
16 | 128 | 128 | 256 | 4,393,089 |
NN Architecture | Training Time | R Training (%) | MAE Training | R Test (%) | MAE Test |
---|---|---|---|---|---|
1 | 2 m 33 s | 99.6 | 0.666 | 84.4 | 5.86 |
2 | 2 m 32 s | 99.65 | 0.885 | 87.4 | 6.41 |
3 | 2 m 54 s | 99.72 | 0.854 | 79.13 | 5.97 |
4 | 2 m 47 s | 99.72 | 0.654 | 87.2 | 5.48 |
5 | 2 m 49 s | 99.8 | 0.784 | 89.1 | 5.69 |
6 | 2 m 56 s | 99.8 | 1.25 | 84.7 | 6.91 |
7 | 3 m 9 s | 99.7 | 1.11 | 91.9 | 4.13 |
8 | 3 m 17 s | 99.7 | 0.371 | 93 | 4.64 |
9 | 3 m 18 s | 99.8 | 0.59 | 95.3 | 4.83 |
10 | 3 m 28 s | 99.8 | 0.73 | 95.4 | 5.64 |
11 | 4 m 4 s | 99.8 | 0.31 | 90 | 5.1 |
12 | 4 m 12 s | 99.8 | 0.26 | 90.5 | 6.04 |
13 | 3 m 58 s | 99.8 | 0.64 | 94.4 | 7.35 |
14 | 4 m 6 s | 99.8 | 0.26 | 95.9 | 5.86 |
15 | 5 m 1 s | 99.9 | 0.39 | 93.8 | 6.45 |
16 | 6 m 22 s | 99.8 | 0.35 | 85 | 9.12 |
NN Architecture | Window | Filters | Dense Layer Neurons | # of Trainable Params |
---|---|---|---|---|
9 | 64 | 64 | 128 | 566,273 |
Training Time | R Training (%) | MAE Training | R Test (%) | MAE Test |
3 m 18 s | 99.8 | 0.59 | 95.3 | 4.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desai, P.S.; Granja, V.; Higgs, C.F., III. Lifetime Prediction Using a Tribology-Aware, Deep Learning-Based Digital Twin of Ball Bearing-Like Tribosystems in Oil and Gas. Processes 2021, 9, 922. https://doi.org/10.3390/pr9060922
Desai PS, Granja V, Higgs CF III. Lifetime Prediction Using a Tribology-Aware, Deep Learning-Based Digital Twin of Ball Bearing-Like Tribosystems in Oil and Gas. Processes. 2021; 9(6):922. https://doi.org/10.3390/pr9060922
Chicago/Turabian StyleDesai, Prathamesh S., Victoria Granja, and C. Fred Higgs, III. 2021. "Lifetime Prediction Using a Tribology-Aware, Deep Learning-Based Digital Twin of Ball Bearing-Like Tribosystems in Oil and Gas" Processes 9, no. 6: 922. https://doi.org/10.3390/pr9060922
APA StyleDesai, P. S., Granja, V., & Higgs, C. F., III. (2021). Lifetime Prediction Using a Tribology-Aware, Deep Learning-Based Digital Twin of Ball Bearing-Like Tribosystems in Oil and Gas. Processes, 9(6), 922. https://doi.org/10.3390/pr9060922