Classification of Cellulosic Insulation State Based on Smart Life Prediction Approach (SLPA)
Abstract
:1. Introduction
2. Cellulosic Insulation Failure Indicators
2.1. Degree of Polymerization (DP)
2.2. 2-Furfuraldehyde or Furfuran (2-FAL)
2.3. Carbon Oxides (CO2 and CO)
3. Development of an Integrated System for Transformer Health Assessment
3.1. Design of the First Stage of Integrated Insulation Health Assessment System
3.2. Design of the Second Stage of Integrated Insulation Health Assessment System: Smart Life Prediction Approach (SLPA)
4. Result and Discussion
4.1. Performance Evaluation of the Proposed ANN Model
4.2. Performance of SLPA for Estimating Transformer Insulation Health
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lan, S.; Huang, M.; Zhang, Y.; Yuan, Y. Experimental study oil-paper insulation under combined thermal stress and corona discharge. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1001–1008. [Google Scholar] [CrossRef]
- Wani, S.A.; Khan, S.A.; Gupta, D.; Nezami, M.M. Diagnosis of incipient dominant and boundary faults using composite DGA method. Int. Trans. Electr. Energy Syst. 2017, 27, e2421. [Google Scholar] [CrossRef]
- Pradhan, M.K. Assessment of the status of insulation during thermal stress accelerated experiments on transformer prototypes. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 227–237. [Google Scholar] [CrossRef]
- Ramu, T.S. On the estimation of life of power apparatus insulation under combined electrical and thermal stress. IEEE Trans. Dielectr. Electr. Insul. 1985, 20, 70–78. [Google Scholar] [CrossRef]
- CIGRE Task Force D1.01.10, Ageing of cellulose in mineral oil insulated transformers, 2007, CIGRE Brochure No. 323.
- Naranpanawe, L.; Ekenayake, C.; Saha, T.K. Measurement on pressboard to understand the effect of solid insulation condition on monitoring of power transformer winding clamping pressure. IET Sci. Meas. Technol. 2019, 13, 186–192. [Google Scholar] [CrossRef]
- Islam, T.; Tehseen, S.; Kumar, L. Highly sensitive thin-film capacitive sensor for online moisture measurement in transformer oil. IET Sci. Meas. Technol. 2020, 14, 416–422. [Google Scholar] [CrossRef]
- Hadjadj, Y.; Fofana, I.; Voort, F.R. Potential of determining moisture content in mineral insulating oil by Fourier transform infrared spectroscopy. IEEE Electr. Insul. Mag. 2016, 32, 34–39. [Google Scholar] [CrossRef]
- Garcia, B.; Garcia, D.; Robles, G. Development of a moisture-in-solid insulation sensor for power transformers. Sensors 2015, 15, 3610–3624. [Google Scholar] [CrossRef] [Green Version]
- Ghoneim, S.S.M.; Taha, I.B.M. Comparative study of full and reduced feature scenarios for health index computation of power transformers. IEEE Access 2020, 8, 181326–181339. [Google Scholar] [CrossRef]
- Ghoneim, S.S.M. Determination of transformers’ insulating paper state based on classification techniques. Processes 2021, 9, 427. [Google Scholar] [CrossRef]
- Saha, T.K. Review of modern diagnostic techniques for assessing insulation condition in aged transformers. IEEE Trans. Dielectr. Elect. Insul. 2003, 10, 903–917. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Wang, X.; Zhang, Y.; Li, C.; Li, Q. Diagnosis of solid insulation deterioration for power transformers with dissolved gas analysis-based time series correlation. IET Sci. Meas. Technol. 2015, 9, 393–399. [Google Scholar]
- Kachler, A.J.; Hohlein, I. Aging of cellulose at transformer service temperatures. Part 1: Influence of type of oil and air on the degree of polymerization of pressboard, dissolved gases, and furanic compounds in oil. IEEE Elect. Insul. Mag. 2015, 21, 15–21. [Google Scholar] [CrossRef]
- Lundgaard, L.E.; Hansen, W.; Linhjell, D.; Painter, T.J. Aging of oil impregnated paper in power transformers. IEEE Trans. Power Deliv. 2004, 19, 230–239. [Google Scholar] [CrossRef]
- Wang, M.; Wandermaar, A.J.; Srivastava, K.D. Review of condition assessment of power transformers in service. IEEE Elect. Insul. Mag. 2002, 18, 12–25. [Google Scholar] [CrossRef]
- Mustafa, E.; Nemeth, R.M.; Afia, R.S.A.; Tamus, Z.A. Parameterization of Debye model for dielectrics using voltage response measurements and a benchmark problem. Period. Polytech. Elect. Eng. Comput. Sci. 2021, 65, 138–145. [Google Scholar] [CrossRef]
- Tamus, Z.A.; Csanyi, G.M. Modeling of insulations by the result of voltage response measurement. In Proceedings of the 19th International Symposium on High Voltage Engineering, Pilsen, Czech Republic, 23–28 August 2015; pp. 23–28. [Google Scholar]
- Mandlik, M.; Ramu, T.S. Moisture aided degradation of oil impregnated paper insulation in power transformers. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 186–193. [Google Scholar] [CrossRef]
- Tamas, O.; Rassolkin, A.; Kallaste, A.; Arsenio, P.; Panek, D.; Kaska, J.; Karban, P. Robust design optimization and emerging technologies for electrical machines: Challenges and open problems. App. Sci. 2020, 10, 6653. [Google Scholar]
- Barbosa, D.; Coury, D.V.; Oleskovicz, M. New approach for power transformer protection based on intelligent hybrid systems. IET Gen. Transm. Distrib. 2012, 6, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.A.; Equbal, M.D.; Islam, T. A comprehensive comparative study of DGA based transformer fault diagnosis using fuzzy logic and ANFIS models. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 590–596. [Google Scholar] [CrossRef]
- Wani, S.A.; Gupta, D.; Farooque, M.U.; Khan, S.A. Multiple incipient fault classification approach for enhancing the accuracy of dissolved gas analysis (DGA). IET Sci. Meas Technol. 2019, 13, 959–967. [Google Scholar] [CrossRef]
- Ashkezari, A.D.; Ma, H.; Saha, T.K.; Ekanayake, C. Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 965–973. [Google Scholar] [CrossRef] [Green Version]
- Farooque, U.; Wani, S.A.; Khan, S.A. Artificial neural network (ANN) based implementation of Duval pentagon. In Proceedings of the 2015 International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Bangalore, India, 10–12 December 2015; pp. 46–50. [Google Scholar]
- Ghoneim, S.S.M. The degree of polymerization in a prediction model of insulating paper and the remaining life of power transformers. Energies 2021, 14, 670. [Google Scholar] [CrossRef]
- Teymouri, A.; Vahidi, B. CO2/CO concentration ratio: A complementary method for determining the degree of polymerization of power transformer. IEEE Elect. Insul. Mag. 2017, 33, 24–30. [Google Scholar] [CrossRef]
- Equbal, M.D.; Khan, S.A.; Islam, T. Transformer incipient fault diagnosis on the basis of energy-weighted DGA using an artificial neural network. Turk. J. Electr. Eng. Comput. Sci. 2018, 26, 77–88. [Google Scholar] [CrossRef]
- Nekovie, R.; Sun, Y. Back-propagation network and its configuration for blood vessel detection in angiograms. IEEE Trans. Neural Netw. 1995, 6, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, D.K.; Satsangi, P.S.; Kalra, P.K. Flexible neural network models for electrical machine. J. Inst. Eng. 1999, 80, 53–58. [Google Scholar]
- IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers; IEEE std. C57.104-2008 (Revision of IEEE std. C57.104-1991); IEEE: New York, NY, USA, 2009; pp. 1–36.
- Shaban, K.B.; El-Hag, A.H.; Benhmed, K. Prediction of transformer furan levels. IEEE Trans. Power Deliv. 2016, 31, 1778–1779. [Google Scholar] [CrossRef]
Specification of Proposed NN | |
---|---|
Network architecture | Multilayer feed forward |
Training algorithm | Levenberg-Marquardt |
ANN structure | Single hidden layer in between input and output layers |
Transfer function for hidden layer | Sigmoid |
Transfer function for output layer | Linear |
Input vector | [Temperature Moisture Aging-Duration] |
Output vector | [2-FAL CO2 CO] |
Training data | 500 |
Testing data | 42 |
No. of Neurons | 25 |
MSE | 1.51 × 10−9 |
Sample No. | Temperature (°C) | Moisture (%) | Ageing Duration (h) | [2-FAL CO2 CO] (Actual) [19] | [2-FAL CO2 CO] (Obtained by Proposed Model) |
---|---|---|---|---|---|
1 | 90 | 1.5 | 740 | [0 809 64] | [0 812 62] |
2 | 90 | 2 | 18,000 | [0.97 2631 368] | [0.97 2628 370] |
3 | 95 | 1 | 10,820 | [0.094 1493 135] | [0.095 1498 132] |
4 | 95 | 2 | 3600 | [0.102 1872 166] | [0.103 1878 164] |
5 | 100 | 1 | 5059 | [0.105 2301 209] | [0.107 2298 214] |
6 | 105 | 2.5 | 5600 | [5.26 4404 595] | [5.28 4400 594] |
7 | 110 | 1.5 | 2100 | [0.10 2490 148] | [0.10 2562 146] |
8 | 110 | 2.5 | 2517 | [0.87 2584 391] | [0.9 2587 387] |
9 | 115 | 3 | 570 | [0.5 2509 359] | [0.48 2502 353] |
10 | 120 | 2 | 4250 | [1.32 4342 577] | [1.35 4348 576] |
11 | 125 | 1.5 | 3900 | [5.25 4200 580] | [5.19 4206 586] |
12 | 125 | 2 | 570 | [0.9 2980 502] | [0.97 2984 503] |
13 | 127 | 1 | 730 | [0.09 1817 209] | [0.093 1815 211] |
14 | 129 | 2.5 | 1150 | [4.35 4210 580] | [4.36 4217 566] |
15 | 130 | 1 | 1191 | [0.25 2514 376] | [0.26 2421 372] |
Temp (°C) | Moist (%) | Aging Duration (h) | 2-FAL (ppm) in [19] | 2-FAL (ppm) Using Proposed NN Model | Deviation | Error (%) |
---|---|---|---|---|---|---|
90 | 1 | 45,200 | 6 | 6.13 | −0.13 | −2.16 |
90 | 2 | 39,811 | 6 | 6 | 0 | 0 |
90 | 3 | 18,000 | 6 | 6.05 | −0.05 | −0.83 |
110 | 1 | 16,800 | 6 | 5.72 | 0.28 | 4.66 |
110 | 2 | 5754 | 6 | 6 | 0 | 0 |
110 | 3 | 3020 | 6 | 5.89 | 0.11 | 1.83 |
130 | 1 | 3981 | 6 | 6 | 0 | 0 |
130 | 2 | 1150 | 6 | 6.23 | −0.23 | −3.83 |
130 | 3 | 682 | 6 | 6.59 | −0.59 | −9.83 |
Temp (°C) | Moist (%) | Aging Duration (h) | CO2 (ppm) in [19] | CO2 (ppm) Using Proposed NN Model | Deviation | Error (%) |
---|---|---|---|---|---|---|
90 | 1 | 34,161 | 3200 | 3204 | −4 | −0.125 |
90 | 2 | 31,876 | 3200 | 3203 | −3 | −0.093 |
90 | 3 | 15,679 | 3200 | 3011 | 189 | 5.90 |
110 | 1 | 14,550 | 3200 | 3189 | 11 | 0.34 |
110 | 2 | 4394 | 3200 | 3201 | −1 | −0.031 |
110 | 3 | 2655 | 3200 | 3200 | 0 | 0 |
130 | 1 | 4280 | 3200 | 3214 | −14 | −0.437 |
130 | 2 | 1242 | 3200 | 3176 | 24 | 0.75 |
130 | 3 | 521 | 3200 | 3089 | 111 | 3.46 |
Temp (°C) | Moist (%) | Aging Duration (h) | CO (ppm) in [19] | CO (ppm) Using Proposed NN Model | Deviation | Error (%) |
---|---|---|---|---|---|---|
90 | 1 | 49,164 | 375 | 377 | −2 | −0.53 |
90 | 2 | 18,989 | 375 | 365 | 10 | 2.67 |
90 | 3 | 13,313 | 375 | 367 | 8 | 2.13 |
110 | 1 | 13,892 | 375 | 382 | −7 | −1.86 |
110 | 2 | 5180 | 375 | 366 | 9 | 2.4 |
110 | 3 | 3064 | 375 | 374 | 1 | 0.27 |
130 | 1 | 3963 | 375 | 395 | −20 | −5.33 |
130 | 2 | 1169 | 375 | 364 | 11 | 2.93 |
130 | 3 | 563 | 375 | 348 | 27 | 7.2 |
S. No. | 2-FAL | CO2 | CO | DP | State of CSKP Insulation | |
---|---|---|---|---|---|---|
[Range as per SLPA] | Reported in [19] | |||||
1 | 0 | 812 | 62 | 1350–700 | 1304 | Healthy |
2 | 0.970 | 2628 | 370 | 700–450 | 490 | Moderate |
3 | 0.095 | 1498 | 132 | 1350–700 | 963 | Healthy |
4 | 0.103 | 1878 | 164 | 1350–700 | 1189 | Healthy |
5 | 0.107 | 2298 | 214 | 1350–700 | 1149 | Healthy |
6 | 5.280 | 4400 | 594 | 450–250 | 266 | Extensive |
7 | 0.10 | 2562 | 146 | 1350–700 | 846 | Healthy |
8 | 0.90 | 2587 | 387 | 700–450 | 500 | Moderate |
9 | 0.480 | 2502 | 353 | 700–450 | 654 | Moderate |
10 | 1.350 | 4348 | 576 | 450–250 | 362 | Extensive |
11 | 5.190 | 4206 | 586 | 450–250 | 268 | Extensive |
12 | 1.060 | 2984 | 503 | 700–450 | 600 | Moderate |
13 | 0.093 | 1815 | 211 | 1350–700 | 785 | Healthy |
14 | 4.360 | 4217 | 566 | 450–250 | 276 | Extensive |
15 | 0.260 | 2421 | 372 | 700–450 | 652 | Moderate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nezami, M.M.; Equbal, M.D.; Khan, S.A.; Sohail, S.; Ghoneim, S.S.M. Classification of Cellulosic Insulation State Based on Smart Life Prediction Approach (SLPA). Processes 2021, 9, 981. https://doi.org/10.3390/pr9060981
Nezami MM, Equbal MD, Khan SA, Sohail S, Ghoneim SSM. Classification of Cellulosic Insulation State Based on Smart Life Prediction Approach (SLPA). Processes. 2021; 9(6):981. https://doi.org/10.3390/pr9060981
Chicago/Turabian StyleNezami, Md. Manzar, Md. Danish Equbal, Shakeb A. Khan, Shiraz Sohail, and Sherif S. M. Ghoneim. 2021. "Classification of Cellulosic Insulation State Based on Smart Life Prediction Approach (SLPA)" Processes 9, no. 6: 981. https://doi.org/10.3390/pr9060981
APA StyleNezami, M. M., Equbal, M. D., Khan, S. A., Sohail, S., & Ghoneim, S. S. M. (2021). Classification of Cellulosic Insulation State Based on Smart Life Prediction Approach (SLPA). Processes, 9(6), 981. https://doi.org/10.3390/pr9060981