A Study of the Adsorption and Removal of Sb(III) from Aqueous Solution by Fe(III) Modified Proteus cibarius with Mechanistic Insights Using Response Surface Methodology
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation of FMPAs
2.2. Experimental Design of Response Surface Optimisation
2.3. Sequential Batch Adsorption Test
2.4. Characterization Methods of Sorbent before and after Adsorption
2.5. Reagents and Detection Methods
3. Results and Discussion
3.1. Response Surface Optimization of Adsorption Conditions
3.2. Adsorption Isotherm Model
3.3. Kinetic Model of Adsorption
3.4. Characterization and Adsorption Mechanism of FMPAs
3.4.1. SEM-EDS Analysis
3.4.2. Infrared Spectral Analysis
3.4.3. XPS Analysis of FMPAs before and after Adsorption
3.4.4. The Mechanism of FMPAs Adsorbing Sb(III) in Water
4. Conclusions
- (a)
- Adsorption time, dosage, temperature, Sb(III) initial concentration and other factors have a significant influence on the adsorption of Sb(III) by FMPAs, but pH has no significant effect on it. The optimal adsorption condition is the adsorption time of 2.2 h, FMPA dosage is 3430 mg/L, pH = 6.0, temperature is 44.0 °C, initial concentration of Sb(III) is 27.70 mg/L, and the average removal efficiency is as high as 97.60%;
- (b)
- The Langmuir isotherm model can fit the process of FMPA adsorption of Sb(III) well (R2 = 0.993), the maximum adsorption capacity is 30.612 mg/g, and the adsorption is a single layer adsorption, the quasi-first order kinetic model can better fit the adsorption kinetic process, the adsorption process is mainly chemical adsorption, and it is determined by the boundary layer effect and the external mass transfer effect; and
- (c)
- FMPAs can oxidize part of Sb(III) to Sb(Ⅴ), which reflects a certain degree of oxidation. FMPAs contain Fe–O–OH, EPS–Polyose–O–Fe(OH)2 and X≡Fe–OH and other forms of hydroxyl, which is the main reason for their excellent antimony removal performance. Sb(III) and Sb(Ⅴ) can replace the hydroxyl group by coordination to form Fe–O–Sb and X≡Fe–Sb complexes, thereby removing Sb(III) from the aqueous solution. Therefore, FMPAs have potential application value.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, B.; Zhou, J.; Zhou, A.; Liu, C.; Li, L. A review of antimony (Sb) isotopes analytical methods and application in environmental systems. Int. Biodeterior. Biodegrad. 2018, 128, 109–116. [Google Scholar] [CrossRef]
- Li, J.; Zheng, B.; He, Y.; Zhou, Y.; Chen, X.; Ruan, S.; Yang, Y.; Dai, C.; Tang, L. Antimony contamination, consequences and removal techniques: A review. Ecotoxicol. Environ. Saf. 2018, 156, 125–134. [Google Scholar] [CrossRef]
- Ungureanu, G.; Santos, S.; Boaventura, R.; Botelho, C. Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption. J. Environ. Manag. 2015, 151, 326–342. [Google Scholar] [CrossRef]
- Ke, S.Y.; Shi, H.L.; Liu, D.L. Antimony pollution and its toxic effects and bioavailability. Chem. World 2005, 46, 382–384. [Google Scholar]
- He, M.C.; Wan, H.Y. The distribution, existence, toxicity and bioavailability of antimony in the environment. Prog. Chem. 2004, 131–135. [Google Scholar]
- Sun, W.; Xiao, E.; Kalin, M.; Krumins, V.; Dong, Y.; Ning, Z.; Liu, T.; Sun, M.; Zhao, Y.; Wu, S.; et al. Remediation of antimony-rich mine waters: Assessment of antimony removal and shifts in the microbial community of an onsite field-scale bioreactor. Environ. Pollut. 2016, 215, 213–222. [Google Scholar] [CrossRef]
- Wan, C.; Wang, L.; Lee, D.-J.; Zhang, Q.; Li, J.; Liu, X. Fungi aerobic granules and use of Fe (III)-treated granules for biosorption of antimony(V). J. Taiwan Inst. Chem. Eng. 2014, 45, 2610–2614. [Google Scholar] [CrossRef]
- Zhao, J.J.; Qi, J.; Ji, Q.H.; Lan, H.C.; Liu, H.J.; Qu, J.H. Adsorption properties of iron-manganese modified Microcystis aeruginosa to antimony. Chin. J. Environ. Eng. 2019, 13, 1573–1583. [Google Scholar]
- Li, C.Y.; Zhuang, Z.C.; Jin, X.Y.; Chen, Z.L. Co-adsorption behavior of methylene blue and copper ions on graphene oxide. Acta Sci. Circumstantiae 2015, 35, 3163–3169. [Google Scholar]
- Deng, R.J.; Jin, C.S.; Hou, B.L.; Tang, Z.E.; Ren, B.Z. Research progress in the treatment of antimony-containing heavy metal wastewater by microorganisms. Environ. Pollut. Control 2018, 40, 104–111. [Google Scholar]
- Li, Y.; Wu, J.; Hu, W.; Ren, B.; Hursthouse, A.S. A mechanistic analysis of the influence of iron, xidizing bacteria on antimony (V) removal from water by microscale zero alent iron. J. Chem. Technol. Biotechnol. 2018, 93, 2527–2534(8). [Google Scholar] [CrossRef]
- Zhang, G.; Ouyang, X.; Li, H.; Fu, Z.; Chen, J. Bioremoval of antimony from contaminated waters by a mixed batch culture of sulfate-reducing bacteria. Int. Biodeterior. Biodegrad. 2016, 115, 148–155. [Google Scholar] [CrossRef]
- Wang, H.; Chen, F.; Mu, S.; Zhang, D.; Pan, X.; Lee, D.-J.; Chang, J.-S. Removal of antimony (Sb(V)) from Sb mine drainage: Biological sulfate reduction and sulfide oxidation-precipitation. Bioresour. Technol. 2013, 146, 799–802. [Google Scholar] [CrossRef]
- Wang, L.; Wan, C.; Lee, D.J.; Liu, X.; Zhang, Y.; Chen, X.F.; Tay, J.H. Biosorption of antimony(V) onto Fe (III)-treated aerobic granules. Bioresour. Technol. 2014, 158, 351–354. [Google Scholar] [CrossRef]
- Li, X.J.; Cheng, Y.X.; Gong, D.X.; Xiang, R.J.; Wang, Q.Q. Bacillus sp. Treatment of antimony-containing wastewater. Environ. Sci. Technol. 2012, 158, 162–166. [Google Scholar]
- Wu, F.; Sun, F.; Wu, S.; Yan, Y.; Xing, B. Removal of antimony (III) from aqueous solution by freshwater cyanobacteria Microcystis biomass. Chem. Eng. J. 2012, 183, 172–179. [Google Scholar] [CrossRef]
- Deng, R.-J.; Jin, C.-S.; Ren, B.-Z.; Hou, B.-L.; Hursthouse, A.S. The potential for the treatment of antimony-containing wastewater by iron-based adsorbents. Water 2017, 9, 794. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Wang, N.; Long, X.; Zhang, C.; Ma, C.; Zhong, Q.; Wang, A.; Wang, Y.; Pervaiz, A.; Shan, J. Antimony speciation in the environment: Recent advances in un-derstanding the biogeochemical processes and ecological effects. J. Environ. Sci. 2019, 75, 14–39. [Google Scholar] [CrossRef]
- Wang, Y.J.; Wang, X.J. Response surface methodology to optimize the adsorption of modified banana peel on pb2+. Biotechnol. Bull. 2019, 35, 188–194. [Google Scholar]
- van den Hoop, M.A.; van Leeuwen, H.P.; Pinheiro, J.; Mota, A.M.; Goncalves, M.D.L.S. Voltammetric analysis of the competition between calcium and heavy metals for complexation by humic material. Colloids Surf. A Physicochem. Eng. Asp. 1995, 95, 305–313. [Google Scholar] [CrossRef]
- Wang, Y.H.; Zou, X.G.; Shu, R.J.; Huang, J.L.; Lv, W.Y.; Yao, K. Response surface optimization and mechanism of humin for Pb2+ adsorption. China Environ. Sci. 2017, 37, 1814–1822. [Google Scholar]
- Qi, Z.; Joshi, T.P.; Liu, R.; Liu, H.; Qu, J. Synthesis of Ce (III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution. J. Hazard. Mater. 2017, 329, 193–204. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Wang, Z.; Feng, J.; Li, S.; Yan, W. Synthesis of Ce-doped magnetic biochar for effective Sb(V) removal: Per-formance and mechanism. Powder Technol. 2019, 345, 501–508. [Google Scholar] [CrossRef]
- Long, X.; Wang, X.; Guo, X.; He, M. A review of removal technology for antimony in aqueous solution. J. Environ. Sci. 2020, 90, 192–207. [Google Scholar] [CrossRef]
- Jaafari, J.; Yaghmaeian, K. Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM). Chemosphere 2018, 217, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, M.L.; Charnock, J.M.; Livens, F.R.; Vaughan, D.J. Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawite, and pyrite: An X-ray absorption spectroscopy study. Environ. Sci. Technol. 2002, 36, 1757–1762. [Google Scholar] [CrossRef]
- Deng, R.-J.; Shao, R.; Ren, B.-Z.; Hou, B.; Tang, Z.-E.; Hursthouse, A. Adsorption of antimony (III) onto Fe (III)-treated humus sludge adsorbent: Behavior and mechanism insights. Pol. J. Environ. Stud. 2018, 28, 577–586. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, R.-J.; Ren, B.-Z.; Hou, B.; Hursthouse, A. Preparation of a novel Fe3O4/HCO composite adsorbent and the mechanism for the removal of antimony (III) from aqueous solution. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Sun, F.H.; Yan, Y.B.; Chang, M.; Wu, F. Biosorption of Sb(V) by cyanobacteria in Taihu Lake. Environ. Sci. Res. 2012, 25, 764–769. [Google Scholar]
- Li, Z.P.; Yang, J.J.; Sun, C.Q.; Bai, R.B. Research progress on antimony pollution treatment methods in water. Ind. Water Treat. 2018, 38, 12–16. [Google Scholar]
- Fan, H.; Sun, W.; Jiang, B.; Wang, Q.; Li, D.; Huang, C.; Wang, K.J.; Zhang, Z.G.; Li, W.X. Adsorption of antimony (III) from aqueous solution by mercap-to-functionalized silica-supported organic–inorganic hybrid sorbent: Mechanism insights. Chem. Eng. J. 2016, 286, 128–138. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Y.; Zheng, Y.; Zhang, H.; Liang, S.; Long, M. Equilibrium, kinetic and thermodynamic studies on the sorption of 4-hydroxyphenol on Cr-bentonite. Chem. Eng. J. 2008, 143, 117–123. [Google Scholar] [CrossRef]
- Wang, L. Study on the Adsorption of Heavy Metals in Antimony-Containing Wastewater by Iron-Modified Aerobic Granular Sludge. Ph.D. Thesis, Fudan University, Shanghai, China, 2014. [Google Scholar]
- Huang, F. Study on the Adsorption Characteristics and Mechanism of Cadmium in Water by Bacillus Cereus. Ph.D. Thesis, South China University of Technology, Guangzhou, China, 2013. [Google Scholar]
- Qiu, G.; Wu, S.G.; Chen, S.J. Dry body of water floating lotus adsorbs and removes antimony in water (III). Chin. J. Environ. Eng. 2012, 6, 2683–2688. [Google Scholar]
- Qi, Z.; Joshi, T.P.; Liu, R.; Li, Y.; Liu, H.; Qu, J. Adsorption combined with superconducting high gradient magnetic separation technique used for removal of arsenic and antimony. J. Hazard. Mater. 2018, 343, 36–48. [Google Scholar] [CrossRef] [PubMed]
Factor | Code | Unit | Horizontal Coding Values of Each Factor | ||
---|---|---|---|---|---|
−1 | 0 | 1 | |||
Adsorption time | A | h | 1 | 2 | 3 |
Dosage of FMPAs | B | mg/L | 1500 | 2500 | 3500 |
pH | C | 2 | 4 | 6 | |
Temperature | D | °C | 25 | 35 | 45 |
Sb(III) initial concentration | E | mg/L | 10 | 20 | 30 |
Standard Order | Test Sequence | Influencing Factor Coding Level | Adsorption Rate (%) | Standard Order | Test Sequence | Influencing Factor Coding Level | Adsorption Rate (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | Actual | Prediction | A | B | C | D | E | Actual | Prediction | ||||
1 | 41 | −1 | −1 | 0 | 0 | 0 | 60.36 | 59.15 | 24 | 25 | 0 | 1 | 1 | 0 | 0 | 94.80 | 98.39 |
2 | 30 | 1 | −1 | 0 | 0 | 0 | 69.32 | 73.72 | 25 | 6 | 0 | 0 | 1 | −1 | 0 | 53.92 | 60.68 |
3 | 21 | −1 | 1 | 0 | 0 | 0 | 88.06 | 86.32 | 26 | 7 | −1 | 0 | 0 | −1 | 0 | 88.64 | 85.05 |
4 | 43 | 1 | 1 | 0 | 0 | 0 | 96.37 | 98.24 | 27 | 15 | 1 | 0 | 0 | 1 | 0 | 80.86 | 86.84 |
5 | 4 | 0 | 0 | −1 | −1 | 0 | 76.06 | 78.63 | 28 | 12 | −1 | 0 | 0 | 1 | 0 | 95.34 | 90.96 |
6 | 2 | 0 | 0 | 1 | −1 | 0 | 72.87 | 73.33 | 29 | 34 | 1 | 0 | 0 | 0 | −1 | 94.18 | 94.15 |
7 | 16 | 0 | 0 | −1 | 1 | 0 | 86.74 | 89.39 | 30 | 33 | 0 | 0 | −1 | 0 | −1 | 94.58 | 98.21 |
8 | 14 | 0 | 0 | 1 | 1 | 0 | 94.14 | 94.64 | 31 | 40 | 0 | 0 | 1 | 0 | 1 | 80.81 | 81.47 |
9 | 26 | 0 | −1 | 0 | 0 | −1 | 87.14 | 84.99 | 32 | 35 | 0 | 0 | −1 | 0 | 1 | 73.02 | 77.36 |
10 | 36 | 0 | 1 | 0 | 0 | −1 | 93.55 | 94.24 | 33 | 31 | 0 | 0 | 1 | 0 | −1 | 89.72 | 88.46 |
11 | 37 | 0 | −1 | 0 | 0 | 1 | 47.99 | 50.63 | 34 | 39 | −1 | 0 | 0 | 0 | −1 | 92.20 | 97.67 |
12 | 22 | 0 | 1 | 0 | 0 | 1 | 89.58 | 95.07 | 35 | 42 | 1 | 0 | 0 | 0 | 1 | 71.32 | 66.66 |
13 | 28 | −1 | 0 | −1 | 0 | 0 | 76.07 | 79.54 | 36 | 46 | −1 | 0 | 0 | 0 | 1 | 83.87 | 85.94 |
14 | 32 | 1 | 0 | −1 | 0 | 0 | 91.81 | 93.33 | 37 | 8 | 1 | −1 | 0 | −1 | 0 | 45.87 | 50.07 |
15 | 17 | −1 | 0 | 1 | 0 | 0 | 79.28 | 79.06 | 38 | 5 | 0 | 1 | 0 | −1 | 0 | 90.91 | 88.76 |
16 | 44 | 1 | 0 | 1 | 0 | 0 | 95.93 | 93.76 | 39 | 13 | 0 | −1 | 0 | 1 | 0 | 73.11 | 77.95 |
17 | 3 | 0 | 0 | 0 | −1 | −1 | 87.81 | 87.62 | 40 | 11 | 0 | 1 | 0 | 1 | 0 | 94.45 | 92.95 |
18 | 10 | 0 | 0 | 0 | 1 | −1 | 94.61 | 93.66 | 41 | 19 | 0 | 0 | 0 | 0 | 0 | 91.77 | 88.46 |
19 | 1 | 0 | 0 | 0 | −1 | 1 | 61.15 | 60.86 | 42 | 20 | 0 | 0 | 0 | 0 | 0 | 87.60 | 88.46 |
20 | 9 | 0 | 0 | 0 | 1 | 1 | 87.77 | 86.89 | 43 | 24 | 0 | 0 | 0 | 0 | 0 | 90.70 | 88.46 |
21 | 23 | 0 | −1 | −1 | 0 | 0 | 76.69 | 71.58 | 44 | 27 | 0 | 0 | 0 | 0 | 0 | 86.57 | 88.46 |
22 | 45 | 0 | 1 | −1 | 0 | 0 | 92.91 | 94.39 | 45 | 29 | 0 | 0 | 0 | 0 | 0 | 84.4 | 88.46 |
23 | 18 | 0 | −1 | 1 | 0 | 0 | 70.53 | 67.52 | 46 | 38 | 0 | 0 | 0 | 0 | 0 | 84.33 | 88.46 |
Parameter | Sum of Squares | Degree of Freedom | Mean Square | F-Measure | P-Measure |
---|---|---|---|---|---|
Model | 7057.54 | 20 | 352.88 | 20.43 | <0.0001 |
A | 810.68 | 1 | 810.68 | 46.93 | <0.0001 |
B | 2746.28 | 1 | 2746.28 | 158.99 | <0.0001 |
C | 9.0 × 10−4 | 1 | 9.0 × 10−4 | 5.21 × 10−5 | 0.9943 |
D | 1052.84 | 1 | 1052.84 | 60.95 | <0.0001 |
E | 1195.08 | 1 | 1195.08 | 69.19 | <0.0001 |
AB | 0.11 | 1 | 0.11 | 6.12 × 10−3 | 0.9383 |
AC | 0.21 | 1 | 0.21 | 0.012 | 0.9137 |
AD | 102.41 | 1 | 102.41 | 5.93 | 0.0224 |
AE | 25.35 | 1 | 25.35 | 1.47 | 0.237 |
BC | 16.2 | 1 | 16.2 | 0.94 | 0.3421 |
BD | 140.42 | 1 | 140.42 | 8.13 | 0.0086 |
BE | 309.41 | 1 | 309.41 | 17.91 | 0.0003 |
CD | 28.04 | 1 | 28.04 | 1.62 | 0.2144 |
CE | 16.77 | 1 | 16.77 | 0.97 | 0.3339 |
DE | 98.21 | 1 | 98.21 | 5.69 | 0.025 |
A2 | 57.81 | 1 | 57.81 | 3.35 | 0.0793 |
B2 | 316.94 | 1 | 316.94 | 18.35 | 0.0002 |
C2 | 2.53 | 1 | 2.53 | 0.15 | 0.705 |
D2 | 216.04 | 1 | 216.04 | 12.51 | 0.0016 |
E2 | 13.02 | 1 | 13.02 | 0.75 | 0.3936 |
Residual | 431.83 | 25 | 17.27 | -- | -- |
Lossofquasi-value | 382.84 | 20 | 19.14 | 1.95 | 0.2359 |
Neterror | 48.98 | 5 | 9.8 | -- | -- |
Thetotaldeviation | 7489.37 | 45 | -- | -- | -- |
Model | Langmuir | Freundlich | Dubinin-Radushkevich(D-R) |
---|---|---|---|
The reference values | qmax = 30.612 mg/g KL = 0.3084 L/mg R2 = 0.993 | KF = 9.7658 L/g n = 3.6626 R2 = 0.866 | qmax = 19.016 mg/g KDR = 1.411 × 10−7 ε = 1882.49 J/mol R2 = 0.930 |
Name of Adsorbent | Antimony Valence State | Optimal pH | Dosing Amount (g/L) | Initial Concentration of Antimony (mg/L) | Removal Efficiency (%) | Adsorption Capacity (mg/g) | References |
---|---|---|---|---|---|---|---|
Fe(III) modified humus sludge | Sb(III) | 2 | 4.8 | 25 | 93.2 | 9.433 | [30] |
cyanobacteria | Sb(III) | 4 | 50 | 10 | 81.6 | 4.88 | [29] |
microcystis | Sb(III) | 4 | 25 | 10 | 82.9 | 5.67 | [16] |
FMPAs | Sb(III) | 6.0 | 3.43 | 27.74 | 97.60 | 60.51 | This study |
Model | Pseudo-First-Order | Pseudo-Second-Order | Elovich | Intraparticle Diffusion |
---|---|---|---|---|
Sb(III) | qe = 5.071 mg/g k1 = 0.054 min−1 R2 = 0.997 | qe = 5.444 mg/g k2 = 0.016 g/(mg·min) R2 = 0.990 | α = 7.675 mg/min β = 1.528 g/mg R2 = 0.930 | α1 = 0.232 mg/g k1 = 0.640 mg/(g·min0.5) R12 = 0.972 α2 = 4.656 mg/g k2 = 0.027 mg/(g·min0.5) R22 = 0.863 |
Element | C-K | N-K | O-K | Na-K | P-K | S-K | Cl-K | K-K | Fe-K | Sb-L | Total Element |
---|---|---|---|---|---|---|---|---|---|---|---|
FMPAs before modification | 39.45 | 16.26 | 36.76 | 1.06 | 3.6 | 0.23 | 1.58 | 1.06 | 0 | 0 | 100 |
FMPAs | 45.42 | 9.32 | 30.68 | 0 | 1.43 | 0.06 | 2.29 | 0 | 10.80 | 0 | 100 |
FMPAs + Sb(III) | 46.18 | 10.15 | 32.13 | 0. 01 | 1.59 | 0.14 | 2.21 | 0.18 | 6.90 | 0.81 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Deng, R.; Tang, Z.; Zhou, S.; Zeng, X.; Wang, J.; Hursthouse, A. A Study of the Adsorption and Removal of Sb(III) from Aqueous Solution by Fe(III) Modified Proteus cibarius with Mechanistic Insights Using Response Surface Methodology. Processes 2021, 9, 933. https://doi.org/10.3390/pr9060933
Li X, Deng R, Tang Z, Zhou S, Zeng X, Wang J, Hursthouse A. A Study of the Adsorption and Removal of Sb(III) from Aqueous Solution by Fe(III) Modified Proteus cibarius with Mechanistic Insights Using Response Surface Methodology. Processes. 2021; 9(6):933. https://doi.org/10.3390/pr9060933
Chicago/Turabian StyleLi, Xiaojian, Renjian Deng, Zhie Tang, Saijun Zhou, Xing Zeng, Jianqun Wang, and Andrew Hursthouse. 2021. "A Study of the Adsorption and Removal of Sb(III) from Aqueous Solution by Fe(III) Modified Proteus cibarius with Mechanistic Insights Using Response Surface Methodology" Processes 9, no. 6: 933. https://doi.org/10.3390/pr9060933
APA StyleLi, X., Deng, R., Tang, Z., Zhou, S., Zeng, X., Wang, J., & Hursthouse, A. (2021). A Study of the Adsorption and Removal of Sb(III) from Aqueous Solution by Fe(III) Modified Proteus cibarius with Mechanistic Insights Using Response Surface Methodology. Processes, 9(6), 933. https://doi.org/10.3390/pr9060933